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The noncentral chi-square distribution occurs in moise interference
problems. When the number of degrees of freedom becomes large, the middle
portion of the distribution is given by the central limit theorem, and the tails
by a classical saddle point expansion. Here recent work by N. Bleistein and
F. Ursell on “uniform” asymptotic expansions is combined and extended
lo oblain an asymptotic series which apparently holds over the entire range
of the distribution. General methods for expanding saddle point integrals in
uniform asymptotic series are discussed. Recurrence relations are given for
the coefficients in two typical cases, (¢) when there are two saddle points and
(#i) when there is only one saddle point but it lies near a pole or a branch
point.

I. INTRODUCTION

This paper deals with the problem of obtaining asymptotic series
for the complex integral

J = [ 'g(8) exp [xh(f)] dt (1)

when x becomes large. Problems of this sort are quite often encoun-
tered in applied mathematics, particularly in wave propagation. The
material presented here grew out of some recent work by G. H. Rob-
ertson® on the “Marcum @-Function.” This funection, which appears
in the study of radar interference, gives the distribution of the random
variable (noncentral x*)

e = (/) X4t @

n=1
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Here z is a positive integer and vy, 92, . . . , ¥» are independent gaus-
sian random variables with unit variances and mean values which
may be different.

Mr. Robertson has devised an algorithm for computing the @-fune-
tion which may be used for a wide range of the parameters appearing
in the function (that is, in the noncentral x* distribution). In an
earlier paper on information theory, by working with an integral of
the type in equation (1), I had obtained an asymptotic (for large
x) expression for the tails of the distribution.? However, comparison
with results obtained by Robertson showed that my expression failed
badly in the central part of the distribution where the central limit
theorem holds.

The need for an asymptotic expansion which holds uniformly over
the entire range of the distribution led to a study of the recent work
on ‘“uniform” asymptotic expansions of integrals. The first part of
this paper is an exposition, plus extensions and generalizations, of
some of the procedures which have been used to obtain uniform
asymptotic expansions of integrals of the type in equation (1). The
theory is then applied to the noncentral x* distribution.

Two procedures are considered. For convenience, we call them the
“Bleistein method’™ and the “Ursell method.”* Although these names
are among the best that suggest themselves, they are not entirely
satisfactory because they contain no hint of the earlier work by
others, especially Olver, Chester, Friedman, and Ursell.> ¢ Here we
have recast the underlying ideas used by Bleistein and Ursell into
forms better suited to our purpose.

Both methods lead to the same asymptotic series. The Bleistein
method gives a compact expression for the coefficients in the expan-
sion. However, from the few examples that have been studied, it
appears that the labor required to reduce this compact expression to
a computable form is at least as great as that required by the Ursell
method.

Section III and Appendices A, B, and C are concerned with a prelimi-
nary change of variable in the integral J. The case, denoted by “A = 1”
for brevity, in which the exponent A is a positive integer, is discussed in
Sections IV, V and VI. This material is applied to the problem of two
saddle points in Appendix E. The case in which \ is general, denoted
briefly by “A £ 1,” is discussed in Sections VII, VIII, and IX, and in the
examples in Appendices F, G, and H. The results of Section IX are ap-
plied in section X to obtain the desired type of expansion for the non-
central x* distribution. Useful results regarding classical saddle point
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expansions are stated in Appendix D. Some of the results given in
Appendix I for the general case of a saddle point near a branch point are
applied in Appendix G to obtain an asymptotic series for the Poisson-
Charlier polynomial, a polynomial of interest in traffic theory.

II. STATEMENT OF PROBLEM

The general problem is to obtain an asymptotic series for the inte-
gral J defined by equation (1) when z becomes large and most of the
contribution to J arises from a (rather loosely defined) “eritical re-
gion” around t = 0. The path of integration L’ is supposed to start
and end at [{| = e in “valleys” in the complex t-plane where
exp[ah(t)] = 0 as [t| = oo. Let the starting and ending valleys be
denoted by S and E, respectively. The path L’ starts in S, climbs up
to and passes through the critical region, and then descends down
into E.

The functions h(¢) and g(f) are analytie in the critical region;
and one or more saddle points, that is, points where #’(t) = dh(t)/dt
vanishes, lie in the critical region. We assume A(0) = 0 and that z is
real and positive. If x were complex, the factor exp (¢ arg x) could be
included in h(f).

The path I’ may be deformed into n path D consisting of (2) paths
of steepest descent which pass through some or all of the saddle
points plus possibly (ii) loops around branch cuts and poles. The
path D is independent of x. When z is extremely large, all but a
negligible part of J arises from contributions of very small portions
of D. If t = 0 is a singularity, one portion may lie close to £ = 0.
Another portion is centered on the highest (that is, largest exp[zh(£)])
saddle point. If the two highest saddle points are of the same height,
a portion is centered on each, and so on. Thus when x is extremely
large, the asymptotic series for J may be obtained by the classical
or “usual” saddle point method.

However, we may wish to compute J for values of = which, though
large, are not large enough to allow J to be evaluated by the classical
saddle point method. For such z’s the highest saddle points and the
singularity (for A # 1) at ¢ = 0 cannot be treated separately, that is, their
interaction must be taken into account. If other saddle points of lesser
height lie in the critical region, they must also be considered. This is the
range of x of interest here. Our problem is to obtain the appropriate
expansion of J in descending powers of x. The type of expansion we seek
is shown in equation (46) for J.
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This type and the type shown in equation (15) have occurred in
earlier publications*® and have been called ‘“uniform” asymptotic
expansions because they hold uniformly as a saddle point approaches
a singularity or another saddle point.

III. CHANGE OF VARIABLE

In Appendix A it is shown that, in the critical region, h(t) behaves
much like a polynomial of degree u + 1 in . Here p is the number of
saddle points in the critical region. This suggests changing the variable
of integration from f to » where

F(v) = h(®) 3)

and F(v) is a polynomial of degree p + 1 in ». When F(v) is known,
solving (3) for v as a function of ¢ gives u + 1 branches. The branch
chosen for the change of variable is the one for which di/dv =~ ¢ through-
out the critical region, ¢ being a constant. That one and only one of the
u + 1 branches has this property is rendered plausible by the discussion
in Appendix A.

Fortunately we do not have to solve equation (3) to obtain the
asymptotic series we desire. However, for some steps we do need the
values of dt/dv and higher derivatives at the saddle points. These
may be obtained by repeated differentiation of (3).

F(v) is not uniquely determined by h(t). The factors which influ-
ence its choice are reviewed in Appendix B.

The change of variable from ¢ to v carries the integral (1) for J into

J = f ') exp [2F Q)] dv 4)

where
j) = g@® /070, 1P = di/dv. (5)

The path of integration L starts in the v-plane valley corresponding
to valley S in the t-plane, passes through the critical region surround-
ing v = 0, then descends into the v-plane valley corresponding to
valley E.

1IV. THE BLEISTEIN METHOD FOR A = 1

For the case A = 1, the integral J becomes



SADDLE POINT INTEGRALS 1975

b~
Il

[ o ep h@rde = [ 16) exp 2F@)] v, o
L' L 6

16) = o) % = (01",

The Bleistein method begins by eonstructing a polynomial Po(v) of
degree p — 1 such that Po(v,) = f(v,),r =1,2,..., p where vy, Vs,

, U, are the zeros, assumed simple, of F”(v). By Lagrange’s inter-
polation formula,

Py) = Z ﬁﬁ’% @)

where the primes denote derivatives. The polynomial may be written as

Py6) = 1) + 5o f (f@F')@g Ef;‘ A f(n[F'(:) - F'(u)] "

G- 1% g
(D, v)
N f LI (t)
where Q(C, v) is a polynomial in v of degree p — 1,
Q. v) = M (9)

&—v
and f(v) has been added to remove the contribution of the pole at
¢ = v. The path C is taken in the counter-clockwise sense and encloses
¢ = v and the zeros of F’(¢) but no singularities of f({).

The expression for f(v) obtained from (8) gives

I = f dv 1@ exp [zF(v)] (
2 10)

f dv Po) exp [zF ()] + f dv exp sz(v)] 1 %_f—(%%

In order to simplify interchanging the order of integration in the
double integral, we cut off the tails of L in the usual fashion. The
error introduced by truncation is exponentially small compared with
the terms that remain. Deforming C so that it encloses the truncated
L (in the sense that it encloses the point ¢ = v for all v’s on the trun-
cated L), interchanging the order of integration, integrating by parts
with respect to v, neglecting the contributions from the integrated
portions at the ends of L, and reverting to the original order of inte-
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gration earries (10) into

f’ dv () exp [2F@)] = j; dv Po(v) exp [2F'0)]

114 A {(O(=1) r)
+.1;f dv exp [F0)] 5 =L 2 (11)

Incidentally, if the contributions from the ends (say at ¢ and b)
of the truncated I were not neglected, the right side of (11) would
contain the additional term

[[f(v) Py(v)] exp [xr(v)]]
xF'(v) a

The procedure used to establish (11) can be used to show that,
for any function f,(¢) analytic inside C, we have

j; dv f,(v) exp [2F )]

- fL dv P.0) exp [2F ()] +% fL d £,.,0) exp [2F@)]  (12)

where

1 d¢ f,(5)(=1)
fana(v) = SO =)

(13)
Qt, v)]
P,6) = f ar 1.0 %G
Setting fo (&) = f(£) and using (12) repeatedly gives
7= f dv P0) exp [2F@)] + Ry ,
(14)

Ry = 2~ fL v () oxp [2F@)] -

Since Q(¢, v) is a polynomial of degree p — 1 in v, the same is true
of P,(v) and we write

u—1

Pﬂ(v) = Epnﬂ"lu n = 0|1v2r et
=0
u—1 N

I= 2 Ul Z Puz " + Ry

1=0
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where

Ui(x) = Lv' exp [xF(v)] de, I=0,1,--- ,0— 1. -(16)

The series (15) is the type of expansion we seek. It would be desir-
able to have close inequalities for Ry, but none are available at the
present time.

