The Analysis of Circular Waveguide
Phased Arrays*
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In this work, a planar phased array of circular waveguides arranged in
an equilateral triangular grid 1s analyzed. The boundary value problem s
first formulated rather generally in terms of a vector two dimensional integral
equation for an array of elements that are arranged in a doubly periodic grid
along two skewed (nonorthogonal) coordinates. Dielectric plugs, covers, and
loading, as well as thin irises at the aperture, are accounlted for in the
formulation. Numerical solutions are obtained by using the Ritz—Galerkin
method to solve the integral equation. Excellent agreement with experimental
measurements using a waveguide simulator is observed. The existence of
forced surface wave phenomena in equilateral triangular grid arrays end
their strong dependence upon the mode of excitation is atso demonsirated.
These phenomena are shown to exist at isolated points in the scan co-
ordinales. Reflection characteristics as well as the polarization characteristics
of the radiation pattern are illustrated at selected planes of scan for both
linear and circular polarization excitation.

I. INTRODUCTION

The requirements of modern radar and communication systems have
stimulated considerable activity in the design and use of phased
array antennas. To date, the design information required for their
development has been obtained from the analysis of simplified array
models and from experimental data. The great speed and storage
capacity of present day digital computers, however, have now made
it possible to solve the planar phased array boundary value problem
very accurately.l

A general formulation of the planar phased array boundary value
problem may be found. A vector two dimensional integral equation

* The work reported in this paper was supported by the U. S. Army Materiel
Command under contract DA-30-069-AMC-333(Y).
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for the tangential aperture field (that is, the tangential field at the
planar interface between the waveguides and free space) can then
be derived.

In its most general form the array elements are assumed to be
arranged in a doubly periodic grid along two skewed (nonorthogonal)
coordinates; and dielectric loading, covers, and plugs, as well as thin
irises at the aperture plane, may be accounted for in the analysis.
The possibility of multimode excitation of the array has also been
ineluded. The Ritz-Galerkin method is applied to obtain a solution
for circular waveguide arrays.

Numerical solutions for the reflection characteristics of dielectric-
free planar arrays of circular waveguides hexagonally arranged in a
conducting ground plane have been carried out. Experimental meas-
urements have been made which compare favorably with the results.
Forced surface waves*'! are found to occur at isolated points in the
scan coordinates and can be related to certain vector and geometrical
symmetries for an equilateral triangle grid array. These surface waves
(or resonances) are often difficult to locate experimentally by the use
of waveguide simulators>* or small test arrays. The strong depend-
ence of these forced resonances upon the mode of excitation is also
demonstrated. The reflection characteristics as well as the polarization
characteristics of the radiation pattern are illustrated for various
combinations of linear and ecircular polarization excitation of the

array.

II. ANALYSIS

An infinite planar array of waveguide elements, Fig. 1, is imbedded
in a conducting ground plane at its interface (plane z = 0) with free
space. The elements are arranged in a periodic grid along the skewed
(nonorthogonal) coordinates s; and s;. The 2 and s; axes coincide
while the s, axis makes an angle o with respect to the z (and s;)
axis. The element location is defined by two indices (p, g) correspond-
ing to a physical location

Cpe = Pb§1 + Qd~§a (1)

where §; and §, are unit vectors along the s, and s, axes, while b and d
represent the basic periods of the two dimensional grid. A basic
periodic cell,** the parallelogram shown in Fig. 1, is thereby defined.
If the array elements are excited uniformly in amplitude with a linear
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GROUND

Fig. 1 — Circular waveguide array geometry.
phase taper such that the phase of the (p, g)th element is

Yoo = DY, + qd, (2)

then the resulting electromagnetic fields in the (p, g)th and (m, n)th
periodic cells satisfy the following periodicity relationship

E(g,0) = E(pmn) exp [2 {(m — p)¥, + (0 — @¥u,}] (3)

where E(p,,) may designate the electric or magnetic field at the (p, g)th
periodie cell of the grid.* Therefore, except for a phase factor, the fields
in all the cells are identical.

In order to solve the boundary value problem, the exterior (free space)
fields are expressed in terms of a complete set of Floquet type solutions
of Maxwell's equations { W, exp == iB,..2}. These vector modes, which
are functions of the steering phases ¢,, and ¢,, are derived in Appendix
A, The interior (z £ 0) fields are expressed in terms of the appropriate
waveguide complete orthonormal set of vector modes {®; exp == iT';z}.T
The boundary value problem is expressed in terms of an integral equa-
tion which includes the necessary continuity conditions. This equation
is formulated' by satisfying the continuity of the transverse (to z)

* The parallelogram in Fig. 1 defines the (p = 0, ¢ = 0) cell. The (p, ¢)th cell
is translated by pb and g¢d along the s: and s: axes, respectively.

