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Several results are presented concerning the equation F(x) + Az = B
(with F(-) a “diagonal”’ nonlinear mapping of real Euclidean n-space E"
into itself, and A a real n X n matriz) which plays a central role in the
de analysis of transistor networks. In particular, we give necessary and
sufficient conditions on A such that the equation possesses a unigque solution
x for each real n-vector B and each stricily monotone increasing F(-) that
maps E" onto itself.

There are several direct circuit-theoretic implications of the results. For
example, we show that if the short-circuit admittance matriz G of the linear
portion of the dc model of a transistor network satisfies a certatn dominance
condition, then the network cannot be bistable. Therefore, a fundamental
restriction on the G matriz of an interesting class of swilching circuits is
that 4t must violate the dominance condilion.

I. INTRODUCTION

For each positive integer n let " denote that collection of mappings
of the real n-dimensional Euclidean space E" onto itself, defined by:
F ¢ §" if and only if there exist, for ¢ = 1, --- , n, strictly monotone
increasing functions f; mapping E' onto E' such that, for each x =
(xl P | xn)' £ E“: F(x) = (fl(xl)l T Jrn(xn))"

The main purpose of this paper is to report on some results concerning
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properties of the equation
F(z) + Az = B, (1)

where A is an n X 7 matrix of real numbers, F maps E" into E", and
B ¢ E". In particular, a condition to be satisfied by A4 is given which is
both necessary and sufficient to guarantee that for each F ¢ " and each
B ¢ E" there exists a unique solution of equation (1).

We also study the problem of obtaining bounds on the solution of
equation (1). These bounds show that (if F & F* and our condition on 4
is satisfied) the solution depends continuously on B. The bounds are
often of use in computing the solution by standard iteration methods
such as the Newton-Raphson method. By appealing to a theorem of
R. 8. Palais it is shown that the bounds can also be used to obtain a
theorem essentially the same as, but somewhat weaker than, our
principal result.

Several results can be found in the literature which specify sufficient
conditions for the existence of a unique solution of equation (1). For
example, if A is positive semidefinite then a special case of a theorem
of Ref. 1 guarantees the existence of a unique solution of equation (1)
for all those F ¢ " which have the property that the slope of each j;
is bounded from above and below by positive constants, and for all
B & E". This theorem also specifies that a certain iteration scheme will
always converge to the solution.

A theorem of G. J. Minty®, when applied to equation (1), also implies
essentially the same result. The boundedness condition on the slopes
of the functions f; is not required by Minty’s theorem. On the other
hand, Minty’s theorem does not provide a procedure for computing the
solution of equation (1).

In Ref. 3 it is proved that a sufficient eondition for the existence and
uniqueness of a solution of equation (1) for all F ¢ " and B ¢ E" is
that 4 satisfy a weak row-sum dominance condition:

a“ézlaul, t=1,--,n*
FEtY
Other information concerning the location and the computation of
the solution is also given in Ref. 3.

The class of matrices satisfying the condition of our theorem (which
is defined in Section III and denoted by P,) includes all positive semi-
definite matrices as well as all matrices which satisfy any one of several

* Appendix A contains a simpler proof of a similar result and a proof of a new

related result. These results specify convergent algorithms for obtaining the
solution.
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- dominance conditions. Many other matrices are included in P, ; and
since the condition of our theorem is both a necessary and a sufficient
one, we are assured that P, is the largest class of matrices A for which
equation (1) has a unique solution for all F ¢ " and all B ¢ E".

II. NONLINEAR NETWORKS

Equation (1) is often encountered in the study of nonlinear electrical
networks. In the case of networks containing only resistors (that is,
linear resistors with nonnegative resistance), dependent and inde-
pendent sources, and two-terminal nonlinear resistors that are described
by functions in ' (diodes, for example), this is rather obvious.” Even
for networks which contain more general nonlinear devices, however,
equation (1) can often provide a convenient characterization. For
example, D. A. Calahan shows in his recent book that the transistor
network of Fig. 1 may be described by the equation

[I,,(e“"”” — 1)} _{ 0.0225 0.309} v, { 0.001771&,]
L. — 1) —0.168 0.494] |V, —0.188V..

if the Ebers-Moll model is used to represent the transistor. (See pp.
13ff of Ref. 4.) In this equation I, , I.., q, k, T, and V. all represent
fixed real parameters. It is quite trivial to apply the theory of this paper
(in particular, Corollary 3 of Section IV) to Calahan’s example and
prove that this equation has a solution, the solution is unique, and
the solution depends continuously on V... We also show how bounds
on the solution can be obtained.

