Multimoding and its Suppression
in Twisted Ring Counters

By W. BLEICKARDT
(Manuscript received March 21, 1968)

Many digital systems, such as PCM systems, data processing and data
transmassion syslems, use lwisted ring counters. Most of these twisted ring
counters are subject to multimoding. This paper develops tools and methods
for predicting all possible modes 1n twisted ring counters, and derives a
general solution for suppressing the wrong modes. Suppression s ac-
complished by adding a few circuit connections from the output of certain
stages to the tnput of another stage. The paper derives the number of neces-
sary connection lines and thetr connection points for the various types of
counters.

I. INTRODUCTION

Twisted ring counters of various types have been used for many
years, and have been described in many publications.** They are
designed for creating a well-defined periodic pulse pattern. But they
all have one problem in common: under certain circumstances they
can multimode, that is, they can create undesired patterns. Each
mode of a counter creates a particular pattern. Only one of these
modes is the desired one, the “correct mode;” the rest are all “wrong
modes” and must be suppressed. To the knowledge of the author,
none of the publications on twisted ring counters presents a rigorous
treatment of the problem of multimoding, although it must have
shown up in many instances and often was solved empirieally.® The
lack of a general theory on possible modes in twisted ring counters
and on the prevention of undesired modes led to this investigation.

Terminology for the characterization of modes, and relations be-
tween the parameters, make it easy to find the entire set of possible
modes for any twisted ring counter. There is a method for suppressing
all wrong modes by adding a few ecircuit connections, and a general
formula that indicates these additional conneetions for any individual
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ring counter. The method for suppressing all wrong modes in any
twisted ring counter is summarized in Section 5.5.

II. OPERATION OF TWISTED RING COUNTERS

A twisted ring counter consists of a shift register whose output is
fed back over a twist to its input in a ringlike manner (Figs. 1, 2,
and 3). An input clock keeps a certain pattern ecirculating around the
ring. In the correct mode the stages create the desired pattern by
switching on sequentially with subsequent clock pulses, and then
switching off in the same sequence (part a of Figs. 1, 2, and 3).* With
each clock pulse only one stage is switching, A counter with n stages
creates a periodic pattern with a period of 2n time slots as shown in
the first three figures. Some possible implementations of counter stages
are shown in TFig. 4, using Anp gates, Nanp gates and set-reset flip-
flops. Equivalent stages can be built by using or gates and nNor gates,
or any custom-designed circuit.

There are two general types of twisted ring counters: single-phase
counters with one input clock line (example in Fig. 1), and double-
phase counters with two input clock lines supplying interleaved pulses
(examples in Figs. 2 and 3). Many of the single-phase counter stages,
such as the ones shown in Fig. 4a and b, require short input clock
pulses to prevent racing. The clock pulses must be shorter than the
propagation delay of one stage. An example of a stage that does not
require short clock pulses is shown in Fig. 4e.* Double-phase counters
permit the use of simple gated set-rerest flip-flop stages (Fig. 4d and e)
without the restriction of short elock pulses. Notice that in counters
with an even number of stages (Fig. 2) the two clock phases are dis-
tributed in a different way from those in counters with an odd num-
ber of stages (Fig. 3).

The problem of multimoding arises whenever more than one mode
can exist. In that case, errors can switch the counter to other (wrong)
modes with undesired patterns. Such errors can be created by noise
transients, aging components, marginal design, and so on. The first
three figures show some examples of wrong modes. In general, the
number of wrong modes possible inereases with the number of stages
of a counter, and is higher for single-phase counters than for double-
phase counters. To design reliable circuits, one must prevent un-

* The numbers in parentheses in Figs. 1, 2, and 3 are a symbolic notation for
different modes; they indicate the numbers of time slots a particular counter
stage remains in one state. This notation is explained in Section III.
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Fig. 1 — Single-phase twisted ring counter with five stages.
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Fig. 2— Double-phase twisted ring counter with even number of stages (six
stages).

desired patterns from circulating for more than a very short time
(typieally less than one counter period).

III. GENERAL CHARACTERIZATION OF MODES

There is a unique way in which a pattern, that is, a sequence of
states 0 or 1, is circulated around the counter ring. Any pattern is
shifted by one stage per time slot, as can be seen from the pulse dia-
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Tig. 4 — Implementation of counter stages with AND gates, NaND gates, and
set-reset flip-flops; a, b, and ¢ for single-phase counters, d and e for double-

phase counters,

grams in Figs. 1, 2 and 3. The state of the last stage appears in in-
verted form at the first stage in the subsequent time slot. For a
counter with n stages, the pattern, seen as a time sequence at each
stage, repeats itself in inverted form after n time slots; the whole
counter period is 2n time slots long.