1 The waveguide modes are real functions and in general consist of both TE
and TM modes with double subscripts. However, one can always systematically
relabel these modes with a single subscript according to the increasing values of
the eigenvalues,
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electric and magnetic fields within a single periodic cell. As shown in
Appendix B, the periodic cell consisting of the parallelogram CDEF of
Fig. 2 can be replaced, without a loss of generality, by the parallelogram
GHIJ (or any other periodic contiguous cell containing a complete
single waveguide aperture).

Fig. 2 — Periodic cell in skewed array geometry.

The tangential electric and magnetic fields at the array interface
(E and H at z = 0) can be expressed in terms of a Fourier series of the
complete orthonormal set of waveguide modes {®;} for z = 0 and by the
set of Floquet type modes {W*%,} for z = 0. Let the waveguides be
excited by any linear combination of their propagating modes* with
amplitudes A;(j = 1, ... , J for J propagating modes) and let the
coefficients R; represent the amplitudes of the corresponding reflected

*It is straightforward to include, if desired, any linear combination of both
propagating and evanescent modes.
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modes.* Let the coefficients D, represent the amplitudes of the reflected
evanescent modes which are generated at the aperture. Then, in terms
of the waveguide modes, the electric field at z = 0 is given by

s[Ms

D,®; (over the waveguide aperture)
' 4
0 (over:therrest:of:the periodic eell).

The corresponding magnetic field is

J
; (4; + B)®; +

E_=

o0

J
Z: Yi(Af - Ri)‘l'a‘ - ._g;d Y:’D:"l)!

_H. = (over the waveguide aperture) ®)

0 (over the rest of the periodic cell).

where the modal admittances {¥;} are real for propagating modes and
pure imaginary for evanescent modes. These admittances are given by®

Y, = L for TE modes; Y; = = for TM modes (6)

Wy T,
for an exp [—iwt] time convention with the T'; (the 2 propagation con-
stant) being positive imaginary for evanscent modes. The tangential
electric field at z = 0%, expressed in terms of the Floquet type modes, is

2
E. =2 > > F,,¥., (over the periodic cell) )

p=1 (m) (n)

where the superseript p designates TE(p = 1) or TM(p = 2) modes.
The magnetic field is correspondingly given by

2
_'H+ = E E E Frrmn Y:nnpwt,;m (8)
p=1l (m) (n)

where the modal admittances Y7, are given by

r = B P L8 (9)

mnl Wi ] mn3 B

From the orthonormality of the sets {®;} and {W¥%,} it is clear that

E. o) = ff E..®, da = {A,.+R,, for j<J (10)
A D; j> J

mn

* Actually {R;} can represent the reflection coefficients once {A,} are properly
normalized.
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where A is the waveguide aperture, and

®  wi) = [[ Boceytda= [[Eoe2)ria=F., ap

periodic cell

where the symbol * denotes the complex conjugate. Notice that E,
vanishes on the conducting ground plane. To insure the continuity
of the tangential fields across the aperture at z = 0, one requires

E. = E_ = E, over the aperture and the periodic cell (12)

while
H. = H_. = H, over the aperture only. (13)

Using the various relations, (4) through (13), one obtains an integral
equation for the tangential electric field E, at the array interface

2 A vm, = SV, ff([)Eda

i=1 i=1

+ ZJ > 2 YL, f (P?)*-E, da. (14)

p=1 (m) (n)

Similarly, one can obtain' an integral equation for H, which is defined
over the entire periodic cell. Under certain conditions' it is possible to
interchange the order of summation and integration in (14) and thereby
obtain the usual form of Fredholm integral equation of the first kind.

A useful method of obtaining a solution to (14) is by the application
of the Ritz-Galerkin method,'® whereby the integral equation is reduced
to a linear matrix equation. Substituting (4) in (14) for E, and taking the
moments of (14) with respect to the set {®;}, while using (10), leads to
the following matrix equation

[v,4, pl + R, ]|

o| Yodo| o g |47 TR (15)
0 D

Lo R

where | K| is a square matrix with the (i, g)th element given by

leig = Y b0 + Z > 2 Y ChaiCk, (16)

p=1 (m) (n)
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In (16) 8, is the kroenecker delta

Biq — {1 lf 1 = q (17')
0 if 2#£¢
and
Crus = [[ Wi, da (18)

A

is the coupling coefficient between the designated interior and exterior

modes.*

The practicality of an accurate numerical solution or approximate
analytical solution often hinges upon obtaining C%,; in closed form.
Recently the authors' have obtained closed form expressions of these
coupling coefficients for circular as well as coaxial waveguides.

