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This paper describes a stmple procedure for synthesizing an active
distributed RC network which, by using dominant poles and zeros, realizes
a very accurale approximation of an arbitrary stable ralional transfer
function. The network uses a single uniformly distributed RC' line with taps
spaced along its length. A linear combination of tap voltages is added to the
input signal to form the driving voltage for the RC line; the output signal is
also a linear combination of the tap vollages.

The network offers a number of significant advantages. Since it realizes a
nearly rational iransfer function, the approximation problem can be
conveniently solved wsing readily available results on rational function
approximation. Also, the network uses only one uniform RC line, the transfer
function can be changed simply by changing resistor values, and the frequency
can be scaled by minor connection changes. Thus one standard network with
minor modification is useful for a wide variety of applications.

This paper develops the design procedure and derives the various sensi-
tivity functions of importance. Two example designs are carried out: an
approximation to a second-order low-pass transfer function and an approxi-
mation to a second-order band-pass transfer function with a Q of 100. The
sensitivities for the examples are very reasonable and the measurements made
on laboratory models indicate excellent agreement with theoretical predictions.

I. INTRODUCTION

The progress being made in miniaturizing electronic cireuits has
stimulated a continuing interest in the synthesis of networks using
distributed RC components. Numerous techniques are available for
synthesizing transfer functions using distributed RC components in
conjunction with various active network clements.* Generally, these
synthesis procedures are applicable only if the transfer funection has
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a very special form. This form is not a rational funection of the com-
plex frequency variable s but involves hyperbolic functions of s. If
the problem posed to the network designer were merely to realize
given transfer functions of this special form using distributed RC
networks, there would be no difficulty.

However, the problem is generally not this but rather to realize a
network which achieves certain system specifications such as band-
limiting or pulse shaping. Thus, a realizable transfer function must
be developed which approximates the specifications (that is, the ap-
proximation problem must be solved) before a network can be
synthesized. Because the transfer functions realizable by distributed
RC networks have a somewhat complicated form, the approximation
part of the network designer’s work is more difficult when using dis-
tributed RC networks. This fact has led to a continuing effort to
develop distributed RC networks which realize rational transfer
funections. Since rational functions are easier to manipulate, and many
applicable results are readily available in the literature, the approxi-
mation problem is made much easier. This paper develops a simple
procedure and network for realizing an accurate approximation to a
rational transfer function using an active network incorporating a
distributed RC line.

Available techniques for synthesizing rational transfer functions
using distributed RC networks are documented by Heizer, Barker,
Woo and Hove, and Fu and Fu.>® Each of these techniques uses the
fact, first demonstrated by Heizer, that some of the immittance
parameters of a distributed RC line can be made rational functions
of s by cutting the conducting layer of the RC line in a particular
manner.

These synthesis techniques have some definite disadvantages. They
require two RC lines with cuts in the conducting layer which depend
upon the transfer function being realized; this is undesirable from a
manufacturing point of view and makes tuning difficult. Also, the
synthesis procedure involves a test to determine that the curve cut
in the conductor satisfies certain restrictions, that is, it does not “at-
tempt” to create a negative capacitance in the line. If it does, a new
try at the design is required. Fu and Fu eliminate this problem at
the expense of a significant increase in circuit complexity.®

Recently techniques have become available for approximating
rational transfer functions by using the dominant poles and zeros of
distributed networks. A few representative approaches are those of
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Kerwin, Bello and Gausi, and Wyndrum. Kerwin’s approach, in gen-
eral, requires the use of lumped components.” Bello and Gausi con-
sider only low-pass transfer functions and use different configurations
to realize an arbitrary transfer function.® Wyndrum’s technique also
deals only with low-pass transfer functions.”

The synthesis technique described here offers advantages over the
other available techniques since only one uniformly distributed RC
line is used and it is capable of realizing an accurate approximation
to an arbitrary transfer function. In addition, the design procedure
is very simple,

II. TRANSFER FUNCTION OF UNIFORM RC LINE WITH FEEDBACK

Chen and Levine!™ ! have suggested that filters could be built
using a uniform RC line driven by an input veoltage source and hav-
ing the output formed as a linear combination of the voltages ap-
pearing along the line as in Fig. 1. This procedure is useful in some
cases but is not general enough because it synthesizes transfer fune-
tions by using zeros of transmission. What is needed in addition to
zeros are poles; poles can be realized by using feedback as in Fig. 2.