This well-defined behavior allows us to reconstruct the entire pulse
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diagram for a particular mode, if we only know the states of all n
stages at any one time, or if we know a sequence of n states at any
single stage. Therefore, a sequence of n binary digits uniquely de-
seribes a mode.

3.1 Definitions

(1) We will call the state of a particular stage in a particular time
slot an element. An element can have a state 0 or 1.

(72) Elements in successive time slots, or in successive stages that
have the same state, form a logic group.

(727) The size of a logic group (g;) is the number of its elements.

(tv) The smallest size logic group of a particular mode has g,
elements.

(v) The positive direction of a sequence of elements corresponds
to the sequence as observed on the positive time axis. This corresponds
to a sequence backwards through the stages. (This ean be illustrated
with Fig. 1b. The sequence 1 1 1 0 1 appears at stage S; in the time
slot sequence ¢, ., t3, ts, t5, and it appears at time ¢; in the stage
sequence S;, Sy, Sz, Sa, S;1.)

3.2 Deseription
For deseribing one particular mode, it is sufficient to write the size

and sequence of the logic groups g; that are built by n elements. The
following symbolie notation is used:
G+ 92+ 95+ - + g2
where
> g; = n = number of stages
i=1

odd number.

x

For example, (3 + 1 + 1) denotes a mode of a 5-stage counter, with
three logic groups, the first containing three elements, the second and
third containing one element cach (shown in Fig. 1b).

This symbolic notation describes one half of the periodic ecycle.
Since each half 1s always the complement of the other half, the ele-
ments of the first and the last logic group in the mode notation have
the same state. Therefore, the number 2 of logic groups in this nota-
tion is always an odd number. This is illustrated with a 7-stage coun-
ter, for which a time sequence of states, as observed on the oscillo-
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scope connected to one of the stages, may look like this:

counter period = 14 states

a -
<« >

first half | second half
> —————>
time sequence: - - 011(000010011111011{000 -

‘——-wr—’——"v—’ll‘-—v——*‘w—‘w—’

logic groups: 4 1 2 4 1 2
4+1+2
mode notations: 1+2+49
2+44+ 1
4+ 1+ 2).

The period consists of 2n = 14 states. Deseribing this particular mode,
the logie groups built by n = 7 elements can be written in three differ-
ent ways: (4 4+ 1+ 2),(1 + 2+ 4),and (2 + 4+ 1).

These mode notations are cyelic permutations. Hence they are
equivalent and describe the same mode. The 7-stage counter could
have another mode with the same set of logic groups. This different
mode ean be described by the following three equivalent mode nota-
tions: (4 + 2+ 1), (2+ 1 + 4), and (1 + 4 + 2). If a certain wrong
mode ean exist, all possible permutations can exist also.

The correct mode always is the one with z = 1, that is, with one single
logic group of size n. All other possible modes with z = 3 are wrong
modes.

IV. PREDICTION OF POSSIBLE MODES

4.1 Possible Logic Groups

Not all possible partitions of n into an odd number z of logic croups
result in a possible mode, because there are some restrictions in pos-
sible logic group sizes g; for the different counter types.

In single-phase counters, the logie groups can have any even or
odd number of elements, up to =, since in any time slot, either a “1”
or a “0” can be shifted from any stage to the following stage (Fig. 1).
This is not so in double-phase counters.

In double-phase counters with an even number of stages (Fig. 2),
a clock pulse A can shift either a “1” or a “0” to any odd-numbered
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stage from the preceding stage, and a clock pulse B can shift either a
“1” or a “0” to any even-numbered stage from the preceding stage.
This results in the restriction that only logic groups with an even num-
ber of elements can appear in a possible mode.

In double-phase counters with an odd number of stages (Fig. 3), a
clock pulse A can shift a “1” to any odd-numbered stage and a “0”
to any even-numbered stage, and a clock pulse B can shift a “0” to
any odd-numbered stage and a “1” to any even-numbered stage,
always from the preceding stage. This results in the restriction that
only logic groups with an odd number of elements can appear in a
possible mode.