A solution for the aperture field in terms of the coefficients of the

waveguide modes is given by

A, + R, 14,7,
* AJ "I' RJ — 2 II( 1—1 AJYJ (19)
DJ+I 0

The solution vector ecan be obtained by matrix inversion or by rapidly
convergent iterative methods.®**" A similar procedure should be followed
to obtain H, except that the aperture field and the moments may be
taken with respect to the set { W7}

Once the aperture electric field is obtained, the input impedance
and radiation properties of the array, as a function of scan, are easily
obtained. The reflection coefficients are obtained directly from (19),
as are the amplitudes of the evanescent modes in the waveguides. The
radiation pattern of a single element in the array environment, includ-
ing its polarization characteristics, can also be easily obtained.?t: 22

The addition of either a dielectric sheath or plug or both to the

* Notice that other sets of functions {¥;} can be used to reduce (14) by the method
of moments. However, the integrability of

[fay @i Eand [[ ) Wma? - &1

may prove difficult depending on &;. The convergence properties as a function of
the order of K will also be influenced by the choice of [&:}.
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array, Fig. 3, does not alter the functional form of the integral equa-
tion (14). As was shown by Galindo and Wu,* ** only the modal
admittances in (14) have to be replaced. For the case when dielectric
plugs are used, ¥; is replaced by

Y; — 1y, tan vt
Vim0 0y tan ity (20)
where y; and v; are the modal admittance and propagation constants,
respectively, of the ®; mode in the dielectric and ¢, is the dielectric plug
thickness. The relation between the reflection coeflicients of the propa-
gating modes in the dielectric-free region () and the aperture field is
given by

Yi f E, - ®; da — A; exp(—1T;t)[y; cosvy;t, + 2¥; sin v;4]
Rf = 4

exp(:l;t)[y; cosv;t, — ©Y; sin v;t,] (2’1)

the phase of R; being referred to the aperture. Similarly, for the
exterior dielectric sheath covering the array, the modal admittances
are replaced by

Y — TWhae tan B,.t1

! ! mnp mnp mn
Yﬂmr - ymnp y:n“p _ T:Yr’rmp tan .ant; ] (22)
where ¥/,.., and $,,, are the modal admittance and propagation constants,
respectively, of the W, mode in the sheath, and ¢/ is the sheath thick-
ness. The coefficient of the mode W%, in the free space region above the

sheath, F..., , is related to the aperture field by the following relation:

_ exXp(— 1B mall)Yiuns f -
Fony = Yoy COS Brunly’ — 1Y hny, 810 Bunls B Wi da,  (23)
periodie
cell

the phase of F,,,, being referred to the aperture plane.

The integral equation formulation can be extended to the case when
thin metallic irises are present at the waveguide aperture for matching
purposes (see Fig. 4). The integral equation for the aperture electric
field, (14), is still valid except that the integral has to be defined over the
effective aperture with the result that the orthogonal relations of (10)
and (11) cannot be used for the Ritz-Galerkin method of solution.*
The modal coupling coefficients, (18), are still integrable in closed form

* An integral equation for the magnetic field is not valid in this ease because of
the discontinuity of H; across the iris.
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Fig. 3 — Dielectric sheath and plug geometry.

over the effective aperture if the iris is circularly symmetric. However,
the matrix elements, as given by (16), do change in form when an iris is
present at the aperture. As a result of the ®; not being orthogonal over
the new effective aperture, the term Y.8;, in (16) is replaced by an infi-
nite sum.