The network of Fig. 2 consists of a uniform RC line with taps
spaced along its length. The tap voltages are appropriately scaled by
the infinite input impedance coeflicients a; and added to the input
signal to form the driving voltage for the line. The output voltage is
the sum of the tap voltages appropriately scaled by the infinite input
impedance coefficients b;. The RC line is the three-layer structure
shown in Fig. 3, where it will be assumed that there is no voltage
variation in the ¢ direction.

To determine the voltage transfer function of the network of Fig.

||}—Q

Fig. 1— Tapped RC line.
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Fig. 2— Tapped RC line with feedback.

2, we first determine the voltage gain G;(s) from the input of the line
to a point x; meters from the input. The result is

cosh (I — x;)(res)*
cosh I(res) '

where [ is the total length of the line in meters, and r and ¢ are the
resistance and capacitance per meter. If the distances I and z; are
constrained to be integral multiples* of some fixed length d,, that is,
! = Ld, and z; = id, , and we let r = redy , G;(s) becomes

cosh (L — 7)(rs)
cosh L(rs)t

Using (1) the voltage transfer function of the network of Fig. 2 be-
comes

Gi(s) =

Gils) = (1)

ZL: b; cosh (L — 9)(rs)}
G(s) = K =° (2)

L

> ¢; cosh (I — 4)(rs)? ,

i=0

where ¢, = 1 and ¢; = —a; for 7 # 0F . The real constant K is such that
b; = 1 for the smallest 7 for which b; # 0. By making the substitution
p = exp (rs)! and factoring the resulting polynomials in p, it can be

* For any set of x; and I, a small enough dy can be found that error in this
assumption is negligible.
T a has been set to zero which can be done without any loss of generality.
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Fig. 3 — Uniform RC line.
shown that (2) can be factored into the form

ﬁ cosh (rs)f — Z.]
G(s) = K — (3)
H [cosh (78)} — P,

lO

where 1 £ R = L [unless the numerator in (2) is unity in which case the
numerator of (3) is 2'7*] and the quantities P, and Z, are real or oceur in
complex conjugate pairs.

Before considering the question of stability, we will determine the
locations of the poles and zeros of G(s). Notice that, in spite of the fact
that (s)! is involved, G(s) is single valued. To determine the pole (zero)
locations, we set the denominator (numerator) factors in (3) equal to
zero and solve for s. For a typical denominator factor (cosh (rs)! — P;)
we calculate the s-plane pole positions to be

(arg p; (arg p; + 2nm) (4)

where n = 0, 1, +2, ... and p, = P, + (P> — 1)!. The term p,
comes from the solution of a quadratic equation which has two roots.
However, these roots are always reciprocals of one another and, as can
be seen from the form of (4), these two values of p; give the same s; .
Hence, only one of them need be used. A simple check shows that each
of the poles resulting from the single term (cosh (rs)! — P,) as given by
(4) is simple.*

When P; is real, the s; given by (4) are on the negative real axis for
| P;| = 1 and occur in complex conjugate pairs for | P; | > 1. When P;
is complex, (3) involves a term [cosh (rs)* — P*] which gives poles that
are the complex conjugates of those of (4).

It is easy to see from (4) that the infinite set of poles generated by one

TS; =

* For P = =41 double roots oceur but not for P = 41 withn = 0.



2056 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1968

denominator factor lie on a parabola given by

_lnzlp‘.| W't
7 T T4’ |ps | ®)

Figure 4 shows the location of these poles in the normalized, 7 = 1’
s-plane. The poles due to the term [cosh (rs)} — P,] are indicated by
single circles and those due to the term [cosh (rs)! — P¥] by double
circles. Similar comments hold in the case of numerator factors in (3).