4.2 Ixamples of Possible Modes

We are now able to predict all possible modes of a twisted ring
counter with n stages by breaking n into an odd number of logic
groups in all possible ways, taking the restrictions of possible logic
group sizes into account. This 1s shown in three examples,

Ezxample 1: A single-phase counter with n = 6 stages can have six
different possible modes:

(6) correct mode
4“+1+1
B+24 1
B+14+2 wrong modes.

@+2+2)
E+1+14+14+1
In this counter type, the logic groups ean have an even or odd number
of elements.

Example 2: A double-phase counter with an even number of n =
6 stages (Fig. 2) has only two possible modes:

(6) correct mode
2+2+2 wrong mode.
In this counter type, the logic groups ean only have an even number
of elements. Because of this restrietion, there are always fewer wrong

modes than in a single-phase counter with the same number of stages.
Example 3: A double-phase counter with an odd number of n = 9
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stages has ten different possible modes:
9 correct mode
7+1+4+1D '
(5+3+1)
G+1+4+3)
G+1+1+1+1
34343 ¢ wrong modes.
B+3+1+14+1)
B+1+3+14+1
B+1+14+14+1+1+1)
I+14+14+14+14+14+1+1+ 1)

In this counter type, the logic groups can only have an odd number
of elements. In general, the higher the number n of stages, the higher
is the number of wrong modes.

4.3 Experimental Verification of Predicted Modes

Many counters of the three types shown in Figs. 1, 2, and 3 have
been built, with various numbers of stages, and with different types of
stages, including all types shown in Fig. 4. All of the predicted modes
for these counters have actually been observed. Any desired mode can
be induced by presetting all stages before turning the cloek pulses
on, but only the possible modes will be able to circulate without being
altered.

V. SUPPRESSION OF WRONG MODES

All wrong modes can be suppressed by adding a certain small num-
ber of circuit connections. A general method for finding the necessary
and sufficient additional connections for any twisted ring counter is
to find criteria that are common to all wrong modes but do not ap-
pear in the correct mode. By suppressing these eriteria, all wrong
modes will be prevented. To find these common criteria, it is useful
to define the concept of common logic groups.

5.1 Common Logic Groups
For a particular counter, the common logic groups represent the
set consisting of the smallest logic groups (gu) from each wrong
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mode. For example, the 9-stage double-phase counter, whose wrong
modes are listed in example 3 of Section 4.2, has two common logic
groups of sizes 1 and 3. Each wrong mode contains at least one of the
common logic groups. Taking the gni,-values of all wrong modes as
common logic groups results in the smallest possible set of logic
groups with the property of each wrong mode containing at least one
of these logie groups.

The size of the smallest common logie group (m;) is equal to the
smallest g,,i,-value of all wrong modes, g,in wmin. That is

Jmin min = 1 for single-phase counters,
Jmin min = 1 for double-phase counters with odd number of stages, and
Jmin min = 2 for double-phase counters with even number of stages.

The size of the largest common logic group (mg) is equal to the
largest gnin-value of all wrong modes, that i3, gmin mee :

.
Mo = Guinmae Of 2. g; =7
i=1

with = 3 for wrong modes. Every possible partition of the above sum
represents a possible wrong mode with a certain value g,,;, . The maxi-
mum of this value for all possible partitions i8 ¢,.in me: - It occurs with

the minimum value of x = 3 and is

Gmin maz = N/3.

The largest common logic group is therefore

my, = n/3, (1)

the next possible logie group size equal or less than n/3. This is
my = (n — 2)/3  for single-phase counters, (2)
my = (n — 4)/3 for double-phase counters. (3)

This results is only a single mg-value in each case, when the restric-
tions of possible logic group sizes are taken into account. Combining
the latter and expressions (1), (2), and (3) into a single expression,
we get for the largest common logic group mq:

n 2
m,,=———,?-f_\ 0=A=1 (4)
3 b )
with A chosen to make m, an integer, and
n = number of stages
p =1 for single-phase counters
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groups for a particular counter consists
of the smallest and the largest common logic groups and all possible
sizes of logic groups between. It is given in Table I for counters up
to 20 stages. For single-phase counters with two stages and for double-
phase counters with two or four stages there are no common logic

groups, since these counters do not have any wrong mode.