Multimode excitation of waveguide antenna fields has been used for
primary pattern control. Such excitations may prove useful for the
reduction of mutual coupling effects.” They also may be used to obtain
circular or elliptical polarization from two linearly polarized modes and
improve the polarization characteristics of the array. In the circular
waveguide array, the horizontal TE,, (®,) and vertical TE,; (®,) modes
are degenerate (that is, they have the same z-directed propagation
constant and impedance). In order to obtain a linear, elliptical or
circular polarization excitation of the waveguide, one may redefine the
first two modes as ®,y and Pay:

4, A

Py = ® : 5@

WA P+ AP + T4+ L™ (24)
EFFECTIVE _ _ _ ~ THIN IRIS
APERTURE ~

1y

€p €g €4

LML\LA__‘

Fig. 4 — Aperture iris geometry.
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- | 4. | A¥ | 4, |

(sz\f - _(I Al !2 + | A2 2)%‘1)1 + A,;(l Al Iz + |A2 |2)itp2 . (25)
This redefinition of the first two modes preserves the orthonormality
and completeness of the set of waveguide modes while allowing the
flexibility in adjusting the desired array excitation. The reflection
coefficients which correspond to these redefined modes are R,y and
Ray. The polarization characteristies of the radiation pattern may
be determined from the # and ¢ components of the radiated field,
Ej and E,, respectively. After proper normalization of By and E, one
may obtain the corresponding transmission coefficients

' ] 1
p— 002 . 2\
Ty = ( Y,) 1—1 -7 U E,-(¥)* da (26)

(aperture)

—(I;ﬁj")l [[ Ecovi (@7)

T,
(aperture)
where T, and T, define the scan angle directional cosines. When the
first two waveguide modes are the only propagating ones and while
only a single lobe propagates in the free space, equations (24) through
(27) are related by the conservation of energy relation:

|R1N12+[RzNI2+|Tﬂi2+|T¢|2=1- (28)
For more than one lobe in free space or additional propagating modes
in the waveguides, (28) has to be accordingly modified.

III. NUMERICAL AND EXPERIMENTAL RESULTS

In order to obtain a numerical solution for the aperture field, the
infinite dimensional matrix of equation (15) must be truncated and
cast in a finite dimensional form. In other words, the electromagnetic
fields will be approximated by a finite Fourier series of the waveguide
and free space modes, and consequently the solution of the problem
as given by (19), is finite dimensional as well.

In numerical solutions of problems of this type, various ways of
ascertaining the validity and accuracy of the solution are desirable.
One obvious way is to increase the number of waveguide and free
space modes and check the convergence of the solution as a function
of the number of modes used in truncating (15). However, for the
type of kernel involved in this problem, monotonicity of the conver-
gence is not assured. Nevertheless, convergence is an important check
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since this numerical solution is variational or stationary for the im-
pedance.'® 2¢ Tterative methods and error estimates™** may also be
used for checking the convergence of the solution. Special symmetries
of the reflection coefficients versus the scan angles which are dictated
by the array geometry and mode of excitation can serve as a semi-
independent check. An important independent check in which the
reflection and transmission coefficients can be measured at special
scan angles with the aid of a waveguide simulator is used as well.

The numerical results will in general be presented as a function
of sean angle, For convenience, however, the differential phase shifts
between elements will be used as the independent variables. These
quantities are y, in the 2-direction and y, in the y-direction. Further-
more, since we limit ourselves to radial planes of scan, we introduce
the quantity y,. These quantities are related to the directional cosines
as follows:

2mb 2md sin
b= T =Ty = (R (29)
The amount of computation can be reduced when one recognizes that
the following symmetry in the aperture field as a funection of scan
exists:

E, (¢, ) = E(—¥a, — ). (30)

Convergence tests as a function of the number of waveguide and
free space modes indicated that 18 waveguide modes and 338 free
space modes yield several percent (usually less than 2 percent)
accuracy in the magnitude of the reflection coefficients, E;, except
near sharp changes of R; where the position of the sharp changes is
accurate to several degrees in y,.

The energy conservation check, equation (28), is a necessary check
but not a sufficient one in this problem as well as in other interior
type boundary value problems.*™ 22 3

One of various special symmetry checks is depicted in Fig. 5. A square
grid array in the (z, %) coordinates is excited by the vertical TE,,(®,)
mode. In this coordinate system the array parameters are represented
in the following way
a = waveguide radius; b=d; a= 90‘}' (31)

@y =Dy Dy = — D,

The parameters of the same array, when viewed in the (/, ¥’) coordi-
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Fig. 5— Symmetries in square grid arrays.
nate system, can be alternatively represented as

r— (Vb — oyt E ! — A5° 9
Vo=@ =204 me’ = 4% (32)

[ 1 —d . .r_l ’ ’
q’m'—@j'l}{ q)1+‘p2}, (I’zN—'(E)}'{(I'l‘}"I'z}

where the reference to the (2, ¥’) system is denoted by primes. The
same results should be found for this array at any sean direction
regardless of the representation. This offers, to a degree, a check on
roundoff error. Numerically, the reflection coefficients differed only
by a fraction of a percent.