Knowing the locations of the poles of G(s) permits the question of
stability to be answered easily. For simplicity we assume that in (2)
b, = 0. If this is not the case, G(s) can be separated into the sum of a
constant plus a G(s) which is of the form of (2) where G(s) has the same
denominator as G(s) but different numerator and b, = 0. The constant
gain is stable. With b, = 0, G(s) is stable, that is, its impulse response
remains bounded for large values of time, if all the poles lie in the left

NORMALIZED S5-PLANE Jjw

w2

ai=In2|p -
i Pi 2lnzipy

’4——4— (arg py+ 4m)2 -]

—»1 (arg py +2m)2 [«

n=-+i -—22n2|pu

--(arg pu?

--(arg py—2am)?

L——(ar'g piL— 4m)?->

—>| En? |py| =

Fig. 4— S-plane roots resulting from a pair of complex conjugate factors in
G(s).
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half of the s-plane and those on the jw axis are simple. This result can be
proved by finding the inverse transform of G(s) by using the Cauchy
residue calculus."

Notice that G(s) is a meromorphic function and G(s) —» 0 as s — .
The Laplace inversion relation is written as

o0 = tim g, G0

This integral is evaluated by closing the contour in the left half plane
so that it does not pass through any poles of G/(s) and encloses a
finite number of poles. The value of the closed contour integral is
determined by the residues of the poles enclosed. As n = o ¥, =
and the contours in the left half plane become larger without bound.
Using Jordan’s lemma®® the integral over the left half plane contour
approaches zero and ¢ () is determined. For large values of time the
behavior of g(f) is dominated by that pole with the most positive
real part. The stability requirement follows directly from this.

III. TRANSFER FUNCTION SYNTHESIS

A glance at Fig. 4 shows that, if the n = 0 pole is close to the jw axis,
the response of the network will approximate that of this single pole
alone for values of w near the pole. An examination of (4) shows that this
dominance can always be made to occur by an appropriate selection of r.
Trom (4) the pole positions in the s-plane are proportional to 7'
Therefore, by decreasing 7 the poles become more widely spaced and
hence those near the jw axis become more dominant. Since p; can be
adjusted so as to cause the n = 0 pole to be arbitrarily close to the
s-plane origin, a decrease in 7 can be offset, for the n = 0 pole, by chang-
ing p; . Therefore, the n = 0 pole can be made dominant. Hence, a
rational transfer function can be approximated by the system considered
here by making its dominant poles and zeros match those of the desired
rational function. To calculate the feedback and feed forward coeffi-
cients of (2) we calculate the P; and Z; of (3) by using the desired pole
or zero for s; in

P} = cosh (7s,)} (6)

and multiply the factors in (3).
The scale factor 7 controls the dominance of the n = 0 poles and zeros;
the dominance improves as 7 is reduced. A lower limit on practical
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values of 7 oceurs because the network sensitivity generally deteriorates
with reduced values of 7. An upper limit on 7 occurs because the n = 0
poles are restricted to the shaded area of Fig. 5. If 7 is large enough so
that a desired dominant pole s; lies outside the shaded region, the net-
work will realize this pole for a nonzero value of n. It is clear from Fig,. 4
that the network will then have an n = 0 pole with a more positive real
part than that of s; . This pole can destroy the desired dominance or
cause instability if it lies in the right half s-plane. The region permitted
for n = 0 poles in Fig. 5 is determined from (4) by setting n = 0,
substituting a value for w; and solving for the most negative value of o; .
The resulting restriction is
w;

41]'2
Except in rather unusual situations = will be much smaller than the
maximum implied by (7).

To synthesize an approximation of a given rational transfer func-
tion, the following simple steps are performed.

-

2
0=0 = —"r?- )

(1) r is selected so that all the poles of the transfer function lie in
the region shown in Fig. 5, and the resulting » = 0 poles and zeros
realized by the RC line are dominant.

Tig. 5 — Permitted n = 0 pole positions in s-plane,
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(i) The desired transfer funection poles and zeros are used in (6)
to determine the P; and Z; which, when substituted in (3) and multi-
plied out, yield the feedback and feed forward coefficients for the net-
work.