5.2 Suppressing the Common Logic Groups

Suppressing all common logic groups in a counter leads, by defini-
tion, to the prevention of all possible wrong modes, and does not in-
troduce any new modes. This section shows that there is a subset of
common logic groups (Table IT) whose suppression is sufficient for

TaBLE I — Common Loaic Groups

(Common logie groups are all different gmin values of all wrong modes)

Number of

For single-phase

Tor double-phase counters

stages counters With even With odd
number of number of
stages stages

2 J— _

3 1 1

4 1 —_

5 1 1

6 21 2

7 21 1

8 21 2

9 321 31

10 321 2

11 321 31

12 4321 4 2

13 4321 31

14 4321 42

15 54321 531

16 54321 42

17 54321 531

18 654321 64 2

19 654321 531

20 654321 642
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suppressing all common logic groups and is thereby sufficient for
preventing all wrong modes.

5.2.1 Method of Suppressing a Group

If we want to suppress a particular common logie group of size m;,
we must prevent one of the following two patterns consisting of an
undesired sequence of ones and zeros

001111111100 ---
oo (--+110000000011:--)

m; elements

from circulating around the counter ring. The inverse pattern, in paren-
theses, always appears with the first one. This suppression can be
accomplished by preventing stage S, from switching from “0” (“1’")
to “1” ('0”) whenever stage S,_,_., is in state “0” (“‘1”’). The position
of the patterns immediately before suppression is:

S:—l—m.‘ S:—l S:

l A
001111111100 ---
or (+--110000000011---).

m,; elements

If stage S, does not switch to “1” (“0”) with the next clock pulse, the
logic group of size m; is prevented from passing through stage S,. It
is sufficient to suppress only one of the two patterns, since the in-
verse of it is then suppressed automatically.

This suppression can be implemented by adding a circuit connection
from the output of stage S._,_,., to the input of stage S, , preventing
S, from switching from “0” to “1” whenever S,_,_,., is in state ‘“0.”
This circuit conneetion, shown in Fig. 5a, bridges m; stages, and there-
fore is ealled a “bridging connection’; its associated parameter m; is
called a “bridging parameter.”

The bridging connection could also be made on the inverse side of
the stages S,-,_,; and S., thus preventing S, from switching from
“1" to “0” whenever S.-,-,, is in state “1.” These two bridging con-
nections are equivalent, and one of them is sufficient. However, if both
connections are applied for each m;-value, a wrong mode is cleared
within half a counter period instead of a full period.
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Fig. 5 —Suppression of wrong modes by adding bridging connections, bridg-
ing m; stages. Part a shows the principle; b, ¢, and d show an example with
the two bridging connections m = 3 and m = 1 for counters with different
types of stages.

S. may be any particular stage of the counter, but it should be the
same stage for all bridging connections (although this is not essential
with many counters). The correct mode is not affected by this inhibition,
since in the correct mode S._,_..,; is always in state ‘1"’ (“0”) when S,
is switched from “0” (1) to “1” (‘0”) because m; is always smaller
than n.
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5.2.2 Automatically Eliminated Wrong Modes

If we suppress one common logic group of size m; by using the
deseribed method, we prevent the pattern

B IR ) SO
-_— =
m;

and hence eliminate not only the wrong modes containing the com-
mon logie group my;, but also all other wrong modes that show this
pattern at any one position.

The remaining wrong modes, which do not contain this pattern,
require additional steps for their prevention. It can be shown that if
a mode with g, < m; satisfies both of the following two conditions,
it does not contain the above pattern and therefore is not eliminated
by suppressing m;:

(7) All possible sums of the elements of an even number 2v of con-
secutive logic groups must be =m; for at least one value of v (v = 1 or
2or3 ---).

(#%) All possible sums of the elements of an odd number 2v + 1 of
consecutive logic groups must be =2m,; + 1 for the same value of v that
satisfies condition 7.

Example: Suppose we have a single-phase counter with 19 stages,
and we suppress the common logic group of size m; = 6 by adding
a bridging connection bridging 6 stages as shown in Fig. 5a. Would
themode (2 4+38 +3 + 1+ 5+ 1 + 4) be suppressed?

We check whether this mode satisfies both conditions. Condition 7
is satisfied with v = 1, since all pairs of consecutive numbers in the mode
notation (2 4+ 3,3 + 3,3 + 1,1 + 5,54+ 1,1 4+ 4,4 + 2) sum up
to =6. That is, all sums of the elements of a pair (2v) of consecutive logic
groups are =m, . Condition 7 could not be satisfied with v > 1 in this
example. Condition 77 is also satisfied with » = 1, since all triplets of
consecutive numbers in the mode notation (2 + 3 + 3,3 + 3 + 1,
3+1+5,1+56+1,6+1+4,14+442,44+ 2+ 3) sumup to
=7. That is, all sums of the elements of a triplet (2v + 1) of consecutive
logic groups are =m,; + 1.