An additional symmetry cheek is given in Fig. 6, where the magnitudes
of the reflection coefficients are plotted versus ¢, for a 45° plane of scan.
R,y and R,y correspond to the reflection coefficients of ®,y and @,y as
defined by (31). At ¢, = 240° (shown by a vertical arrow) the main beam
is grazing, while for ¢, > 240° no beam exists in real space and the total
incident power is reflected and divided between the two propagating
modes, @,y and @,y. Of special interest is the point ¢, = 180°
X (2)} A 255°. At this point ¥, = ¢, = ¥, = ¥, = 180° and the array
excitation is as indieated in the inset of Fig. 6. If the array is to be
simulated at this scan angle, the appropriate waveguide simulator would
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Fig. 6 — Square grid array: |R.v| and IR_\.! vs ¥, in the 45° plane of scan.
a=048,b=1,d=1,A=15and « = 90

consist of the square waveguide (solid lines) shown in the inset. It is
clear that the horizontal waveguide mode (®,y) cannot be excited. The
numerical results indeed show that | R,y | = 0 at this scan angle.
Figure 7 shows a close agreement between experimental and numeri-
cal results for a rectangular grid array with vertical polarization ex-
citation scanned in the H-plane. The scan angle which ecorresponds to
steering phases ¢y, = ¢,, = 180° and ¢, = ¢, = 0, can be simulated
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Fig. 7— Rectangular grid array: computed and experimental results vs fre-
quency at H-plane symmetry point, a = 3.57 em., b = 16,51 em., d = 8261 em,,
and a = 90°.
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Tig. 8 — Rectangular grid array: simulator for H-plane symmetry point.

by the rectangular waveguide (solid line) in the inset. The experi-
mental results were obtained from measurements of an abrupt junec-
tion between a circular waveguide and an L-band rectangular wave-
guide as shown in Fig. 8.

IV. EQUILATERAL TRIANGLE GRID ARRAYS

Let us consider the reflection and radiation characteristies of ecir-
cular waveguide arrays arranged in an equilateral triangle grid, and
the strong dependence of the array properties upon the mode of
excitation. Grating lobe incipience or a beam at grazing is designated
by a vertical arrow in the illustrations,
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Figure 9 shows the reflection coefficient of an array in the E-plane
scan, with vertical polarization excitation. In this plane the hori-
zontal mode is not excited because of symmetry so that Rey = 0. As
can be seen, the slope of both the magnitude and phase of R,y is dis-
continuous and singular at a grating lobe incipience, which parallels
previous observations in rectangular waveguide arrays.*®*" This is
related to the asymptotic decay of the coupling coefficients. A forced
surface wave resonance can be seen around grating lobe incipience
where | Ry | = 1.0. Notice that this forced surface wave resonance
is extremely sharp and consequently may not be observed in small
finite arrays.

The corresponding transmission coefficient T is shown in Fig. 10.
The plot of the transmission coefficient is actually the radiation pat-
tern of a single element in the array environment and it exhibits the
null which corresponds to a total reflection. Notice that the phase
of the transmission coefficient will exhibit a 180° discontinuity when
the magnitude has a zero. The magnitude of the reflection coefficients
of the same array, in a 60° plane of scan, are shown in Fig. 11. Again,
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Tig. 9 — E-plane scan of Riv vs ¢r (a = 048,
b=1,d=1x=14and « = 60°).
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the singular slope at grating lobe incipience can be observed. As can
be seen, the distribution of the reflected power between the two modes
is a funetion of the scan angle.

An interesting phenomenon can be observed in the corresponding
transmission characteristics which are shown in Fig. 12. The ¢ trans-

1.0

]
ul

|
‘ \
8l 36 72 108 {44 180 2i6 252 288 224 36
Y IN DEGREES | §=190°

o

Fig. 12 — Tnl and |T'¢[ vs ¢, in the 60° plane of scan (¢ = 048, b =1,d =1,
A= 14, an = 60°)

mission coefficient, T, vanishes prior to grating lobe incipience (the
positions of the vertical arrows). The vanishing of T, at this scan
angle can be directly related, when coupled with the vector symmetries
in the array excitation and geometry, to a forced surface wave reson-
ance. If the array excitation consists of the sum of the two modes
(equal in phase and magnitude) indicated by the solid arrows in
Fig. 13, then in the 60° scan plane Ty = 0 by symmetry considerations
and T, vanishes as shown in Fig. 12. Since the vectorial sum of the
two solid arrows in Fig. 13 is the dashed arrow, zero transmission or
a forced surface wave resonance will occur in the H-plane of this
polarization. Figs. 14 and 15 indeed show this effect in the H-plane
scan where | Ry | and | T, | attain unity and zero respectively prior
to grating lobe incipience.”

