A State Variable Method of Circuit Analysis
Based on a Nodal Approach

By R. E. PARKIN

(Manuscript received April 12, 1968)

A method which is well suited for implementation on a digital computer
is presented for the solutions of active circuils. Unlike many state variable
approaches the stale vector is defined as the set of voltages which exist between
certain nodes and the reference node. An advantage of this approach is that
degeneration in the order of complexity of the network caused by capacitance
loops is handled aulomatically. Any type of controlled source can be specified.
From the basic algorithm the circuil is specified in matriz form by inspection
using standard nodal methods, and the solution s obtained by a systematic
reduction of this one matriz equation. An upper bound on the order of
complexity of the metwork is evident from the nelwork topology or the
partitioned form of the original matriz. Inductors are included in this
approach by considering the equivalent gyrator-capacitor combination.

1. INTRODUCTION

State variable techniques presently being used to analyze networks
require a detailed knowledge of graph theory.*” Another method of
state variable analysis that is based partly on a nodal approach and
does not require a detailed knowledge of graph theory is very re-
strictive.® The method presented here performs a nodal analysis on a
transformation of the network in which all magnetic storage elements
have been replaced by gyrator-capacitor equivalents, and nothing
more than a basic knowledge of graph theory nomenclature is re-
quired. The rcLumsT® network can be transformed to an equivalent

* Resistor, capacitor, inductor, mutual inductor, source and ideal transformer.
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Fig. 1 — Inductor and transformer equivalents.

resistance capacitance source network using the gyrator-capacitor
equivalents shown in Fig. 1. Each gyrator shown in Fig. 1 has the
indefinite admittance parameters

FIJ Co 1 —1][v,
IBJ: -1 0 1||Vs|;
IC O _1 0 Ve

choosing this type of gyrator enables the capacitor value in farads of
the equivalent pair to be equal to the inductor value in henries.

Let the number of nodes of a transformed network be n. Using
Kirchoff’s current law, it ean be shown that for an n-node RCS net-
work

cV =1—-GV (1)

where Iis an (n — 1)th ordered column vector representing the currents
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injected into the nodes, V is an (n — 1)th ordered column vector repre-
senting the voltages between the nodes of the network and the reference
node. If the transformed network contains I capacitors then the matrix
Cis an (n — 1)th ordered symmetric matrix which contains imbedded
within it [ second order indefinite matrices, each having the dimensions
of farads. Similarly @ represents the resistors and has the dimensions of
mhos, but ¢ may be asymmetric. Node n is the common or ground node
of the network; for convenience this node is always assumed to have
capacitors connected to it.

The objective is to find an upper bound on the rank of the ca-
pacitance matrix C' by partitioning C as deseribed in Section II, and
reducing the matrix equation (1) containing the partitioned matrix
C to the rank of C; this reduction is symbolic and does not take into
account degenerate cases which can oceur. It is shown in Appendix B
that for all conditions, for any type of circuit, an upper bound on the
order of complexity of the network (rank of C) can be found from
the network topology.

II. PARTITIONING OF THE CAPACITANCE MATRIX

There are basieally four types of voltage source (vs), the independ-
ent vs (1vs), the voltage dependent vs (vbvs), the current dependent
vs where the current is through a resistor (covsr), and the eurrent
dependent vs where the current is through a capacitor (covsc). It will
be shown that the only current source (cs) which can effect the parti-
tioning is the current dependent ¢s where the current is through a
capacitor (cpcsc). As a result, any type of cs will be termed simply
a cs, unless it is a cpesc.

The method of partitioning makes the reduction of the matrix
equation (1) to its rank a simple process. Generally only the voltage
at a node to which a capacitor is connected can be a state variable
node. However it is possible to choose a node to which a cpcsc or
cpvsc is connected as a state variable node instead of one of the
nodes of the capacitor whose current supplies the dependence, but this
possibility is avoided automatically in the partitioning method pre-
sented here.

The presence of inductors and time-invariant, independent cs’s
forming a cut-set in the original untransformed network causes a
linear dependence problem in the transformed network. In the trans-
formed network such a cut-set appears as a capacitor tree with gyra-
tors only connected to the end nodes of the tree as shown in Fig. 1,
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and gyrators and perhaps time-invariant independent c¢.s.’s connected
to the central node (the ceNobE) ; the nodes of this capacitor tree will

be called the ccseT nodes.
The capacitors in the transformed network can be divided into two

classes, those connected to the reference node directly or through a
vs-capacitor chain (the fixed capacitors), and those not so connected
(the floating capacitors). The m floating capacitor subgraphs are
defined as the m unconnected subgraphs obtained from the floating
capacitor plus imbedded vs graph of the transformed network.

The partitioning of the capacitance matrix will be related to the
example of Appendix A in the discussion that follows. Partition the

matrix C as
nl n2 n3 n4 ns
nl [C; Ci. Cua 0 Cy
n2 [Cy Cupn Csyi 0
n3 |Cy Cie Ci 0O
nd| 0 0 0 O O
ns {(Cs Cs Crm 0 Cyl

where

(?) The nodes nl are all the nodes to which capacitors are connected
omitting the following nodes:

(a) A node for each vs imbedded in a capacitor chain (these nodes are
in the n2 section), but each capacitor must be specified by at least one
node.