(11) The exact response of the network is caleulated using (2) or
(3) to verify that a good approximation has been achieved.

As pointed out in the examples in Section VI, a wide range of values
of = gives a very accurate approximation. Thus, a little experience
will then make step iii unnecessary. The selection of = also affects the
sensitivity of the network; hence sensitivity considerations may de-
termine the best value of .

IV. SENSITIVITY

One of the most important aspects of any active network synthesis
technique is its sensitivity to various parameter variations. In addi-
tion, sensitivity results are necessary to show how a physical network
may be tuned to achieve an accurate realization of the requirements.
Of the several different sensitivity functions that could be derived,
we have chosen to consider the relative changes of the poles and
zeros with a variety of parameters, These seem to give good physical
insight into the behavior of the cireuit and result in reasonably con-
cise expressions. The sensitivity functions derived are the relative
changes of the poles resulting from relative changes in feedback
coefficients, =, tap positions, and tap loading. Similar results hold for
the zero sensitivity functions. The details of the derivations are con-
tained in the Appendix.

If ); is the pole in question and the sensitivity of that pole to some
parameter X is defined as

N X
axX N’
and P, = cosh (rA,)% where A, is the gth pole, then we have the fol-
lowing:*
(1) Pole sensitivity to feedback coefficients:

SY =

Sh = a; cosh (L — -{)(TA,)* . (8)

L
257%(r\) sinh (22! [ (P — P
k=1

=i

* ), is assumed to be a simple pole.
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Simple relations for determining the numerator of (8) are given in
Appendix equations (20) and (21).
(i) Pole sensitivity to RC product, =:

Sy = —1. (9
(#i%) Pole sensitivity to improper tap spacing®
S o ‘%
8 = — ia; sinh (L Li.)(*r)\,) , i1 (108)
2% 2ginh ()} [] (P; — P))
k=1

=7

L—-1
L 3 ¢ sinh (L — K)(r\)}
S = —— k0 : : (10b)
252 ginh (rA\)! [ (P; — Py
k=1

#=i

(1v) Pole sensitivity to tap loading:

g:R cosh (L — 9)(r\;)} 2. ¢, sinh (7 — k)(mr)}
Spl = —

- (11)
25727, sinh (1'?\,-)i H (P; — Py)
e
i

where g; is the conduetance loading the ith tap and B = dyr.

V. SECOND ORDER DESIGN EQUATIONS

For the case where I = 2, that is, where the RC line is realizing an
approximation to a second order transfer function H(s), the design
and sensitivity relations given above take on the very simple forms
below (A and p, which are complex, are the pole and zero positions in
the upper left half s plane):

P = cosh ()},  Z = cosh (rp)}
a6 =0,a, =4Re(P)ya.=— (1+2|P|?
b, = b, = 0, b, = 1 for H(s) with no finite zeros

by = 1,b, = —4 Re(Z), b, = 1 + 2| Z |* for H(s) with finite complex
Zeros

I

*Lido = z, where z: is the distance from the input of the RC line to the sth tap.
Nominally Iy =1,
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by =0,b =1, b, = — 1for H(s) with one zero at zero
Sy = —1
S — 2P Re (P) S = —(1+2|PP
= 7 j(rA\) sinh (+\)! Im (P) ’ = 7 2j(r\)* sinh (r\)* Im (P)
» _ —2Re(P) v 2Pt
" jIm (P) ~’ " jIm (P)
S = —g.RP S = g.RRP*
0 24rA Im (P)’ = jrn Im (P)
27 — 1

r = ~35(r7)¥ sinh (rp)! Im (Z) for H(s) with finite complex zeros.
For the case where H(s) has two complex zeros, the zero sensitivities are
the same as for the poles with p and Z replacing N and P, except for §j,
which is given. For the case where H (s) has a zero at zero and at infinity,
the sensitivity of the zero at zero is infinite (due to the normalization by
1/p), but unnormalized,

9 _ 9 _ _2 dp _ _2R

ab, —ab, - . Mmd o=

Other sensitivities not given are zero.