Since the forced surface waves are related to the vector symmetries
just mentioned, one may anticipate that the scan points at which they
occur are isolated. Figure 16 indeed demonstrates that the forced reso-
nances in the ¥ and H planes occur at isolated points. The sean around

* The difference in the values of ¢, at which these phenomena occur is inherent
in the definition of ¢, equation (20).
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Fig. 13— Vector symmetry relationships between transmission zeros and forced

surface waves.
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T'ig. 15 — H-plane scan of Te vs ¢r (a =048, b = 1,d =1, A = 14, and « = 60°).

the grating lobe cireles in Fig. 17 shows that the pealk of the total reflec-
tion | Ry | = (| R |® + | Row | *)? varies from unity in the H plane
(6 = 0), gradually decreases, and then increases again and reaches unity
in the E-plane (6 = 90°). The anomalous behavior near grating lobe
incipience is eliminated when the polarization of the excitation is changed
to horizontal, as shown in Fig. 17, indicating thus the strong dependence
of the forced surface wave resonances upon the mode of excitation. Over
the frequency band given by 1.3 = A = 1.5, qualitatively similar
behavior of the radiation and reflection characteristics of the array was

observed.
Figure 18 shows the reflection characteristics of the array under

cirecular polarization excitation. In this case

= g i) e —gpr [ — i), (33)

The incident mode is ®,y.
Again the singular slope of these curves at grating lobe inecipience

can be seen. The division of the reflected power between the two
modes as a function of scan may be observed as well. Fig. 19 shows
the polarization characteristics of the radiation pattern of an array
element. The axial ratio, denoted as A.R., is the ratio of the minor
to major axis of the polarization ellipse while the tilt angle of the
major axis, r, is taken with respeect to the ¢ axis. As indicated by
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Tig. 18 — |R1x| and |R2ﬂ vs ¢r in the 0° plane of scan. Circularly polarized ex-
citation (a =048, b =1,d = 1, A = 14, and « = 60°).

the plot, the element (or the array) far field pattern is circularly
polarized around broadside, A.R. = 1.0. It deteriorates to linear
polarization, A.R. = 0, at two points prior to grating lobe incipience.
The linear polarization at y, = 203.5° with » = 90° results from the
H-plane forced surface wave resonance of Figs. 14 and 15 where
T4 vanishes. The null of the axial ratio at ¢, = 207° (with - = 105°)

1.0 180
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Fig. 19— Radiated axial ratio (A.R.) and tilt angle (r) vs ¢, in the 0° plane
of sean. Circularly polarized excitation (¢ = 048, b = 1, d = 1, A = 14, and
a = 60°).
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is caused by the difference between the phases of Ty and Ty causing
the ¢ and # components of the far field to be in phase.

The reflection and polarization characteristics in the 30° plane of
scan are shown in Figs. 20 and 21, respectively. In this case the
single null of the axial ratio at grating lobe incipience results from
the E-plane forced surface wave resonance of Figs. 9 and 10. For
planes of scan between 0° and 30° the results corresponding to one
plane change gradually to those of the other plane. Around grating
lobe incipience the axial ratio drops appreciably (to around 0.1) but
does not reach zero. From the circular symmetry of excitation and
six-fold symmetry of the array geometry, a 30° sector of scan com-
pletely specifies the array reflection and radiation characteristics.

V. CONCLUSIONS

A general formulation of the planar phased array boundary value
problem has been given in terms of a vector two dimensional integral
equation. The solution of this equation by the Ritz-Galerkin method
closely agreed with experimental results.

Equilateral triangle phased arrays of ecircular waveguides were
numerically analyzed. It was found that forced aperture resonances
or forced surface waves, manifested by total reflection and no radia-
tion, do exist for these arrays even in the absence of dielectric ma-
terials. These effects were observed over a 15 per cent frequency
band. The forced aperture resonances occurred prior or close to grat-

1.0 | T T

PLANE OF
SCAN

°
I

[Rin| anD [Rany
(o]
o
|
——
e —

. 4pb0——t——u-+L 1 — 44 _
I\
'————'-—-..._____ |R|N| V \_____ _// \
0.2 2 — —
7 /] #=90° \
|R2N_L_ T T 4
(o] e ——
o] 36 72 108 144 180 216 252 288