Another expression for P,(v) may be obtained from (13):

1 [ de Q) 1 [ dzfu(@(=1)
2ri Je  F(0) 2milde, F'@6 — ©°

1 5 1 9 Q@&
-5 f 2 f,,_l(z)l:F G5 T ()] (17)

_ 1 Q. v) |
B [d”m[l«“m ar] F'(¢)

In the first line C. must enclose the point z = ¢ in the z-plane in addi-
tion to the zeros of F’(z). Hence initially C, encloses C. When the
order of integration is interchanged, the only singularity of the inte-
grand in the ¢-plane lying outside C iz the double pole at { = z. Ex-
pand C until it consists of a cirele of infinite radius at e plus a nega-
tive loop around ¢ = z. The contribution of the infinite circle vanishes
beeause the integrand is a rational function of ¢ of 0(¢*) at . The
contribution of the pole at ¢ = z gives the derivative.

Notice that the coeflicients p,; in (15) are independent of the path
L in the v-plane.

The procedure used to obtain the integral (17) for P, (v) may also
be used to show that

fo®) = 5y [ f“”)(_”[?"l@ :THF O =0 ] as)

When p =1 and F() = ¢°, the polynomial P,(v) reduces to
(—1)"f* (0)/(4"n!) and f,..(v) is equal to [f.(v) -frvf,’,(v) — £a(0)1/(20%).

P.w) =

V. COMPUTATION OF P,(v), A = 1. BLEISTEIN METHOD

We shall regard the functions U;(x) in the series (15) for I as tabu-
lated or easily computed. For example, when p = 2 the functions
Us(xz) and U, (x) may be expressed in terms of Airy functions. Then
the most difficult step in applying the series is the ealeulation of the
coefficients py, L = 0, 1, . . ., p — 1, of the polynomial P,(v). We
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desire an expression for p,; in terms of the values of the functions
g(t), h(t) and their derivatives at the saddle points ¢t = &,,7 = 1, 2,

R T

Let ¢t = t(v) denote the change of variable from ¢ to v, and let the
saddle point v = v, in the v-plane [F’(v,) = 0] correspond to i, in the
t-plane: t, = t(v,). We shall use the notation

w = [(@no] e =[(@eo]
1o = [(E‘f)"m’)] L=l

When convenient, we shall write h, for ! = h(%,) and g, for ¢! = g(Z,).
First consider the expression (7) for Py(v). As shown in Appendix
B, F(v) is a polynomial of degree p + 1,

(19)

u+l

F) = E Ay (20)

whose coefficients A; may be expressed as funections of the h,’s. When
this equation for F (v) is used in (7), the coefficient of ¥* in the result-
ing expression for Py (v) gives

atl

Por = ZJAfo(yz?;;‘, l=0,1,---,p—1 (21)

jel+2 r=1
Multiplying the right side of (21) by —1 and changing the limits
of summarion for j from I + 2, o + 1 to 1, [ 4+ 1 gives another ex-
pression for pg;.
Since f(v) = g(t)t""’, we also need an expression for ¢{" in terms of g(t)
and h(f). Differentiating F(v) = h(f) twice with respect to v and using
iV = 0 leads to

@) = g, 1" = [F"@,)/hP1 (22)

The sign of the square root is chosen to agree with the constant cin ¢ ~ v,
the form assumed by the change of variable throughout the ecritical
region.

Since the 4;’s and v,’s may be expressed in terms of the &,'s, equa-
tions (21) and (22) show that py depends only on the h,'s, g,’s and
h,®)s,

When n is general, an expression for p, similar to (21) for py; may
be obtained by expanding the derivative in the integral (17) for P,(v)
in partial factions and then using the Cauchy integral theorem. For
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n =11t is found that

B+l I3 H

P = ,-.;2 7 Z:' ,E,' F ) F"(v,) P”(v)
pmam| f0) = 1) . f'0) | {7@)
K [ G —0) To,—o T 2 ] (23)

where the prime on 3"’ denotes that the term for s = r is omitted. The
primes on f(v) and F(v) denote derivatives with respect to v.
The expression obtained for P, (v) is of the form

4 2n+1

P.w) = 2 2 af " @)/ (m — 1)! (24)

r=1 m=1

where «, ") is a polynomial in v. Recurrence relations for the o’s may be

obtained w1th the help of the partial fraction expansion
E=v)™ & 0 — v) " |: 1 ]
T e Y - 1 | - 25
i Y oy P W s ] R
The relation 3" [1/F"(v,)] = — 1/F"(v,) can be used to simplify the
coefficient, of (¢ — v,)-"2,
The mth derivative of f(v) evaluated at v,,

o) = 35 (Ml (2 o] (26)

contains derivatives of {(v). They may be obtained by extending the
method used to get {!'’. Straightforward differentiation of F(v) = h(f)
with respeet to » leads to

2 3 1
42 F@® _ pdyl )3]r

o1
- (1)3,(2)
3t h, @7

[,(-3) ’(”](2) [17(4) . ](3"-(2)!(”2 _ h(-i)t(ll-l . 3]}(2);(2)'.’]'
where the nth derivative F of F(v) is evaluated at v, and h™,
t™ are evaluated at t,.

The values of tU+2 for larger j's may be obtained with the help
of equation (94), namely

FO0) = 3 % (e, (28)

where ¢,; = t™, ¢,, = t" and the remaining c's are given by the
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recurrence relation (96). Setting k = 1in (96) gives
(n—1) 4(1) “n-1 (n—m) y(m)
Con ="Vt 4+ > I (29)
m=2

forn = 3, the last summation being omitted when n=3. The term in (28)
for k& = 1 vanishes when v = v,, t = {,. Substituting for ¢,,, its value
given by (29) and solving for t~" leads to the desired result whenn = 3:

n—2

ifn_” = nt:lzlh:ET [F(") - AZ;; hmcn.x —h® E (n ;l)t("'"')f.("')] - 0

m=2

The value of F(" (v) is zero forn > p + 1.

VI. COMPUTATION OF P,(v), A = 1: URSELL METHOD

The Ursell method avoids the evaluation of the derivatives of f(v)
which appear in equation (24) for P,(v). Instead, it makes use of
classical saddle point expansions about the individual saddle points
in the ¢ and v planes.

Let u different paths of integration, L], L}, ... , L be chosen in (6)
such that the chief contributions (as 2 — «) along the paths correspond-
ing to r, namely L! in the {-plane and its mate L, in the v-plane, occur at
the saddle points ¢ = ¢, and » = v, , respectively. Let the classical
asymptotic expansions around i, and v, be

1= [ o) exp [ah(0] di ~ exp [ah(t)] 2 ana™ (1)

[U2)], = f ' exp [xF(@)] dv ~ exp [xF(,)] i Bowa ™ h (32

Using h(t,) = F(v,), substituting (31) and (32) in the uniform asymp-
totic expansion (15) with N = «, and equating coefficients of 7" ¥ gives

u

-1 =n
O = !z Z .Br!mpn—m,l ( )
-0 m=0 33

=1 n

u=1 "
= 2 B.1oPur + ;Z:‘, / BrimPa-m.1
where the second sum in the last line is omitted when n = 0. The
expression (17) for P,(v) shows that P,(v) remains the same, irrespective
of the path of integration L, as long as f(v) and F(v), that is, g(t) and h(t),
remain the same. Hence, forn = 0Oandr = 1,2, ..., g, (33) furnishes p
simultaneous linear equations which may be solved for po, I =
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0,1, --- ,p — 1. Similarly when n = 1, (33) determines the p,,’s, and so
on. It turns out (see equation 39) that 8,;, = v!8.0, . This allows us to
write the simultaneous equations in the form

Pov,) = a,0/Br00 , r=1,2,-,nu

n o ou=—1
Puv) = &= — (ﬁ—)p .

|6r0l] m=1 (=0 ﬁr‘ﬂ(}
Expressions for «, and 8., may be obtained from the classical
saddle point asymptotic expansion (103) given in Appendix D. Chang-
ing n» to j in order to agree with the notation of Appendix D gives

r) i+1 2 05” i—n) -
(ﬂ-) |: ] Z ( ?l)' Z b"m( )mﬂ (3‘))

)J m=0

where h{™, g™ are the derivatives defined in equations (19), and
@)o=1,(x),=2(x+1) ... (x+n—1). Thebd,,’s are computed from
the recurrence relation (100), namely

(34)

1 n—m+1]
bm+l,n+l = n+ 1 ; kawb, aeier
starting with by = 1 and using
Qh.(k+2)
a’k=_*r—'7m"7 k=1r23"" (36)

(k + 2)!h,

The value of arg [—2/h*]! is equal to arg (t — ¢,) on the portion of L’
(deformed into a path of steepest descent through ¢,) leaving {,.
Similarly,

91%1_11n Izni";-t-nn
b = | 2|7 S VD S L

n=0 ()J —n)! m=0
where now the b,,,’s are computed from (100) with

2T [(i) ]
a, = (k + 21 F2 o= v F) v (38)

Setting j = 0in (35) and (37) gives

t 2
Qpy = (7!') [}(,,}:I :l”| Brio = ( ) [F(zr]vf ,

Pov,) = o = |:Fi;“:|i P
o Broo h:-” e i

where ¢} and f(v,) are the same as in equation (22). The relation

(39)
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P,(v,) = {(v,) is the starting point for the Lagrange interpolation formula
(7} in the Bleistein method.
Setting n = 1 in (34) and j = 1 in (35) and (37) leads to

. _Qtsl) (2) (1)’1‘(3) h(‘l) h(3]2
e [ e } T e T 0 g T, @0

, Il — 1 lvl—lF(SJ F(“ 5F[3)2
g [F‘”}{( 1 Ly - PV +”[16F<2’ + 15777 |[.

where the subseript r on the braces indicates that the enclosed g’s,
h’s, v's, F’s have the subseript r.