VI. EXAMPLES

Two examples of approximations to second order rational transfer
functions will be worked out and compared with experimental results
achieved with a thin film line. The two functions to be approximated
are, normalized in frequency,

Guls) = (s/4)° + 1

FH@s 1 1)
oo 00ls
@) = F 1 001s + 1 (13)

The first is a noncritical low-pass function with a pair of zeros on the jw
axis and the second is a band-pass function with a @ of 100.

For the low-pass function (12), sensitivity is not a problem be-
cause the poles are very low Q. Therefore, = can be selected to satisfy
(7) and to insure dominance of the poles. Letting - = 1 we have the
following results:
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A= (=14 /@ P = 0646 4 0.313],

p = +ij4, Z =0342 + j1.9

a =0, a =259, a, = —2.032

bp =1, b, = —1.36, b, = 8.5, K = 0.0544
Sk, = 3.332154°, S., = 3.65£—52°
S, = 4.12 £90°, S, = 4.6£—116°
Sho=1.15g,RZ—19°, 8}, = 2.3g,R £109°
Si, = 0.508 £125°, S;, = 0.16 £ —137°, S;, = 0.512£—37°

7. = 0.359 £90°, 7. = 2.03Z£—170°

S;, = 0.126¢,R £80°, S;, = 0.254¢,R £100°

Iigure 6 shows a block diagram of the experimental circuit, the theoreti-
cal response, and the measured results. Notice that the theoretical
response realized by the RC line and that of the rational function cannot
be distinguished on the scale used for this figure, since they differ by
1 percent at most.

In the case of G:(s) which has a pole with a @ = 100, dominance is
achieved for a wide range of values of r for which (7) holds, and the
selection of 7 is influenced primarily by sensitivity considerations. The
parameter r affects the sensitivity in a rather complicated way as can
be seen from the various sensitivity relations. An examination of the pole
sensitivity to coefficient variations has shown that S, has a rather broad
minimum in the range 2 < 7 = 14 and that S}, goes to zero in this range
when a, = 0. Therefore, without an exhaustive study to determine an

optimum value of 7, we select that value which gives a, = 0, that is,
7 = 4.94. With this value of r the following result:
A= —0.005 + j P =234
a=a =0 a, = —11.95
bp=0, b =1 b =—1 K = 0.051
Sh, = 0.452 £ —45° ., = 2/180°
Sh. = 0.1015¢,R £90° S}, = 0.203g,R £90°
ap dp ap

gp _ 9P _ o gr _ S o .
ab, ab, 0.405 £180 gs 0.405R £ 180° for the zero at zero.
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Fig. 6 — (a) RC line with feedback approximating Gi(s). (b) Gain vs fre-
quency for Gi(s).

The block diagram of the experimental eircuit, the theoretical re-
sponse, and measured results are shown in Fig. 7. The difference between
the theoretical gain of the RC line and that of the rational function is
not noticeable since it is approximately 0.1 percent over the frequency
range shown in the figure.

The sensitivity of this network is quite acceptable. S}, can be con-
trolled by the proper selection of impedance levels; I, , a, and = ean be
stabilized so that the values of S}, , S, and S* are satisfactory. I, should
not change after manufacture; a, can be made to depend only on the
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Fig. 7— (a) RC line with feedback approximating G:(s). (b) Gain vs fre-
quency for G.(s).

ratio of two resistors which track with temperature and = can be stabi-
lized by selecting the temperature coefficients of the resistive and
capacitive materials of the line to be negatives of one another *

Several final notes concerning the network are in order. By isolat-
ing the taps on the line with emitter followers when necessary, it is
possible to reduce to two the number of operational amplifiers in the
network used for combining and secaling, one for the feedback voltages
and another for the feed-forward voltages. When several of these net-
works are cascaded, one of these two can be eliminated by using an
.operational amplifier from the succeeeding network. One RC line ean
be constructed with a large number of taps. Then by selecting the ap-
propriate set of taps, the line can be used for a variety of purposes
and at different frequencies.