(b) A node for each of the m floating capacitor subgraphs (these nodes
being in the n3 section).

(¢) A node for each gesET which is specified in section n2.

In the example in Appendix A, nl contains nodes 1 — 9.
(#2) The nodes n2 represent:

(a) A node for each pvs imbedded in a capacitor chain.

(b) A node free of capacitors for each covsc and cpcsc free of capaci-
tors on at least one node.
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(¢) A node for each Gcsgr.
In the Appendix A example n2 contains nodes 10 and 11.

(1) Section n3 contains a node for each of the m floating capacitor
subgraphs.
In the example n3 contains nodes 12 and 13.

(fv) Section n4 contains the nodes to which only resistors and cs’s (but
not cpesc) are connected, including a node for each 1vs, vDvs or cpesc
free of capacitors, other covsc’s or cpesc’s on both nodes. (The other
nodes of these sources are specified in section n5).

In the example n4 has no entries.

(v) Section n5 contains all the remaining nodes. These are:
(a) A node for each 1vs.

(b) A node free of capacitors for each vDvs or cpvsr free of capacitors
or cDpVse or ¢pesc on at least one node.

In the example n5 contains node 14.
The rank of the € matrix is nl, and nl = 9 for the example of Appendix A.
Notice that the presence of capacitance loops in no way alters the method
of partitioning.

III. REDUCTION OF THE CIRCUIT DESCRIPTION TO A MINIMAL FORM

Theorem: An upper bound on the order of complexity of a network is the
order of nl.

This theorem is proved in Appendix B, where it is shown that every
row in sections n2, n3, n4, and n5 is linearly dependent on rows in section
nl; the subspace spanned by sections n2, n3, n4, and n5 is contained innl.

The systematic reduction of equation (1) is accomplished by first
eliminating section n5 by applying the voltage restrictions caused by the
vs’s in section n5. Secondly, section n4 is eliminated using the fact that
these nodes are free of capacitors. Next, section n3 is eliminated to
correct the over specification of the floating capacitor subgraphs.
Finally, the remaining dependencies of the system are caused by the
pvs’s imbedded in capacitive chains, the covsc and epcsc free of capaci-
tors on at least one node, and a node for each capacitive tree in which a
aesET has oceurred; these dependencies are eliminated with section n2,
yielding equation (9) of Appendix B.

Equation (9) of Appendix B can be written as
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v1 = B — Avl )

where
_vlq
v2
v=|v3
v4

L v5 ]

and vl is the voltage vector for nodes nl, n2, n3, ete.

An example of a solution based on the problem set by Pottle is
given in Appendix C.

IV. CONCLUDING REMARKS

A state variable technique has been described that offers two ad-
vantages over traditional methods:

(?) The network can be specified completely by inspection using
well known nodal techniques with little skill required, the problem
then becoming one of simple matrix reduction (easily programmed
for a digital computer).

(#) Capacitor loops present no problem and are not even recognized
as such since the partitioning and matrix reduction are unaltered if
there are any capacitor loops present.

The main disadvantages are that currents must always be ex-
pressed as functions of node voltages and inductors must be replaced
by gyrators and capacitors; inductor cut-sets must be recognized and
the circuit redrawn before inductors are eliminated so that the cut-
set encircles one node only, and this is sometimes inconvenient.

APPENDIX A
Example of Partitioning

For the example of Fig. 2(a), the transformed circuit without in-
ductors is given in Fig. 2(b). (This is a theoretical problem and the
cireuit has no practical value.) This circuit is deseribed by the equa-
tions
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(b)

Fig. 2 — Circuit to demonstrate transformation and partitioning.
where I; and I, are the unbalance currents due to the vs’s and

Uyy =Vs.

Notice that except for degenerate cases (for example, if Cg = 0), the
order of complexity of this network is 9.
APPENDIX B
Matriz Reduction

Consider the partitioned form of equation (1). The section n5 can be
eliminated as follows: for an 1vs of @ volts connected between nodes &
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and I (node k is in section n5, node [ is not)
U = U + a.

Tor a vpvs or ¢cpvsrk connected between nodes k and I, where the vs is
dependent on the voltage vector v,, (each voltage of v,, is not in section
nj).