VII. THE BLEISTEIN METHOD FOR A # 1

Here we deal with

J = f £ g(t) exp [zh(D)] dt = f (@) exp [2F®)] dv

f@) = g(O(t/w 1", £ = dt/dv.

The origin is now a singularity, and its vieinity may contribute to J just
as the vieinities of the saddle points do. Accordingly, we now require that
the polynomial P,(») be such that P,(0) = f(0) in addition to P,(v.) =
{(v,), r = 1,2, ..., u. Assume for the moment that F'(0) = 0,that is,
that the origin is not a saddle point. Starting with Lagrange’s interpola-
tion formula and proceeding as in Section IV gives

(41)

fOwF” () f)vF" ()
P) ="y T E o — 0.0 F )

_ Rt MORIS
=10 + 55 [ 425
_ 1 [ 00, v) df

_ SF(Q) — ol Q)

a0 =0T
where C encloses { = v, ¢ =0, ¢ =v,,r=1,2,..., u but no singu-

larities of f(#). Here Po(v) and @(¢, v) are polynomials of degree
w instead of p — 1.
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When the origin is a saddle point, Py(v) is still given by the expressions
in (42) which contain integrals. In fact, we have P;(0) = f(0) (with
primes denoting derivatives) in addition to P,(0) = f(0).

Much as in Section IV, we obtain

‘/; dv o' ,0) exp [2F ()]

= f; dv v’ P,() exp [zF@)] + % L dv v f,..@) exp [2F()]  (43)
where fo(v) = f(v) and
A dEf(O(=1) N — M+ )

fn+l(v) = * /! _ 2 H
27r?, c ;F (g—) (;- U) (44)
_ 1 [drf.(0HeE, v
P =5 ). o)
Equations (43) and (44) lead to the desired series for J:
N
J= 3" f dv o> Po) exp [2F()] + R |
n=0 L
(45)
Ry = 2™Vt f dv ™! faai@) exp [2F ()] do.
When P, (v) is written out we get
P,,(U)= “anlvll 7’1:0, 1)27"'
I=0
J = 2 Vi@ Zpur” + R, (46)
Vile) = f P exp fF@)] dv, 1=0,1,2, -, p.
L
Furthermore, the recurrence relation (44) for f,(v) leads to
_ L fﬂn;@_[ ) r‘Q(r,v)]
PO =55l o LS a P
_ 1 [ 1 g}” Qc, ™
307 J 45 108 GER G @)

_ 1 e D N e Ve o D) T
farr0) = 27r1:fgd§- fO(=1¢ |:F’(_{'} 33’:| (r — U)zF’(f') .
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When A = 1 the formulas of this section do not reduce to those of
Section IV since they contain the additional condition P,(0) = f(0).
However, (46) gives the same series for J as (14) does for I because
V,(x) can now be expressed as a linear combination of Vo(z), . . .,
Vu—1(z) [which become Uy(2),...,Us—1(2)].

The only singularities enclosed by C in the integral (47) for Pu(v)
are polesat { = O0andat { =v,, 7 =1,2,..., Evaluating the
integral by Cauchy’s theorem gives the coefficients in P,(v) as the
sum of derivatives of f(v) at ¥ = 0 and at v = v,. The derivatives
at the saddle points may be obtained by differentiating

Inf@) = Ing() + (\ — D In* + In (48)

with respect to v and using the expressions for #{” developed in Section V.
The derivatives ™ (0) may be computed with the help of the series

9

v
3!
where {{” denotes the nth derivative of ¢ with respect to v at v = 0. The

t™’s may be obtained by differentiating F(v) = h(t) repeatedly with
respect to v and then setting » = 0. If F'(0) 0,

to = 43 + o & + o 8+ - (49)

(1)

m _ fo
to (T
0
(50)
(2) (2)4(1)2
1@ = Fyo — he by
iy T o

hél)

where the subseript 0 refers to ¢ = 0 when it is on h and to v = 0
when it is on F. Higher order derivatives may be computed by using
the results of Appendix C in much the same way as in Section V.

It may be verified that

| _ (0) 4(1IN
f(0) = go & (51)
A 1 (O)t(E)
f(“(O) _ !f,ln[g,(,”té” + (__-Iz—f) gntélv)a :|
where g{ is the nth derivative of g(f) with respect to ¢ evaluated at ¢ = 0.

VIll. THE URSELL METHOD FOR A # 1

When the origin is not a saddle point, the p + 1 linear equations
to be solved for the coefficients p,;, L = 0,1,..., pin P,(v) turn out
to be
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n

P,w,) = Lon. _ > :2: (%’:0':) Pam.1 r=1,2, -, (52)

BrOO me=]
n

po= = 3w (B, 3)
BOOO g=1 l+m=q BUDD

where the summations are omitted when n = 0. The summation condi-

tion I + m = ¢ in (53) is also subject to 0 = Il = p, 0 = m = .
Equations (52) are given by the analysis of Section VI for the
case A = 1 when g (f) is replaced by #*—'g(¢), v' by v+t I, by J,,
and U,(x) by Vi(z). The «’s and #’s in the rth equation of (52) are
the coefficients in the classical saddle point expansions about ¢, and v,:

J, = f 7'g(1) exp [xh(D)] dt ~ exp [zh(L,)] 3 !
o n=10 (54)
Vi), = f v exp [xF@)] dv ~ exp [xF({@,)] Z Bomr "

The a,; in (52) (with j for n) is given by equation (35) for a,; with
g*™ replaced by ¢!*' "™ where

gty = gt = i 7

= nl

(55)

7"

n n n—k 7 —f—-
o=y (,‘_)gf D=L — Nt
k=0 My

The B,; in (52) is given by equation (37) for B,; with [ replaced by
I + A — 1 on the right side.

Equation (53) arises from a consideration of the region around the
singularity at the origin. As described in connection with equation (106)
in Appendix D, let L} be a loop enclosing the branch cut running out
from ¢ = 0, and let L, be its mate in the v-plane. Then, as  — «, the
o’s and B’s in (53) are defined by

Jy = [ gt exp [xh(D)] dt ~ 3 aga™ ™"
JLo' n=1( (56)
[V.(@)]o = [L 2P exp [F@)] do ~ 3 Bormz "
L 0 m=0

Substituting (56) in the uniform asymptotic expansion for J, given
by (46) and equating coefficients of x =" gives (53).
Using the asymptotic series (106) to determine ag, and By, leads to

(l—n)

6000 m=0
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where the subscript 0 refers to the origin and b, is computed from
(100) with a; given by

a = —h& [k 4+ D! RV]. (58)

The value of £ is the value of dt/dv at v = 0 determined by the change
of variable from ¢ to ». Similarly,

; -1 +i i
Bt _ (= B)" 5 b (59

ﬁDDD m=0

where, replacing j by n, by, is computed from (100) with
a, = —FV/[(k + 1! F, kz 1. (60)

In Appendix F the theory which has just been developed is applied to
the case of one saddle point (p = 1, A # 1).

So far in this section it has been assumed that the origin is not a saddle
point. Now let the uth saddle point coincide with the origin so that F

and k" vanish. The p + 1 equations determining p.,, L = 0,1, ..., p
are now
Orn c - larlm
Pn(”r) = - E E (——)pn_m.[ r = 1, 2, e, 0 — 1 (61)
Brﬂﬂ m=1 1=0 BrOD
Puo = o E Z (@E)pn—o.l (62)
16000 ¢e=1 m+i=2¢ )6000

1
P = E’;; |:ao,zn+1 — BoaiPno — Z Z Bofmpn—q,t] (63)

g=1 m+il=2g+1

where the summations are omitted when n = 0. The values of [ and m
occurring in the inner summations in (62) and (63) must also satisfy
0=IlZ2pand0 =m = w.

Equations (61) are the same as (52) except that  runs from 1 to
s — 1 instead of from 1 to p. The o's and B's in (62) and (63) are the
coefficients in the asymptotic expansions

Jo = f £71g(t) exp [zh(1)] dt ~ X aga”
e i=0 (64)

[Vi@)]o = j; piA1 exp [xF ()] dv ~ Z Bmmx—{mnn)/z

m=0

where, as discussed in connection with equation (109), the paths L, Ly
coincide with the paths of steepest descent through { = 0, v = 0 except
for indentations at those points.
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Equation (62) is obtained by substituting (64) in the uniform asymp-
totic series for J, given by (46) and equating coefficients of z~“"*» 7%,
Equating coefficients of x~“**"*"/* gives equation (63).