The above mode satisfies both conditions, and therefore would
not be eliminated by suppression of the common logic group of size
m; = 6.
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5.2.3 Sufficient Subset

Suppression of a particular commeon logic group of size m,; generally
does not prevent wrong modes with ¢, > my, but it does prevent
some of the wrong modes with gy < my. In the remaining unsup-
pressed modes with g¢,u, < m;, which all satisfy the two conditions
stated in Section 5.2.2, the largest possible gn,-value, called gmin mae,
follows from condition %:

29
ngém-' w=1or2o0r3 ---).
i=1

Every possible partition of this sum delivers a value gu. The maxi-
mum of these g,,-values for all possible partitions i8 gmin mae. It 0C-
curs with the minimum value of ¥ = 1 and is

gmin maz é mi/z‘

This is the next lower common logic group size m;y, that must
be suppressed:

Mis1 = mf/2- (5)

M., 18 the next possible logic group size equal to or less than m./2,
which is
M, = (m; — 1)/2  for single-phase counters, (6)
iy = (m; — 3)/2 for double-phase counters. (7)

This results in only a single m; ;-value in each case, when the re-
strictions of possible logic group sizes are taken into account.

Combining the restrictions and the inequalities (5}, (6), and (7)
into a single expression, we get for the next lower common logic
group m; 4 1 that must be suppressed:

M=% —@—1H4A 0451 (®)

with A chosen to make m,,, an integer, and

p=1 for single-phase counters

p =2 for double-phase counters
mi, =1,2,3,4, --- for single-phase counters
My = 2,4,6,8, .- 1fn = even} for double-phase counters
Mgy = 1,3,5,7, -+~ if n = odd P :



TWISTED RING COUNTERS 2045

If we suppress m; , it is sufficient to supress m.., as the next lower
common logic group, since suppression of m; prevents all wrong modes
with 1M = @min > Mis, . Recursion formula (8) determines the maxi-
mum spacing of suceessive common logic group sizes m, to be suppressed
for sufficiently suppressing all common logic groups within the covered
range. By extending this range from the largest common logic group
m, to the smallest common logic group m. , we get the sufficient subset

of common logic groups
Mo, My , Ma, *** , My

that must be suppressed for preventing all wrong modes. mg is de-
termined by expression (4); m, through m; are obtained by expres-
sion (8).

5.2.4 Necessary Subset

The m;-values resulting from expressions (4) and (8)
Mo, My, Moy =", My, =, My

always represent a sufficient subset of common logic groups to be sup-
pressed for preventing all wrong modes. But for some particular counters,
the necessary subset m, , my , my, + -+ , m; may be smaller by a few m;-
values. That is, the smallest values m;., -+ m, of the set are not neces-
sary. There is not a simple expression like (4) and (8) for giving only
the necessary m.-values but, for a particular counter, they may be
found by using the two conditions in Section 5.2.2, which have not yet
been used to their full extent in Section 5.2.3. In a first step, the last
value m, is left off and a check is made whether any wrong mode exists
that could satisfy both conditions for the remaining m.-values. Such
modes ean be found by listing all possible combinations of logic groups
that satisfy those two econditions (for 1 = » = m,/2). If there is no mode
consisting entirely of these listed combinations, m, is not necessary. In
the next step, m._, is left off, repeating the procedure, until the last
necessary value m; is found.

For counters up to 20 stages, Table IT gives the sufficient m,-values
(bridging parameters) according to expressions (4) and (8), with
the unnecessary ones in parentheses.

5.3 I'mplementation in Different Counter Circuits

Each bridging parameter m; denotes one bridging connection, bridg-
ing m; stages, which has to be added to prevent wrong modes (as
deseribed in Section 5.2.1 and shown in Fig. 5a). Figures 5b, ¢, and d
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TABLE II — BRIDGING PARAMETERS m;

(Numbers without parentheses denote the necessary and sufficient bridging
connections.)