¥ IN DEGREES

Fig. 20 — |R.w| and |Rex| vs ¢r in the 30° plane of scan. Circularly polarized
excitation (a =048, b = 1,d = 1.x = 14, and a« = 60°).
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Fig. 21 — Radiated axial ratio (A.R.) and tilt angle (r) vs ¢, in the 30° plane
of scan. Circularly polarized excitation (@ = 048, b = 1, d = 1, A = 14, and
a = 60°).
ing lobe incipience in the E and H plane of scan for vertical polariza-
tion exeitation. These resonances were found to occur at isolated
points as a function of the scan variables and are strongly influenced
by the mode of excitation. The resonances vanish when the polariza-
tion of excitation changes from wvertical to horizontal.

The polarization characteristies of the radiation pattern (or al-
ternatively the radiation pattern of a single excited element in the
array environment) is shown at selected planes of scan for circular
polarization excitation. The degradation of the axial ratio resulting
from the forced surface waves was shown. Total reflection or no
transmission owing to forced aperture resonances were not observed
for ecircular polarization execitation in the ecases presented.

The analysis of coaxial waveguide arrays, as well as the incorpora-
tion of thin, circularly symmetric irises in the aperture of the wave-
guide element, can be carried out along lines similar to those dis-
cussed here.

The effects of dielectric loading of the array as well as dielectrie
covers and plugs have also been studied.**
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APPENDIX A

Floquet Type Wave Functions in Skewed Coordinates

Consider the periodic array, Figs. 1 and 2, excited with incremental
phase shifts (steering phases) between adjacent cells along the s, and
82 coordinates. A complete set of solutions to the scalar wave equation,
each of which varies periodically, according to Floquet’s theorem,
along the s; and s, coordinates is

. [v. 2 [y, 2
S,n = exp (1B,..2) exp z[-};- — —%—-m]sl exp t[ff — %ﬂ]sg (34)

with the integers m,n = — =, ... —1,0,1,2,3, ..., + «. Equation
(34) describes a wave traveling (or decaying) in the z direction with
propagation constant B,. (exp —iwt time convention). The steering
phases ¢,, and ¢,, are direetly related to the beam pointing direction, #,
of a radiated plane wave with a vector propagation constant k, = k.#,
so that (34) can be rewritten as

Sy = exp (iBun?) €Xp z‘l:ka-.él _ %Tm]s, exp i[k0-§2 _ 2%”]32 . 35)

The free space propagation vector k, can be expressed in the cartesian
coordinate system as

ko = kolT.2 + T,5 + T.2] (36)

where T, , T, and T, are the directional cosines of k, with respect to
that system and &, 7, and 2 are the unit vectors. The quantities

k,-§ = Yo and k8 = 7N (37)
b d

are the projections of k, on the reciprocal grid (lattice) coordinates ¢,

and t, , respectively.’®**7*° The unit vectors in the ¢, and ¢, directions

form a biorthogonal set with & and & (Fig. 22). To express (35) in

cartesian coordinates it can easily be shown that

s, = x — ¥y cot e, s, = y/sin a, (38)
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m=i

Fig. 22 — Grating lobe diagram in reciprocal lattice coordinates.

so that the substitution of (38) into (35) yields

Sun = exp (zB,.,2) exp i[kuT, - %Tm]x

. 2mn 2rm
"exp 1|:'l”"T" o (d sine  btan a)]y' (39)

The propagation constants of the (m, n)th Floquet mode along the
x and y directions, k, and k, respectively, are
2
ke =kd = kT, — 75 ;
2rm 2mm )
dsina btana

(40)

k, =k = kT, — (

Since S, is a solution to the scalar wave equation, it can be shown
that
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= (12 _ .2 _ i
Brnﬂ - (]"u k:‘ I“y) (41)

_ e _3@]2_[ _(zm_zm)]z}a
B {ko |:kﬂT: b o'y dsine btane

where the positive imaginary root holds for (k2 + k) > ki (time
convention exp —7wt).