Some results for the case of two saddle points, one of which is at
the origin, are stated in Appendix H.

IX. SIMPLE POLE AT THE ORIGIN

When there is a simple pole at £ = 0 and one saddle point in the
critical region, a case discussed briefly by Bleistein,® we have

J = L 0 exp [eh(0)] dt. (65)

In the eritical region, L’ is assumed to coincide with the linear path
running from @ — 100 to a + te0, a > 0.

Let h(t) be real when ¢ is real and in the critical region. Let the saddle
point £, lie on the real axis. As usual, h, = 0, ;" = 0; and we assume
h, < 0, h{*’ > 0. As suggested by example (7) of Appendix 3, we choose

F(v) = v* — 2up, ¥ = —h,
where v, is real. We write
tl E 5
vy = ‘ t I (__hl) ) (_hl) =0

in order to make v; and ¢ have the same sign.
Equation (46) shows that the uniform asymptotic expansion for
J has the form

J o~ V@) 2 pur™ + Vi) 2 paz™ (66)

n=0 n=0

where, with L parallel to, and to the right of, the imaginary v-axis,
Vi) = f v exp [aF ()] dv = [l — erf (v,2%))
I

Vi) = / exp [2F()] dv = i(r/x)} exp (—av})

< L
2 [ 2
erf (2) = = f exp (—1°) di.
m™ 0
Putting A = 0 in the integral (47) for P, (v) gives

P"(U) = pn() + ?jnl""I
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_ L [dei (4_ a)(u;)

2me c 2“.{' ; — U at g‘ — U (67)
f@) = vt /1, 1 = dit/dv

where C encloses ¢ = 0 and ¢ = v, but no singularities of f(¢). Setting
v = 01n (67) gives

Py(0) = poo fl0)y =1,
P.(0) = Pno = 0, n > 0.

Here the series (49) for /v has been used to show that f(0) = 1.
Therefore the series for J reduces to

J ~ir{l — erf [0,at]} + i(r/2)! exp (—w0)) 2 pma™.  (68)
n=0
Setting v = v, in (67) gives

o) — 1o, = 2= = 1
1 1 (69)

B Sy (9] (# ,a,)"(kr_)
Prt = 2 ¢ 28 \f — 0 a0/ \p =/’ n>0.

From (22) and I"'(v) = 2 it follows that {{" = [2/h]). The integral

for p,, may be evaluated in terms of the 2nth derivative of fw)/v =

tV/t = (d/dv) In {(v). Thus, writing {/(f — v) as 1 + u(f — v)!

and using

P

( 1 9 )"(i‘ ) = (=13 @n = D — 0 >0

=0 63’
P = U??l-l'] (2?1)' d‘u 4 p=vy !

leads to

The first of the p,.’s required in the series (68) for J is given by
equation (69) for po;. The remaining ones may be obtained by using
the Ursell method equation (52). Since poo = 1 and p,e = 0 for n > 0,
equation (52) gives forn > 0

1 n
P = B0 [al,. ~ P = z ﬁump“m"] ’ (70)

moe=1
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From equation (55), §(f) = ™' and its nth derivative at f, is §{" =
(—1)"nlt;""". Replacing g by § in (35) leads to

1y = (w)[ 217 S ot 3 b

n=0 m=0

where arg [—2/h”]' = =/2 and the b,,,’s are computed from (100) with
— 22 [k + 2)! h{P], k=1,2,---. (71)

Equatlon (54) shows that the By,,’s are the coefficients in the asymp-
totic expansion of [V;(z)];, that is, in the asymptotic expansion of an
integral, which has the same integrand as V,(z), taken along the
path of steepest descent through the saddle point v = v;. Instead of
obtaining the B’s by the general procedure outlined in Section VIII,
we notice that the “asymptotic” series for V,(z) consists of only one
term. Consequently By, is 0 when m > 0 and the summation in
equation (70) for p,; disappears. Moreover, the asymptotic series for
the error function gives, when v, > 0,

Vo) ~ i(m)* exp (—av}) 20 (= 1)"@)nle)) ™"
When v; > 0 and 2 = w0, Vi(2) is given asymptotically by the con-
tribution from v;. When v, < 0, the asymptotic expression for V,(z)
contains the constant term 2xi, but the contribution from a path of
steepest descent through v, is still given by the same expression as
for positive v;. Hence, irrespective of the sign of vy,
Biom = @(7") (=" (2 mt 1_2m h
These results enable us to write equation (70) (with ; for n) as
1 o0 P & .
Pin = ( 1)2’)1'? 2) {['lt } Z (—t) E bmn(] + 1} (72)
1 1 n=0 m=0

for j > 0. Here, to repeat,

‘ 1 (1) _ ]
G o B et -
1 1 1 1 1 (73)

(@o=1, (@Qu=c+1 -+n—1)

and the b,,’s are computed in succession from equation (100) with
ay given by (71),
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The first two p,1's are

1 t(l)
= 22 1]
1 1 (74)

1 ot P 3 203 15, 2
pl.l = -—2—?)? T 1:1 - ft]al "I" t1(§a2 + _ral)] - 1

and the b,,,’s for p.; may be read from the table in Appendix D.
When | ¢, | is small, the expressions which have been given for p,, are
essentially small differences between large numbers. If the calculation is

being performed on a digital computer it may be advisable to use double
precision. Expanding h(f) about ¢ = ¢, and then setting ¢ = 0 leads to a

—2j-1

series for —h, which may be used to obtain v] as [t /617" times a
power series in ¢, . Series of this type can be used to show that

po = G 11" + 0(t)
(75)

P = —V*Ba, + Haa, + Fal) + O(1)

where a; is given by (71).

X. THE NONCENTRAL Xﬂ DISTRIBUTION

Let z be a positive integer and yi, ¥s, - - . , Y- be independent gaussian
random variables with unit variances and respective mean values
71y G2y - - » J= - Let z be the (noncentral x%) random variable

s=1 E Yn - (76)

T n=a

It may be shown that the mean value of z is 2 = 1 4 r and that its
variance is (2 + 4r)/x where

r=i2yi.

Furthermore, from Ref. 2 (with a change of variable) the distribution
function of z is

Pob[0SzSd =55 [  Cewplhld (D)
where ¢ > 0 and
B = 3t — (L + 1) + (L 4+ 7 = 1l. (78)



SADDLE POINT INTEGRALS 1991

The integral on the right side of (77) is seen to be equivalent to
minus Marcum’s @-function (and also to an expression given by
R. A. Fisher) when (77) is written as

Prob [0 =z = 5] = g f (2/1)*? 7Y exp [—a(z + 1)/20] (o2 1 [2(2)*1dz

Here I denotes a Bessel function with imaginary argument.

We are interested in computing the distribution of z when z is large.
The equation A (f) = 0 gives two saddle points. However, as pointed
out in Ref. 2, when z is large only the one at

1+ (1 + 4rs)t
2s
need be considered. The value of ¢, is real and > —1. When s = 1

+ 7, t; is zero; and when s increases through 1 + r, {; decreases
through 0.

From equation (68) the desired asymptotic expansion is

= —1+

Prob [0 <z < 5] ~ {1 — erf [1,2]}

+ 4m) ™ exp (@) Dopuz (79)
n=0
where py; 1s given by (72). The quantities entering p,, are
"= tl SR =R, 6 = 2]
A7) = 3= — DIl + 0" 4+ 01+, nx=2
r(L4+ ) +27' a4+ t)?

2(—1)*! (42 4+ 141,
a; = . % — |» k=
k + 21 + 1) %+ 1+t
The values of po; and p;; may he obtained from (74) by substitution
of the parameter values (80).

When s — 2 = § — 1 — ris small, the central limit theorem in the
theory of probability states that

a5 )
=z = 1
Prob [0 £z = 5] ~ 9{ 1 + erf [(44—8?)’
This agrees with the approximation given by the error function term in
(79) when it is noted that ¢, = — (s — 1 — #)/(1 + 2r) and — h, =
th¥/2if s — 1 — ris small.

=
Il
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The ordinary y* distribution is obtained by setting » = 0 in the
noncentral 2 distribution. In this case we have

tlzls_s, 10 = 2/,
1 —s s—l—]ns)*
- 1
o ll—sl( 2 ) (81)
2(—8)" <
a,,=—k+2, E=1.

Equations (74) show that the first two coefficients Po;, P11 in the
asymptotic series (79) are now

2 1
Poo = 7 . —
1—s5 82)
_ 12 Y (1—s)2] _1}
p“‘_z{(l—s) [s+ 12 v
When s is close to its average value 1, equation (75) gives
P = 2/3 + O(tl) (83)
P = 1/135 + O(t,).
Setting x = 2¢ and r = 0 gives
Prob [0 £z = 5] = 1 u ™ exp (—uw) du
I‘{C) 0 (84)

- i (cs)" exp (—cs)
= nl
where ¢ is assumed to be an integer (z even) in the last equation.
These relations may be combined with the foregoing formulas to
obtain asymptotic results for the incomplete gamma function and
the Poisson distribution.