Ve = U + BV
Thus the system can be reduced to
nl n2 n3 n4d
nl[C, Cn Cu 0 ﬁrl—’ i1] [Gn G. Gu Gu Pl
n2 |[Cy Cw Cu 0 ||¥2| |i2| |Gu Gn Gx Ga || V2
n3 [Cs Cip Cun Iva

5]

-3
i3 Gg] G32 Gaa G:! 4

0 v3
nd [ 0 0 0 0 LM i4 Gu G Gy Gallvé
Nodes n4 can be eliminated by first writing part of equation (3) as

J vl
v4 = G514 — [Gyy G2 Gys] | V2 (4)
l v3
Thus
Cu Cn Cyu|[w1] [i1 Gy G G|Vl Gy
Co Co Copl||¥2|=|i2] = |Gy G Gu| V2| — G2 V4
Csi Ca CaaLV3 :is Gs1 Gz Gyl [ V3 G4 ®)
it1 Gl,, Gly, Gl ||vl
=|it2 | — |Gly Glx Gluy||v2|.
| it3 Gl;, Gl Glyg | Lv3
The matrix
Ci Ci. Cu
Cy Cun Cy
Cy Cy Cay

has order nl 4+ n2 + n3 and rank no greater than nl + n2. The n3
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linearly dependent rows and columns can be deleted from equation (5)
by adding selected rows in the section nl and n2 to rows in the range n3.
The selection is made as follows: starting with any row in the section n3,
examine the first entry. If it is nonzero add row 1 to this row. Continue
along the row, repeating if necessary, until all the entries are zero.
Proceed for the other dependent rows. Equation (5) can then be written
as

¢, C. Cyfl¥l itl Gl, Gl,; Gl ||vl
V2| = — v2 (6)
Cyy Ca Coal [ V3 it2 Gl,, Gl., Gla||[v3

and
v3 = Glg;‘{its’ — (61 G1] ("‘J}. @)
| v2

Tt is a simple process for the reader to prove to himself that elimi-
nating a node of a floating capacitor subgraph which is part of a
aesET as deseribed above yields the same result as equating the alge-
braic sum of the voltages across the capacitors in the Geser to zero
(analogous to the algebraic sum of the currents entering the inductor
cut-set node through the inductors adding up to zero).

Substituting equation (7) and its derivative into equation (6) we

obtain
[02,, 0212} I:"rljl :[ipl}_[qu G2IQJ [VI} ®)
€2, (2, 1¥2 ip2| G2 G2 lv2

The total number of restrictions have not yet been placed on the
network.

(7) For a pvs imbedded in a capacitor chain or a cpvsc free of capaci-
tors on one node connected between nodes k and I, where node k is
specified in section n2,

o= v+ Vi
or
v = v + uV;

where v, is the set of voltages upon which the source is dependent. A
particular voltage of v; may be in any section nl, n2, n3, n4, or nS.
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(ir) For a cpcsc connected between nodes k and [, the currents
I, and I, injected into nodes k and ! with the cpcsc removed must be
modified to

I v+ 'fli'i
and
I [ 2 7."7':'1
respectively, where 5 has the dimensions of farads.
(#77) For a cesET with node j of the capacitor tree containing the
GeseT specified in section n2, node j is eliminated as follows: examine the
entries of row j of the remaining capacitance matrix. If entry C;,; # 0,

subtract C; ;/C,,; times row [ from row j, where [ = 1, p; p is the order of

nl + n2. Thus row j is reduced to a row of zeros.
The system can now be written as

[C]¥1 = iF1 — [(]vl. 9

Barring degeneracy, matrix C is nonsingular with rank n1.

APPENDIX C

Example of the Method

For the circuit of Fig. 3 (the example of C. Pottle®), nodes 1, 2, and 3
are placed in the n1 section, and node 4 is placed in the n5 section. Thus,
by inspection

c+¢. 0 0o —0llu (—204@4—&,)—202@2—:)‘)'
0 G 0 0 ||in _ 0
0 0 C, 0 || o 0
—¢, 0 0 ¢, ]l I, i
G+ G -G, A 0 |[o
| -G G460 —Gy || v
— G, 0 G, — G, 0 vy
0 -G, 0 G Ly
where

Vg = E; Dy = K.
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Fig. 3 — Example of Appendix C.

The derivative of the source F must be considered if a capacitor is
connected to both of its nodes. Clearing out the voltage terms in the

current array,

¢ —C 0 0 Ciflin
0 C, 0 0|6
0 0 ¢, 0]|n
—C, 0 0 C.Jla
o] |a,-6. G -,
_ 1o i | =6 6+ G, 0
0 —G, 0 Gy + G,
I.J L 0 -G, 0
Eliminating v, and #, as deseribed in Appendix B,
c,—C, 20, 0 |o,| [=CE] [G,—G, G,
0 ¢, 0 llo|=| GE |- —-G. G +0a,
0 0 Clla, 0 -, 0

0 _1)1
-G | |0
0 Vg
G Ly
-G, |[w
0 [
G+ Gy L,

This is as far as we can go symbolically and as far as the method
takes us. Normally all that remains is a simple inversion of the re-
maining eapacitance matrix, but Pottle chose C; = C,. This makes
the eapacitance matrix singular and so another node must be elimi-

nated. Eliminating node 1,

blalal
20,4, o lls
3 3

_G2

C,G,
G:{ - GJ E
O,
G:} - G?

GE 4
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G; G.G
GI+G2+G;5—G2 _Gaa—an V2
GG, G

G, — G, Ga+G4"‘G3_G2 Vs

The vector

M

can now be expressed explicitly.
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