* Tantalum resistors on a substrate can be made to track within + 5 ppm/°C and
RC products can be made to track within + 30 ppm/°C.
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Although only second-order examples were worked out and built, it
is not unreasonable to expect that advances in building thin film RC
lines and resistors using tantalum may eventually yield the stability
of the various parameters required to make higher-order realizations
possible.

VII. CONCLUSIONS

A network has beeen described which uses a single uniform RC
line with feedback to approximate an arbitrary rational transfer
funetion. The design procedure is simple as is the physical network.
Theoretical ealeulations indiecate that the transfer function realized
by the RC line is an accurate approximation of the desired rational
transfer function and measurements made on experimental circuits
agree well with the theory.
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APPENDIX

Deriwvation of Sensitivity Expressions

This appendix derives the sensitivity expressions given by (8)
through (11). The sensitivity of quantity A to parameter « is defined as

A 3?\ (23
Se = dan (14)

If s; is a network pole and D (s) is the denominator of (2), D(s;) =
0. The equation D(s;) = 0 defines s; as an implicit function of the
parameters in D (s). By differentiating the equation D(s;) = 0 with
respect to a parameter «, we can determine the quantity ds;/de. This
result will hold for general values of the various parameters in D (s).
For the particular case when all the parameters in D(s) have their
nominal values, s; will in fact be one of the desired network poles,
that is, s; = A;. Furthermore, the factorization used in going from (2)
to (3) can then be used to simplify the expression for dA;/de. The
sensitivity of A; to « is then determined by using (14). A similar pro-
cedure using the numerator of (2) gives the sensitivity funections of
the zeros.
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A. 1 Sensitivity of Poles to Feedback Coefficients
From (2) the denominator of G'(s) is

D(s) = ZL‘,C,; cosh (L — k)(rs). (15)

If s;is a root of D (s;) = 0, we have
9 .| ., sinh (L — E)(rs,)} ] 3s;
60'» D(S,;) =0= [§ ck(L L) 2(73,’)} ac_
+ cosh (L — 9)(rs,)*.
Setting all the parameters to their nominal values gives s; = \; . As
shown in (18), the term in brackets is nonzero if A is a simple pole and

TA\; # — n’r’ where n is a nonzero integer. Therefore, solving the above
equation gives

a; _ cosh (L — 9)(7\,)} . (16)
de; 3 inh (L — E)(7\;)F
R 3 Yt

As was done in (3), (15) can be factored, when all parameters have
their nominal values and P;, = cosh (rA;) %, into

L L
D(s) = 2 ¢ cosh (L — k)(rs)t = 2%7" ] [cosh (rs)t — P,].  (17)
k=0 k=1
Differentiating this equation with respect to s gives

& (L — k)sinh (L — ?u)(-rs)
kZO 2(rs)}

— gi i S“;*E (;S) H [cosh (rs)} — P,],

#m
and letting s = A;, we have

(L — k) sinh (L — K)(r\,)! _ ,u-s_sinh (1\)* 1
e 2! “2 oy U h
=i (18)
(18) is nonzero provided ); is a simple pole and 7\; # — n°z” where n is
nonzero integer.

Using this and d¢;/da; = — 1, 7 # 0, with (16) gives
PV cosh (I, — Z)E_'I_'Z\__f)" . (19)

2"7%(e\) sinh (mn ) TT (P = P

#i
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The numerator can be simplified by expressing a; in terms of the P;
by using (17) and by factoring cosh(L — 7) (rA;) *%. The results are

Ay = O
L
a, = 2 Z;P,-
= 20
i . (20)
a = —L—2 EP,-[EPA.]
=1 k:i
L 4 L L L *
a; = 2(L — 1) _ZP; +:— _ZP.-{ZP,-[Z Pk]}
. v - R b
and
. i (L-i-1y TP 2k — 1
cosh (L — 2)(7\)* = 27 H P; — cos B?T__——?,) T |0,
1 # L. (21)

A. 2 Sensitivity of Poles to Tap Position

The tap positions are directly proportional to the integers k in (15).
If k in (15) is replaced by I, which is no longer constrained to be an
integer and s; is a root of the resulting D(s), we have

L
D(s) = X ¢, cosh (I, — L)(rs)! = 0.
k=0

As in the previous section, differentiating with respect to I, solving
for 9s;/al,, using the nominal values I, = k so that s; = A;, and using
(18), we have

ia; sinh (L — 9)(m )}

Si= - - i L (22)
2" %ginh (r\ ) ] (P; — PO
k=1
and
L 1
L 3 ¢, sinh (I — E)(m\)}
8 = ——== = . (22)
2" %sinh (:\)! [T (P; — P
k=1

* Divide a by 2 if 1 = L.
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Fig. 8— RC line model for loading analysis.