There is reason to believe that the asymptotic expansion (79) for
Prob [0 £ z = s] may hold over the entire range 0 < s £ «. For exam-
ple, consider the ordinary (r = 0) x* distribution. In this case the first
two terms in (79) give

Prob [0 £ 2 £ s] ~ {1 — erf 0,2}

+ 3ma]™ [1 - —l}exp (—w)  (85)

U
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where z = 2¢ and v, is given by (S1). Let ¢ be held fixed at some large
value and consider further the three cases s — 0, s — «,and s — 1. In
all three cases it may be verified that the leading terms in Prob
[0 = z = s] given by (85) agree with those obtained from the exact
equations (84) and the asymptotic properties of the incomplete gamma
function. The expressions obtained from (84) are

Prob [0 £ z £ 5] = (2r¢) %" [exp c] [1 + Ofes) + O™, s—0

Prob [0 £z <] = 1 — (2me)"*s" '[exp (e —e9)][1 + OGE™") + 0],
§— © (86)

Prob[0£z=1] =3+ 3Cr0) ' + 0™, s=1

APPENDIX A
The Behavior of h(t) in the Critical Region

In this appendix we show that, in the critical region, h(f) behaves
much like a polynomial of degree p + 1, and we examine the change
of variable from ¢ to v.

First write
w1 4ig i)

T’ | R,., (87)
i=1 I
where h¢ is the value of (d/dt)’h(f) at ¢ = 0, h{**" is not 0, and R .,
is O(t**3).

One of the distinguishing features of a polynomial in ¢ of degree
p -+ 1 is that when ¢ is much larger than », where | ¢ | = ris the smallest
circle which encloses the zeros, the dominant term in the polynomial is
the one containing ¢***. The function A(t) has a corresponding property.
Suppose that the saddle points ¢, s, ... , t, all lie within a distance e of
the origin, and for the moment suppose that they may be moved towards
the origin so that e may be made as small as we desire. Also suppose that
Ri*Y = A + O(e) where A # 0. We shall show that by making e small
enough we may find a range p < | t| < 5 throughout which

R(t) ~ t*he™ /(e + 1T (88)

Here 7 is such that when |¢| and e are less than 7, the remainder E ., in
(87) is negligible in comparison with the (¢ + 1) term T',.,, = t**'h§**?/
(¢ 4+ 1)!. Once 7 is fixed, p may be chosen to be arbitrarily small, subject
only to p < 7.

In order to show that (88) holds when p < || < #, notice that by

h(l) =
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repeated differentiation of the representation

Rt) = @t —t)(t — t) ... (t—t,) GE)
it may be shown that G(0) = hy**"/u! + O(e) and that RSP is
Oe" ' h{** ] forj = 1,2, - -+, u. Hence when || > ¢

u i (i)
Z t};(; = O[tp € hé“l)] = O(Et Tn+1) '

i=1

Choosing p to be arbitrarily small, subject only to 0 < p < n, and then
choosing e so that e/p << 1 establishes (88).

This property of h(f) suggests that some insight into the change of
variable from ¢ to v, specified by F(v) = h(f), may be obtained by
considering h(t) to be a polynomial ¢(f) of degree p + 1. Then a natural
choice of F(v) is F(v) = ¢(cv + b) where ¢ and b are constants. For
simplicity we take ¢ = 1 and b = 0 so that v, = ¢, r = 1, 2, ..., H
where v, is the rth saddle point on the v-plane. The equation F(») = h(f)
goes into ¢(v) = ¢(t) which we write as

Bl

o) — oll) = 2 A0 — 1)
=1
=@ — O[A4, + 400 + &) + 40" + vt + £+ -]
= 0.
The branch used in the change of variable is
v=1 (89)

for which dv/dt = 1 everywhere. The remaining p branches, which
are ignored in the change of variable, may be obtained by solving

A 4+ A0+ 0+ ... F A"+ 0"+ o+t =0 (90)

for v as a function of ¢. Writing (90) as

o) — ()
G, t) = o=t =0

and expanding G(v, t) about » = {,, t = {, shows that, near { = t,, one
of the remaining branches behaves like v = {, — (t — t,). On this branch
v =t,and dv/dt = —1lat{={,. Again,letv = 9,8 =1,2, ..., p— 1,
be one of the u — 1 roots of G(v, {,) = 0 which is not equal to ¢,. Expand-
ing G(v, t) about v = 9,, t = f, shows that near ¢ = ¢, the correspond-
ing branch behaves like
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_ g oo = 1))
P TTR6)
and that dv/dt = 0 att = {,.

The examination of special cases suggests that there is a one-to-one
correspondence between the p branches of (90) and the p saddle points
in the sense that dv/dt for a particular branch is equal to —1 at its
corresponding saddle point and is zero at the other saddle points. Thus
it appears that the branch v = ¢ [or its analogue for general h(t)]
is the only one suitable for the change of variable throughout the
entire critical region.

APPENDIX B

The Choice of F(v)

The polynomial F(v) used in changing the variable of integration
will be written as

p+1

Fo) = > Ap'. (91)

The positions ¢y, 2, . . ., t, of the saddle points and the associated
values h, = h(t) are supposed known. We require expressions for
the Ay’s which are either pure numbers or depend only on the h,s.
Although one or more of the zeros vy, va, ..., v, of F'(v) = dF (v) /dv
may appear in our final expression for F(v), they will always be ex-
pressed in terms of the h,’s.

Since F'(v) = h(t), we have the 2u equations

F@,) = h,, 92)
F'wp,) =0, r=1,2 -,
relating the 2u + 2 unknowns vy, vy, ... , v, Ao, 4y, ..., A, Con-

sequently we have at least two arbitrary choices (4 .., = 0is forbidden).
For the case A # 1 we shall always require the change of variable to be
such that v is 0 when ¢ = 0 and thus we take 4, = 0. In some instances
the form of h(f) aids in the choice of the A ;’s. For example, when h(f) is
an even function of ¢, we can take F(») to be an even function of ».

In choosing F(v) it is helpful to notice that in the eritical region the
change of variable takes the form ¢t & ¢v, ¢ being a constant. Conse-
quently, from (87),
ut+l (a,)ihlgi)

Fo ~ X

- 93
i=1 7! 93)
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and it follows that the p zeros, v,, of F’(¢) have nearly the same configura-
tion in the v-plane (except for a possible rotation and magnification
given by arg c and | ¢ | , respectively) as do the zeros, t,, of A'(f). For the
case A = 1 there may also be a small displacement so that ¢ &~ cv can be
written more accurately as ¢ & cv + b, or di/dv = c. Furthermore, from
(88), we can take ¢ to be one of the roots of

Aper = B (e + DI

The following examples illustrate possible choices of F(v).
(@) p = 1, \ £ 1, &, # 0. Initially there are 4 unknowns, v, Ao, 41, 43
related by 2 equations, and F(v) given by

F) = Ap® + Av + A,.

We take A, = 0 (because A # 1) and arbitrarily choose 4, = 1 (for
convenience). This carries the two equations into

v Ay, =Ry
2, + A, = 0.
Consequently
F@) = v — 2uw v} = —h.

This case has been considered by Bleistein.?
(11) w = 2, A = 1. Initially there are six unknowns vy, vz, 4q, 41, 42, A3
related by four equations, and F (v) given by

Fv) = A’ + A" + A + Ao,

We take 4, = 0 in order to simplify F”(v). The four equations become
F'ip,) =342+ A, =0

3Fw,) = —Aw, + 34w, + 34, = 3h, , r=1,2.

It follows that Vg = — Vg, Ao = (h]_ + hz)/z, Al'Ul = 3(h1 - hz)/4.
For the remaining choice we take Az to be equal to —A;/3 and
obtain,

FQv) = %(hz - h])(va - 3”) + %(hz + ).
Another choice for Az is L which gives
F) = %' —vlv + 3(hs + )
v = 3h, — hy), vy, = —V, .

This case has been considered by Chester, Friedman and Ursell.”
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(@) p = 2, A # 1,1, # 0, {, = 0. Here the unknowns and F(v) are the
same as in example (¢7), but because of h, = h(0) = 0 it turns out we
have three arbitrary choices. Since A = 1 we take 4, = 0. Then both
F(v) = hyand F’(v,) = Qaresatisfied by choosing v, = 0 and A, = 0. This
leaves F(v,) = h, and F’'(»,) = 0 to be satisfied by the remaining three
unknowns v, 4,, As. Our third choice is 4; = 2. It leads to

F@) = 20° — 3v2°, v} = —h,.

(@) w = 2, N # 1, b, £, # 0. This case illustrates the complication
encountered for the general case when g = 2. The value of A, must be 0
and we choose A; = 1. Then

F) =v" + A2* + Ap
F'i) = 30° + 240 + A, .
The last equation shows that 4, = — 3(vy + v2)/2, A; = 3v,va. Sub-
stituting in F'(v,) = h, gives
vi(—v, + 3v2)/2

Ug(—vz + 3Ut)/2
Setting @ = ho/hy and p = va/v; leads to

ks
ho .

Il

P —3p"+3pa—a=0
which has the three roots
po=1+ (01— a1 — a, + (1 + a)lwt]
where w, = 1, w, = "%, ws = i " and the star denotes “conjugate
complex.” When t, and ¢, tend to zero, one of the p,’s tends to £,/t;, and
this is the value of p to be used. The value of ¢} is equal to 2,/(3p — 1),
and we have

Ay = =301 +p)/2, A, = 3p0;.

(v) p = 3. The general case of three saddle points may be handled
by a procedure similar to that used in example (). We do not dis-
cuss this case beyond mentioning that when we set va = pvq, v3 = oy
the variable v = (p—1)/(¢—1) must satisfy the equation

u' — 2u* + 2au — a = 0, a= (hy — hy)/(hs — ha).