TFor double-phase counters
Number of For single-phase
stages counters ‘With even With odd
number of number of
stages stages
n mi mi mi
2 * *
3 1 1
4 1 *
5 1 1
6 2 (1) 2
7 21 1
8 2 (1) 2
9 3 (1) 3 (1)
10 3 1 2
11 3 (1) 3 (1)
12 4 2 (1) 4 (2)
13 4 2 1 3 (D)
14 4 2 (1) 4 2
15 5 2 (1) 5 (1)
16 5 2 (1) 4 (2)
17 5 2 (1) 5 (1)
18 6 3 (1) 6 (2)
19 68 3 1 5 (1)
20 6 3 (1) 6 2

* No bridging parameters because these counters have no wrong modes.

show the bridging connections for the values m = 3 and m = 1 for
counters with different types of stages. In counters with 6-gate stages,
as shown in Fig. 5d, additional gates are required for proper sup-
pression of common logic groups without impairment of the correct
mode. For not impairing the correct mode, a feedback connection is
required from the output of stage S,. These counters need one addi-
tional gate if there is one bridging connection or two additional gates
if there is more than one bridging eonnection.

As an example, we obtain for a 3-stage single-phase counter only
one bridging parameter m, = m; = 1. This means that only one
bridging connection is needed, bridging one stage. Figure 6 shows
three possible locations of the bridging connection. If bridging con-
nections pass the twist, they must also be twisted, as illustrated in
Figs. 6b and c.

For double-phase counters with an odd number of stages, one also
has to make sure that the signal from stage S._,_.., does not reach stage
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Fig. 6 — Single-phase counter with three stages requiring one bridging con-
nection, mn = 1. Parts a, b, and ¢ are three equivalent solutions. If a bridging
connection passes the twist, as in b and e, it must also be twisted.

S, earlier than the signal from stage S,_, caused by the same clock pulse.
Otherwise a pattern --- 1+ 141+ 1+ 1 ... might not be prevented
under certain worst case propagation delays of the logic eircuits in-
volved. It is easy to assure this timing condition if logic gates are used
that also provide a complementary output (as is the case in emitter-
coupled gates). Figure 7 shows such an example with Nor/or gates. In
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Fig. 7— Double-phase counter with three stages (with wor/or gates). Use
of complementary gate outputs (or output Sw instead of Nor output S, and
Sw instead of S:) for increasing the permissible gate propagation delay tolerance
range.

the case of a wrong mode (1 + 1 + 1) in this double-phase counter
with three stages, output S, appears one gate propagation delay later
than S, upon an input pulse 4, and output S,, one propagation delay
earlier than S, upon the same input pulse A. This is sufficient to meet
the above timing condition. If complementary gate-outputs are not
available, a small delay may be introduced into the bridging connections.
This additional timing condition does not exist in single-phase counters
and in double-phase counters with an even number of stages.

5.4 Experimental Verification

Proper suppression of all wrong modes by bridging connections
determined according to the described procedures has been verified
experimentally with counters of all three types (Figs. 1, 2, and 3),
with different stages (Fig. 4) and with many different values of n.
Counters for which the necessary set of bridging connections is
smaller than the sufficient set resulting from the formulas were
given special attention.

5.5 Summary: Suppression of Wrong Modes

A small number of additional ecircuit connections (bridging con-
nections) are sufficient for suppressing all wrong modes in a twisted
ring counter. The bridging connections are determined by the bridg-
ing parameters m;, which can be found by the formula:

n_ 2
My =3 = EP-A
m;
Mivy = 5 — (p—13)-A
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with A chosen to make m, and m,., integers, and

n = number of counter stages

p=1 for single-phase counters
p=2 for double-phase counters
m; = 1,2, 3,4, - for single-phase counters
m; = 2,4,6,8, ---if n = even ‘
m = 1357 - ifn = odd } for double-phase counters
7:=0111213)"'1j)"':k'

Bach of the resulting bridging parameters m; denotes one bridging
conneetion in the ecircuit, which bridges m; stages (Fig. 5). The
bridging connection ean be located anywhere in the counter ring; if
it passes the twist, it must also be twisted. See Fig. 6.

The resulting & + 1 bridging parameters denote a sufficient set of
k + 1 bridging connections in every case. For certain counters, how-
ever, the necessary set of j + 1 bridging connections is slightly
smaller; it can be determined by the proeedure deseribed in Section
524,

Table II gives the & + 1 bridging parameters according to the
above formula for different counter types up to 20 stages. The bridg-
ing parameters denoting unnecessary bridging connections according
to the above proeedure are in parentheses.

VI. CONCLUSION

Tools and methods for predieting and suppressing wrong modes
in twisted ring counters have heen developed. As a result we have
gained a better insight into the multimoding mechanism and ob-
tained a simple method for preventing multimoding. This method is
summarized, and the required additional cireuit connections are given
in Table IT for counters up to 20 stages.
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