A.3 Pole Sensitivity to Tap Loading

To calculate the sensitivity of a pole \; to the loading at the ith tap
by a conductance g; , we assume that all other taps are not loaded, that
is, g; = 0 for j # 1, and calculate the voltage transfer functior. from the
input to the various taps. Having found these, we calculate the denomi-
nator of the system transfer function, D(s), and proceed to caleulate
9\;/dg, in the same way as was done in Section A.2.

To calculate the voltage transfer function we will use the chain matrix
description of the line which is

4 _[ cosh k(rs)!  Z,sinh k(m)*]
=
Z

~Uginh k(rs)!  cosh k(rs)?

where Zo = (r/cs)* and kd, is the length of the line. The line, loaded
by ¢; at the ith tap, can be considered as the cascade connection of
an RC line of length idy connected to a two-port consisting solely of
g; which in turn is connected to an RC line of length (L — 7)d, as seen
in Fig. 8. The chain matrix of g; is

A,,{l 0]
g: 1

From Fig. 8 and the properties of the chain matrix we have for 0
=k<t

[e* - A,-_kA,,.AL_‘[ €z } & B,{ er }
?:k_ _’iL _iL

and forz £k =< L
D )
3*] - AH[ e J 2 Bk[ e } .
'f:;; _'!:L —'i,[,

With i, = 0 the above relations give the voltage transfer functions
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from the line input to the kth tap as

G.(s) = ew(s)/eu(s) = Bi/Bon

where B,,, is the (1, 1) element of the matrix B, .
The matrices B, for0 £ k < 7and7 =k = L, are

Hcosh (L — k)(rs)} } { _ }
B, = L + g.Zy sinh (i — k)(rs)? cosh (I — 4)(rs)}

and
— L Pogo,
B, = ]:cosh (L — k)(rs)* | ]] ,
() (-

respectively, which give the gains G,(s) as
cosh (L — k)(rs)} + ¢.Z,sinh (i — &)(7s)* cosh (I — 2)(rs)!

cosh L(rs)* + g,Z, sinh #(rs)* cosh (L — )(rs) !
forO =k <t,andfori =k =L

cosh (L — k)(rs)* _

cosh L(rs)} + g,Z, sinh i(rs)! cosh (L — 7)(7s)®
By using these equations in the expression for the gain of the feed-
back structure and multiplying the numerator and denominator of

this expression by By, we have the following expression for the
denominator, D (s).

Gi(s) =

Gi(s) =

L
D(S) = ;%Bku
=0

L
>~ ¢, cosh (L — k)(rs)*
k=0

+ g.Z, cosh (L — )(rs)* ick sinh (Z — k)(rs)}.

Now proceeding as in the previous sections, let D(s;) = 0 and differ-
entiate with respect to g; to get

% = Ck(L_ k)‘l" . R 1
ag“ — 2(1’8’;)* Smh (L ]\,)(TS,-)

+ (Tf)“ cosh (L — 4(rs,)’ Zc sinh (i — K)(rs) + g.(-+-) = 0.
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With g; = 0, s; = A; and the above gives with (18)

g:R cosh (L — )(mr)} ’Z:f ¢ sinh (i — E)(ma)!

25727\, sinh ()} [ (P; — P))
k=1
=i

Sy =

A. 4 Sensitivity to RC' Product Changes

It is assumed that the product RC = r of the line is uniform but not
correct. The sensitivity of the poles to changes in = is easily seen to be

SN = —1

since v always appears multiplying s in the transfer funetion and is
a frequency scale factor.
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