(vi) u = 3, t3 = 0, h(¢) even. Since h(t) is even we start with

Fv) = v* + Ax® + A,
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and find that
F(v) = v* — 20%°, vt = —h,.

This case has been treated by Felsen.”

APPENDIX C

Derwatives of Composite Functions

A result used in Section V to compute the nth derivative, ¢, of #(v)
at v = v, is stated in this appendix. Let the argument u in h(u) be a
function {(v) of ». Then

n

(Eg)uh[t(v)] - Y h%.,., nz1 (94)

k=1

where k) stands for (d/dw)*h(u) evaluated at w = ¢(v), and the
coefficients ¢, , are computed from the recurrence relations

Crn = 1, (95)
c,‘+1,k+1 — E (;)t(ni-]—m)cm.k , 1 é k g n (96)
m=k

in which t"™ denotes (d/dv)"t(v) and (;) the binomial ecoefficient.
Equation (96) may be proved by induction. Differentiating (94) gives

Cosroirr = £C s + &%cmm , 1=2k=n-—1 97)

We assume that (96) holds when n is replaced by n-1 and use it to
exXpress Cy, x+1 as a sum. Then one of the terms in the summand for
d ¢y, p1/dv contains d e, /dv. From (97), assuming & > 1,

c;ivcm,k = Cm+1,k — tulcm.kul .

Equation (96), with (n—1, k—1) for (n, k), lets us sum the terms
containing t™ ¢, x_1 with respect to m. Equation (96) follows upon
combining binomial coefficients and using ¢z, x = t™Mep_yq, x—1.

The recurrence relations may also be obtained by writing the right
side of (94) as a Bell polynomial and using the recurrence relation
for these polynomials.® Expressions for the ¢, s (up to n = 8) as
polynomials in the ¢’s may be obtained from Riordan’s table of Bell
polynomials given on page 49 of Ref. 8.
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APPENDIX D

Formulas for Classical Saddle Point Asymptotic Expansions

A result useful in obtaining asymptotic expansions of integrals is

fu TG exp [H(7)] dr

@ l -1 (p+i)/v i n ( P+j')
~ > (TH) Z G mz_) buT\m + 5= (98)

i=0 ¥V =0
where x = o0, Re p > 0, v is a positive integer, and

@ @

G = 2 "G, H( =2 mH,. (99)

n=0 n=y
The b,.,’s depend only on H () and are computed in suceession, start-
ing with bgo = 1 and by, = 0forn > 1, from

1 n—m+1

Dmsroner = n+1 ; ka’kbm.ﬂ—fi't'l . (100)

Here a, = — Hyyw/H,, b =1,2,. ...

Special values of b,,, are given in Table I.

The asymptotic expansion (98) is based upon the gamma function
integral

f W exp (—u') du = r(’z) (101)
0 v V.
and the expansion

exp [y Z, a,.s“} = ; £ Zﬂ B (102)

The recurrence relation (100) may be obtained by differentiating
(102) with respect to &, replacing the exponential by its series, and
then equating coefficients of &y™+*.

TaBLeE I — SpecIAL VALUES OF b,

n i bon bin 2 ban bin [
0 1
1 0 a
2 0 as a®/2
3 0 s aas a,%/6
4 1] ay Mma; + 2_1022 27, 2a, a14/24
n>1 0 n — — — m™/n!
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For an integral, say I, in equation (31), having a simple saddle point
at{ = t, and a path of integration L/ which runs up to, through, and then
down from ¢, , we can use (98) withv = 2, p = 1,7 =1t — i, G(r) =
g(t, + 7), and H(r) = h(t, + 7) — h(t,). The contribution of the saddle
point is obtained by deleting the terms in (98) for which j is odd,
doubling the terms for j even, and taking arg (—1/zH )i = arg
[—2/xh{®]! to be equal to arg (¢ — ¢,) on the part of L/ just leaving f,.
The result is

f (1) exp [zh(1)] dt

r

) —9 i+t 2 g£2i~n) n . .
wemhﬂ]g[mw] Zhw_nﬂgﬁmmm+g+ﬂ (103)
where the derivatives of g(t), A(t) are defined in equation (19) and
by, 18 computed with

(k+2
QR+

T+ 1A (104)

A =

The gamma function T'(m + j + 1) may be written as V7 (3)m+s-

For the integral J, given by equation (56) most of the contribution
comes from the region near the branch point at { = 0. When ¢ = 0 is not
a saddle point, there is only one path of steepest descent {for exp [zR(¢)]}
leaving ¢ = 0. This path may be taken to be the branch cut in the {-plane
and the path of integration L/ for J, may be taken to be a positive loop
enclosing the cut. Then the asymptotic series for J, may be obtained
from (98) by setting v = 1,p = A\, 7 = {, G(r) = g{t), H(z) = h(f) and
using in place of (101) the integral

j-(o-z-) -l exp (—u) du = [1 — exp (—'QTI'E)]I‘(Z) = g%wz—)

(105)

Here arg u is 0 on the part of the path of integration leaving ¢ = 0.
The positive real u-axis in (105) is a branch cut. The path of integra-
tion starts at © = + o on the top side of the cut, comes in along the
cut, encircles v = 0 in the positive direction, then runs out to u = + w0
along the bottom side of the cut.

It is found that
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Jo = f £ 'g(t) exp [xh(f)] di
ke (106)

o _1 A+ q géi—n)
"”-Z[xhé”] E(j—n)!

n=0

< 22 bua[l — exp (—2mN)]T(m + X + j)
where arg [—1/zh{"]is equal to arg { on the part of L] leaving ¢ = 0, and
b.. 18 computed with
]lék+l)
U+ DR (107)
The last relation in (105) may be used to handle the case in which A
is 0 or a negative integer.

When { = 0 is a simple saddle point as well as a branch point, the
path L! can be taken to coincide with the path of steepest descent
through ¢t = 0 except for an indentation at ¢ = 0. The indentation is
chosen so that a man walking in the positive direction along L} would
have the point ¢ = 0 on his left. We put » = 2, p = A, G(r) = g(?),
H(r) = h{(t) in (98) and use in place of (101) the integral

a, = —

f w exp (—u®) du = 3|1 — exp (Az'vrz)]I‘(g) _ imoxp (—imz/2) (—inz/2)
"‘ o))
(108)

Here K runs from # = — o to © = + o with a downward indentation
at w = 0, and arg u is 0 on the part of K leaving v = 0. Instead of
(106) we now have

© [ g \O+ide i (i—n)
fL Pg(t) exp [eh() dt ~ Z(rh—‘]) y &

=0\ =G -

. “Z bt {1l — exp [—ir(N + j)]]l‘(m + A _:i_ j) (109)

m=0

where arg [—2/zh{”)} is equal to arg ¢ on the part of L} leaving ¢t = 0
and b,,, is computed with

Zhék-i—ﬁ)

Tl TR o

a, =
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APPENDIX E

Two Saddle Points

In order to illustrate some of the results of Sections IV, V, and VI,
we consider the case of two saddle points, p = 2. This case has been
discussed by Chester, Friedman, and Ursell.* ¢ From (15) the desired
expansion is of the form

j;' g(t) exp [xh(t)] dt ~ Uy(x) ; Dno® "+ Uy(z) g pnlxﬁn;

(111)
P,0) = Puo + P
where, from example (i7) of Appendix B and equation (16),
U(z) = f o' exp [2P@)] dv, [ =01
L
Fo) = W — vl + 4, (112)

Ay = 5(hs + h), ] = %(hz — hy), Vg = —U .
Arg v, is determined by the correspondence of v; with ¢, which comes
with the change of variable from ¢ to v.

Tet I’ and the change of variable from ¢ to v be such that L runs
in from v = o exp(—ir/3) to the critical region near v = 0 and
then out to o exp(ir/3) (it may be necessary to reverse the direc-
tion of L’). Then

Uyz) = 2miz ' Ai(z%)) exp (xA,) ,

U,(z) = —2miz A (a%?) exp (z4,)
where Ai(z) is the Airy function and AV (z) its derivative with re-
spect to z.

From F'(v) = v* — +? and equation (9) it follows that Q(¢, v) is ¢ + .
Consequently equation (17) for P,(v) gives

1 1 al"
P.) = 5 [ ¢ f(r)[gz_vi 55] g (114)

Here f(v) = g(t)t'" in which ¢V = dt/dv is obtained by differentiating
F(v) = h(t) with respect to v. The path of integration C encloses { = =,
but no singularities of f({).

(113)

From v» = — », and

Poo + v:por = Po(v,) = fv.), r=12
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we get

\ - v,) — f(—v
Poo = f(ﬂ) +2f( 1) , Por = f( 1) 21)]:( 1) (115)
which may also be obtained from equation (21) for pg.

Putting v = v;, n = 1 in (114) and expanding the integrand in
partial fractions leads to

Pie) = gos U(—0) = 1) + 2000 — 23(2@)).  (116)

Expressions for pie and p;; which agree with equation (23) for py,
may be obtained from (116) by changing the sign of v, to get P; (—v,)
and usingn = 1in
_ P.v) + P.(—v)
an - 2
—_ Pn(l“l) _ Pn(_vl)_
N 2,

(117)

If we were to continue with the Bleistein method we would have to
evaluate /™ (v,) by using equations (26) through (30). Instead we
turn to the problem of obtaining P, (v,) by the Ursell method. For p =
2, equations (34) become

Pu(vr) = aru/arlm ] r = 1’ 2 (118)

BrowPr-m.0 + Srmpnam.l
Pae) = g E Boo
where «,; and B8,; are given by equations (35) and (37).