Each mode, 8., , for which B,,, is real corresponds to a radiated plane
wave of the phased array. The plane wave with the indices m = 0 and
n = 0 is identified with the main beam while m or n # 0 corresponds to
a radiating grating lobe. As a function of 7', and T, (or ¢,, and ¢,,), a
given B,,, may become pure imaginary as it goes through a zero, as in
equation (41). In such cases, the related Floquet mode, S,.,, becomes
evanescent or nonradiating. By plotting the curves obtained by setting
the B,., = 0 as a function of T, and T, , one obtains a convenient dia-
gram which illustrates these effects. Setting B,., = 0 yields

, m\, |* g Mg )]2 _
[“‘ b ] +‘:T"_(dsina_btana =L @2
where Ay = 2wx/k¢. As a function of T, and T,, (42) represents a
family of circles with unit radius displaced from the origin. This
diagram of displaced circles constitutes the well-known grating lobe
diagram, Fig, 225 92

Notice that the steering phases, v and y:2, are related to T, and
T, through equations (36) and (37). The parallelogram C’D’E’F’ of
Fig. 22 corresponds to the range of steering phases

-7 =y, =7 — T =¢Y,=T (43)

and is a periodie cell along the ¢, and ¢; coordinates.

As mentioned in Section II, it is possible to define a complete ortho-
normal set'® of vector modes {W?Z,.} over the parallelogram CDEF,
Fig. 2. The tangential electromagnetic field at the plane z = 0" can be
expressed by a Fourier series of this set of modes which consists of both
TE and TM modes (transverse to z). These modes, { W’"} and {WIM},
are given by

e _ exp ik, + yk,) )k, o K.
qpmn = (bd si]] a)i {k,— xT kr y} mon (44)
and
™ __ w&{k_’ # Eﬁ 1,
o = dsinap &S Tk I, (#0)
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with k, = (k% 4+ k?)}. The quantities k, and k, are functions of (m, n) as
given by (40). The orthonormality of this set of veetor modes is defined
by the following scalar products:

(Wl Py = ff WP (WIE* da dy = bpm.pa » (46)

nnrnllolnzrnm

where
—_ {1 for m =p and n = g, (47)
0 otherwise
< .:f ’ ‘F:‘e\[) = 0 (48)
and
(W', We') = Bunipa - (49)
APPENDIX B

On the Invariance of the Scalar Product with
the Shape of the Periodic Cell

The orthonormality and completeness of the set {W7,.} of Floquet
modes, equations (44) and (45), need not be defined over a specific
periodic cell such as the parallelogram CDEF of Fig. 2. This fact is
especially significant when a periodic cell intercepts parts of more than
one circular (or other type of element) aperture. It will be shown that
the orthonormality of { W7} can be preserved over a properly deformed
periodic cell which contains only a single waveguide aperture.

Using (37), equation (44) can be rewritten as

w,’ = F(m,n) exp 1['&'_!)'7”” s, + %%2“”"’32] ) (50)

The sealar product betewen two TE modes is

(W, W) = Bunia
= f f il (W TRV da dy
(CDEF)
(51)
- ff - (W) sin a ds, ds,
(CDEF)

F(m, n)-F(pg)* sin
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f f exp — [2W(mb_ ) 2‘"-(“ d_ 9 sz] ds, ds, .

(CDEF)
The integral over the parallelogram CDEF in (51) can be divided
into three (or more) integrals over the triangles CGK and LET and
the polygon GDLIFK (Fig. 2) :

[[=0++ I @

CDEF CGK LET GDLIFK

Because of the array periodicity, the triangles DHL and LEI are
displaced by b with respect to the triangles CGK and KFJ, respectively,
along the s, direction. Thus, for example, if the s, coordinate of the points
within the triangle DHL is s! given by

sl =38 +0 with ds! = ds, (53)
then
ff exp — I: w(mb p) s + QW(ndg ) 32] ds! ds,

DHL

= exp —2r(m — p) ff exp — [QW(mb_ P) Qw(nd— ) 32] ds, ds,

CGK
[f exp —z|:--'—b1£)- + ML{;QSE] ds, ds, . (54)
CGK
Similarly

ff exp — |:21r m — p) s + 21r(nd— q) Sz:I ds, ds,

f f exp — I:Zar(mb— 1) s + ’M_nfﬁ sz] u$; ds,. (55)

KFrJ

Thus
ff exp — [%(mb_ p) L+ m&_—ﬂ sz] ds, ds,

f f exp — I: W(mb_ p) L+ 2r(n d— 9 s2:| ds, ds, (56)

quIJ
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and the orthonormality and completeness of the set [ W7} is preserved
over the new periodic cell GHI.J. This is the two dimensional analog of
the single dimensional Fourier series whereby the functions and coeffi-
cients are independent of the initial value of the period. In fact, the two
dimensional periodie cell ean be deformed to any shape which contains
a single waveguide provided that the area of the cell stays the same and
the parts of the cell which cause the deformation are translated by b or d
along the s, and s, coordinates, respectively.
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