Since g(t) and h(f) in the original integral (111) are quite general, we
use equation (35) for «,; as it stands. However, equation (37) for 8,;;
simplifies considerably. This is to be expected since it gives essentially
the coefficients in the asymptotic expansions of A7(z) and A7'(z). From
FP =2, , F® = 2 and F" = 0 forn > 3 we have a, = —1/(3v,),
and @, = 0 for k > 1. It turns out that b, 1s 0 form ## nand b,, =a}/nl.
When [ is set equal to 0 in (37), all terms vanish except the one for
n = 2j, m = 2j. When [ = 1, all terms vanish except those for n = 2j,
m = 2jandn = 2j — 1, m = 2j — 1. It is found that

S el
.Broo—(vr), .Bro,'—ﬁruo v, ()

_ (1t 61)
|8I'|.1' - (1 _ Gj .Brl)j .

(119)
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Changing P, (v,) into Pi(v,) in order to avoid confusion with the
n used in Appendix D carries (118) into

Py = 0 2| S S )
WY — br h,(-2) (2k _ n)' mn\2Z/m+k

n=0 m=0
Eogom (—1)3m . [ (1 + Gm) ] ,
_ Z} emi\o, Ban| Poom.o + 0T fPe-m |- (120)
Here r = 1, 2; v, = —u,; and b, is computed from (100) with a, given

by equation (36). The value of #{" is given by

o=@ -F/E) e

where arg ¢ is calculated either from (¢) the form { &~ cv assumed by
the change of variable in the critical region or from (i7) arg [—2/h™)}
and arg (—1/2,)! being equal to arg (¢ — {,) and arg (v — v,), respec-
tively, on the portions of the paths of steepest descent leaving ¢, and
v, . The last summation in (120) is omitted when &k = 0. The expression
for P,(v,) may be written with the help of equations (40).

Equation (120) was checked by using it to obtain the first few terms
in the known'® uniform asymptotic expansion for the Bessel function
H™(xz) with 0 < z < 1. Here h(f) = 2z sinh t — {, the saddle points
are at ==t (t, > 0) on the real axis, and the path of integration runs
fromt = — o tot = o -+ ir. If the direction of the path of integration
is reversed [so that (111) gives —H " (x2)], the paths L’ and L can be
brought into correspondence by a rotation of 120°. In the approximate
form t & cv of the change of variable, arg ¢ = 2r/3; and v, corresponding
tot, is v, = | —3h,/2|* exp (—12r/3). Furthermore, f(») turns out to
be an even function, (114) gives P,(—v) = (—1)"P,(v), and ps.,,
Pans1,0 are zero forn = 0,1, 2, -+ .

When ¢, and ¢, approach each other, A{*’, h;*, v, and v, tend to zero.
In this case the asymptotic behavior of the integral (111) may be
determined with the help of the equation obtained by setting » = 3
in equation (98). However, if one is interested in the behavior of the
coefficients p,; , the following relations are useful. Putting »; = 0 in the
integral (114) for P,(v) shows that in the limit

Poo = 1(0), P = ['(0), (122)
po = —1VO/31,  pu = =2/ 0)/4!

and so on, The derivatives ™ appearing in the derivatives of f(v) =
g ()™ are now obtained by differentiating 37v® = h(t) repeatedly
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with respect to v. The leading coefficients are found to be
poo = 6”1 1 = /")
pl“ = g:l)(fi)Q + g:U)iiQ) tl(2] = _h{{)tl(.l)ﬁ/lz.

(123)

APPENDIX F

Saddle Point Near Branch Point

Here we apply the theory of Sections VII and VIII to a case discussed
by Bleistein,® namely, A # 1 and p = 1. The paths L', L and the func-
tions h(t), F(v) are assumed to be the same as in Section IX where the
singularity at the origin was a simple pole instead of a branch point.
In the critical region L’ is parallel to, and to the right of, the imaginary
{-axis. Only the case in which ¢, and », are real and of the same sign
will be considered. When ¢, and », are positive the cut associated with
the branch point is assumed to start out from the origin along the posi-
tive real axis, and then quickly bend downward to run out to —ie.
When ¢, and », are negative, the cut starts out along the negative axis
and then bends downward to —7o.

Equation (46) and F(v) = v* — 2v,v lead to

o0

T~ Vo) 2 pat™ + Vi) 3 put™ (124)

where, with ¢ > 0 and the path of integration lying to the right of
the cut,

c+im k) _ 9 n
Vi(x) = [ M exp [2F Q)] dv = dwa™M? Y (—20,2°) .
Je—iw n=0 ' I‘(l _ A + )

n! 5

Replacing A by A + 1 gives Vy(x). Vo(z) and V,(z) are parabolic
cylinder functions (Bleistein,® and pair No. 740.2 in Campbell and
Foster Table?).

Pn(v) = pn() + pn]v

_ 1 [dt f(r)r“‘[ 16 ] (o R
271 Jg 2" ¢ —uv af¢ §—n

where C encloses ¢ = 0 and { = v,. Setting n = 0 and using f(v) =
g(t) (t/v)*—t™ leads to

PO(O) = pUD = f(O) = g((!D)tc‘lnkg i;” = —2v1/h|§1)
Po,) = flv)), f” = [2/h£2)]i_

(125)
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Setting n = 1 gives
P,(0) = % 2 [(0) — f@,) + v:f(0)]

) f (2)@ )
P@) = [f(o) — f@) + vf @)] —

The values of puo and P, may be obtained by followmg the steps
outlined in the first part of Section VIII. Equation (52) and (53)

become

1 n
P.@,) = ﬂ [alu - Z=; (3wmpn—m.o -+ ﬁllmpn—m.l)]

Pro = JBL |:Olon - E (BooaPn—a.0 + 30.1.«-1'}’3:‘—0.1)]-
000 e=1
The path L; in (54) is parallel to the imaginary axis and passes
through the saddle point at v = v,. The path Lo in (56) runs up along
the right side of the cut, encircles the origin in a positive direction, and
then runs down to v = —te along the left side of the cut.

To get B1; we replace [ on the right side of (37) by | + A — 1 and
notice that a; given by (38) is 0 for the values of k used in computing
bym. Consequently, the only nonvanishing b, is b, = 1 and (37)
gives

(126)

Bioo = 7:(7")%”)1\71; Busi = (—4> (=l =N+ 1) N
Broo il

The expression for a,, obtained by replacing g{*'~" in (35) by g{* ™",
where §(t) = "'g(t), contains [—2/h{*]} which may be written as 4t{".

In equation (57) for ao;/Bee we replace b,, by b, to indicate that
b, 18 computed with a, given by (58) instead of the a; used in computing
a1,/ Buioo - A still different a,. , given by (60), is used to compute Bos;/Booo -
From equation (60) all of the a,’s used to compute Bo:;/Booo are zero
except @, = 1/(2v,). Therefore b, is zero unless m = n, and it follows
from (59) that

Bozi/Bovs = (?\)1*2;‘(2"1)_:_2’./.1‘!-

When all of these results are used in the expression (126) for p,, we

get, with j for n,

(J—r:)

o= )i

E NON I

nu(]—n-m-u

- E{ sr(?éﬁ [N+ 25 — Dpjmu0 + 2008ps-,.0]  (127)
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where h(0) = ho = 0, b, < 0, 1} > 0,2, = 1, |1, T=h)Y, 0 =

—20,/h'", and b, is computed from (100) with a, replaced by d, where
a, = —hdY /L + DRV, k= 1.

When j = 0 the summation with respeet to s is omitted. Similarly,

P,(vy) gives

2j=n)

( 1)J l_k[ll)(ql+]) Z 61"" Z bm“( )’ﬂ+1 - pjn

=2 —n)!
1)1 — Naue N+ 2s

- ): _s_("'*)ﬁ} = [ b Pieo M’f—m] (128)

a=1 1
where £ = [2/h*']}, ¢(t) = (' "g(), and b, is computed from (100)

with
a = =20 /((k + 2)! R

It is interesting to notice that when A = 0, (127) and (128) give
values of pj and p;; which agree with those obtained in Seetion IX.

When the saddle point approaches the branch point, ¢, , hy , A", and
v, tend to zero. In this case the integral J may be evaluated with the
help of equation (109). The behavior of the coefficient p, may be
studied by putting ¢, = 0 in the integral (125) for P,(v). It is found that

Poo = (0), P = f“){o)l (129)
Do = _)\f(gl(o)/gl Pu = -\ + l)f(a)(O)/L?.
and so on. The derivatives ¢t appearing in the derivatives of f(v) =
g(t) (t/v)>=t™ are now obtained by differentiating v* = h(t) re-
peatedly with respect to v.
Forn = 1and 2,
I“) — [r)/h(z)] , z{()!) — _hga)tél)-l/ﬁ- (130)

Substituting these values in equations (51) for f(0) and F@(0) and
using (129) gives the limiting expressions for pep and pos.

APPENDIX G

Poisson-Charlier Polynomial

In this appendix equations (127) and (128) for pj and pj; are used
to obtain an asymptotic series for the Poisson-Charlier polynomial
¢, (y, @) when y is O (1) and both n and « are large and positive.
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Multiplying the generating function

(1 — w)” exp (aw) = E Ty, ) (131)

by w* and integrating w around a small circle enclosing w = 0 gives
a contour integral for ¢,(y, a). Instead of ¢,(y, a), we find it more
convenient to deal with the polynomial (in ¥)

d.(y, a) = .y, @). (132)

Setting x = n + 1 and making the change of variable t =1 — w in
the integral for ¢, (y, a) leads to

a” exp (—a)
|

_ 1 [ exp(—al)
d‘n(y: a‘) - orit j;_’_‘” (1 _ !): dtr x> ) + 1

1 l+im )
=5 - t’ exp [zh(1)] dt
_J_y
e (133)

() = —rt — In(1 — )
where r = a/x. The ratio r is positive.
We wish to use equations (127) and (128) to compute puo, Pa in
the expansion obtained by dividing (124) by 2, namely

d.(y, a) = J o~ Vo) i Pl "+ V.i(z) i Pm " (134)

n=0
Here Vo(z) = V,(x)/27i with A = y 4 1. The function V.(z) is obtained
from V() by increasing y by 1.
We have

Vox) = %i' v exp [x@® — 2vp)] dv, c>0
emi (135)
= z—(v+1}/2G[y’ vlw%]
where arg v is 0 at v = ¢ and G(y, 2) is the parabolic cylinder func-
tion

c+im
Gy, 2) 2—711_1 f ' exp (U — 2zu) du

- (136)

P O

n= 1—y— n)
nl P(——Z
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The function (¢ is related to the function U discussed and tabulated
in chapter 19 of Ref. 10 by the equation

9—9/2

G(y,2) = 57 exp (—3) Ul—y — %, 22].
2(m)

The saddle point ¢ = , is obtained by setting the derivative A (f) =
—r 4+ (1 — #)7* to zero; and the saddle point » = v, is given by the

relation »* = —h, together with the condition that v, and ¢, be of the
same sign:
t
L=1—t o= e 1—mah (137)
r 4]
The values of the derivatives ) = dt/dv at v = 0 and v = v, are
2
1y _ _ o 1)y _ 1
lo -”1/ ho F—1

-

t{l) — [Q/hiﬂ]% - =,
r

For k > 1 the kth derivative A (¢) is (k — D1 — )" and the
coefficients used to compute b, . , bm,. from (100) are

a = —kV/[(k+ DA =] = 1/[(k+ Dl — 1)

[

and
a, = —2k + DFA/LE 4+ 210 = =20 /(k + 2),
respectively.

Comparison of the integral (133) for d.(y, a) with the integral (1)
for J shows that g(f) = 1 and A = y + 1. Consequently ¢(t) = ' "g()
becomes §(f) = . For k > 0 the derivatives are g’ = 0 and 4" =
yly — 1) - (y — b+ Dt

Setting j = 0 in (127) and (128), and using the results just ob-

tained gives
% v+l L\ (2 3
Poo = ( (AN _) , Por = (_1) Q _ Poo (138)

r— 1 v,/ Ty vy
for the leading coefficients in the asymptotic expansion for du(y, a).
Here t, and v, are given by (137). The next two coefficients, obtained
by setting j = 1, reduce to

Il

1 1 + 1po
w+ o anfy, Ly g - R (139)

_ L)[ﬂ][w — 1) _ ybr ,3,,2]
P = (u. r— 1 4 9 T a1

Pio
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Some idea of the behavior of the series (134) for d.(y, a) may be
gained from Table II. Equations (127) and (128) were programmed for
calculation on a high speed digital computer. The table lists results for
the typical case = 30, @ = 25, and y = —5. Here Term,, =
Vo(@)paz ™, Terms,s = Vi(@)pmz™ and S, = to + & + +++ + tu.
The “exact” value, 381.02, was calculated by using the recurrence
relation for the Poisson-Charlier polynomials.

No study was made to decide whether the relatively large value of
Term, results from accumulated round-off error (an accuracy of 1
part in 107 was used) or whether the asymptotic series actually starts
its divergence around m = 5 or 6.

When 7 is near unity, v; and ¢; are small and the individual terms
in the expressions (127) and (128) for pj, Pj1, become large. In this
case considerable cancellation occurs, and a high degree of precision in
the caleulations is required to obtain accurate values of pj and pj;.

An asymptotic series (nonuniform) which is useful when r — 1 is
small may be obtained by a variation of the classical method which is
sometimes used in cases of this sort. Instead of using an expansion
about both £ = 0 and ¢ = t;, which is done (in effect) in obtaining the
uniform asymptotic expansion, an expansion is made only about ¢ =
0. Thus, the exponent zh (¢) may be written as

zh(t) = [—a( — Dt + 27/2) + @) (/3 + /4 + --+).
Changing the variable of integration from ¢ to u = t(x/2)*% and as-

suming that r — 1 is so small that z = (r—1) (2/2)%* is O(1) gives

exp [xh(f)] = exp [—2zu + u’] exp [W'(21/3 + 28°/4 4+ - )] (140)

= exp [_22u + uE] Z (2/’.1,:)“/2 E b,,,.,,uQnHH.

n=0 m=0

The last series is obtained from equation (102) with ¢ = t = uw (2/z) %,

TaBLE II — PARTIAL SUMs FOR dap(—5, 25)

m Termm Sm ] m ‘ Termm ‘ Sm

0 1 276.62 276.62 4 0.015 381.03
1 | 8282 359 .44 ] —0.008 381.02
2 2019 379.63 | 6 0.008 381.03
3 7 —0.144 380.88

1.39 381.01 ‘ _‘ |
L 1 }

Exact dus( —5, 25) = 381.02
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y = v, and a, = 2/(n+2). The coefficient by, is computed from the
a,’s and (100).
Substituting (140) in the integral (133) for d,(y, a) leads to

(I"(y, a) ~ 2 (2/1‘-) (ntven)/z Z bmnI(2m+n (141)
n=0 m=1
where
K =L o u" " exp (w' — 2zu du)
" 2‘JT'L =i ’ p e

1
3

=Gn+y,2) = Gn+y, r — D/2)].
The recurrence relation

n+y
2

K,., =:zK, — K., (142)
permits Ko, 4, in (141) to be expressed as a linear function of Ky and
K,. Equation (142) is obtained by integrating the derivative

d e 2 -1 n+y 2 \

au exp u* — 2zu) = [(n + yu~' + 2u — 22"’ exp (- — 2zu)

As r — 1 the leading term, (2/z)“*"”’K,, in (141) tends to the
leading term V,(%)poo in the uniform asymptotic series (134). Although
(141) is much simpler than (134), it does not hold for nearly as wide a
range of values of r — 1.

APPENDIX H

Saddle Point at Origin

Here we are concerned with the leading term when A # 1 and there
are two saddle points, one at ¢t = 0 and the other at ¢ = t, . We assume
that ¢, is real and positive, and that #(?) is real on the real axis. Further-
more, we assume h, < 0, h)"" < 0, ;" > 0 so that the saddle point
at {, is lower than the one at 0, and the paths of steepest descent at 0
and ¢, are parallel to the real and imaginary axes, respectively. A cut
extends from 0 to — o« along the negative real axis.

The paths of integration L’ and L are taken to run in from oo
exp (—im/3), eross the positive real axis in the eritical region, and the
run out to oo exp(ir/3). Ixample (i) of Appendix B leads us to
choose

F@) = 20° — 3up®, o} = —h, (143)
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with arg v, = 0. From equation (46), the uniform asymptotic ex-
pansion is of the form

J ~ Vu(ﬂ?) E pn()-'?.: + V ('U) Z Pmr_" + V (I) E pnsz - (144)

n=0 n=0

where

b

Vi) = va‘“-l exp [(FQ)] dv, 1=0,1,

Expanding exp (—3zv,v?) and integrating termwise with the help of
s . 2 — p
f uw’ exp (W) du = 2#@/[31‘(T)]
L

Vo(z) = 2’”’ RS (_3”‘)n(i/4 ; (145)
(1 - E“"‘)

from which V;(x) may be obtained by replacing A by A + . When A =
1, Vo(x) reduces to the product of an Airy function and an exponential.
Setting n = 0 in the integral (47) for P, (v) gives

gives

PU(U) = Poo + Por? + pua”z

_ 4+ o —v) + @ — w)] ,
- 55 [ 1© T ar(146)

f0) + O + [f) — f(0) — v:f"(0)]";°.
The values of £, &{”, {{"’ appearing in §(0), f'(0), f(v,) are

t“) _ [_le]% t(z) _ 12 — h31t(1]3

he 3R D
w _ |6 |t
N e

The derivatives £, ¢’ are positive and nearly equal when the saddle
points are close together.
When n = 0, the Ursell equations (61), (62), and (63) become

Pn(v1) = 0510/.@100
Poo = Dluo/.euon (148)

_ Gn Boos

P = e Boww P

(147)



SADDLE POINT INTEGRALS 2013

The values of o, 8100 othained from the leading terms in the asymp-
totic series (54) defining the w,,'s and B,;,,'s give

Py, = Q;m(‘tl/l'l))‘_lt{”- (149)

Similarly, comparing the asymptotic series (64) defining the ap;'s and
Bom's with the series (109) leads to expressions which give

(mtun
0 (1] 3

Poo = ¢

1 L@
{gé” —(\ + l)g*(’m[gl,lffj” + 6]2_32) g0 0D

The remaining coefficient, pys, in Py(v) may now be obtained by com-
bining (149) and (150). The coeflicients po; give the leading part of
the desired expansion (144) for J.

(150)
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