T Vee

90K SK
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_Vf n ar =0.5
6K 3000

Fig. 1 — Biased transistor-stage.
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More generally, it is frequently the case that networks which contain
transistors, as well as the previously mentioned linear and nonlinear
elements, may be described by the equation

TF(z) + Az = B. (2)

In this case, z is a vector whose components are the voltages across
the nonlinear resistors and the transistor base-emitter and base-collector
voltages. The n X n matrix A is the y-parameter matrix of the linear
n-port network which is obtained by removing all nonlinear resistors
and transistors and setting the value of each independent source to
zero. The function TF(x) describes the behavior of the nonlinear re-
sistors and the transistors. It happens that the matrix T is nonsingular;
therefore equation (2) can be put into the form of equation (1).

Networks which contains inductors and capacitors as well as the
memoryless elements already mentioned are of course described by dif-
ferential equations. Even the study of such networks, however, can
often lead to the consideration of equations of the same type as equa-
tion (1). One usually finds the solution of such an equation is necessary,
for example, when computing the solution of the differential equations
by using some implicit numerical integration formula.

The problem of determining the equilibrium states of the above-
mentioned dynamic networks is one in which the consideration of
equations of type (1) often arises in perhaps a more direct manner.
In this regard, if it happens that equation (1) has a unique solution,
then the network cannot possibly be bistable.

When the determination of equilibrium states of a transistor net-
work leads first to the consideration of equation (2), then as a rather
direct application of our existence and uniqueness theorem it follows
that if the matrix A satisfies a weak column-sum dominance condition,

A = ;'ai"'x 1"=1!"'1nr
then T7'A ¢ P, and hence the network has exactly one equilibrium
state. This result and related results which are proved in Section IV
have the following interesting corollary: One cannot synthesize a
bistable network which consists of resistors, inductors, capacitors,
diodes, independent voltage and current sources, and one (Ebers—Moll
modeled) transistor—or even an arbitrary number of (Ebers-Moll
modeled) transistors with a common base connection.

The authors feel that in many respects the main contributions of this
paper are in the techniques used to prove the results. For this reason, we
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have not chosen to summarize all of the results at the outset and relegate
proofs to later sections. But rather, the results and the proofs will appear
in the order in which they will best illustrate the techniques developed.

III. MATRICES OF CLASSES P AND P,

The following notation will be used throughout the remainder of the
paper: The origin in E* will be denoted by 6. If D is a diagonal matrix
then D > 0 (D = 0) means that each element of D on the main diagonal
is positive (nonnegative).

In Ref. 5 and Ref. 6 M. Fiedler and V. Ptik define the classes of
matrices denoted by P and P, . They in fact prove that the following
properties of a square matrix A are equivalent:

(i) All principal minors of A are positive.
(¢7) For each vector x > 6 there exists an index k such that z,y, > 0
where y = Ax.
(#77) For each vector x > 8 there exists a diagonal matrix D, > 0 such
that the scalar product (Az, D,x) > 0.
(&) For each vector z # 6 there exists a diagonal matrix H, = 0 such
that (Az, H,x) > 0.
(v) Every real eigenvalue of A, as well as of each principal submatrix
of A, is positive.
The class of all matrices satisfying one of the above conditions is de-
noted by P. Fiedler and Ptdik prove that the following properties of a
square matrix 4 are also equivalent:
(7) All principal minors of A are nonnegative.
(#2) Tor each vector x 8 there exists an index & such that z, # 0 and
2k = 0 where y = Ax.
(#i1) For each vector x # 6 there exists a diagonal matrix D, = 0 such
that {(x, D,x) > 0 and (4dz, D,a) = 0.
(&) Every real eigenvalue of 4, as well as of each principal submatrix
of A, is nonnegative.

The class of all matrices satisfying one of the above conditions is de-
noted by P, .

The following theorems follow directly from the above definitions.

Theorem 1. If A & P, then for every diagonal matriz A = 0 (A > 0),
A+ AePy(A+ AeP).

Proof: Let x 5% 6. Then, since 4 & P, , there exists an index k such
that z, = 0 and z,(Az), = 0. Thus, z.(Az + Az), =2 0 (>0). O
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In particular, Theorem 1 implies that if A ¢ P, and A =2 0 (A > 0)
then det (A + 4) = 0 (>0).

Theorem 2. If A ¢ P then A™' ¢ P.

Proof: Suppose A ¢ P. Let z # @ be given and let y = A7'z. y = 6
since A™' is nonsingular. Thus, there exists a diagonal matrix D > 0
such that (Ay, Dy) > 0, which implies (x, DA™'z) > 0, or (Dz, A™'2)>0,
or (A 'x, Dx) > 0. That is, for every = # 6 there exists D > 0 such that
(A7'z, Dz} > 0. Hence A™ ¢ P. O

Because of the similarity of the definitions of the classes of matrices
P and P, , one might conjecture that this proposition is also true: If
Ae Py, and det A # 0, then A™" ¢ P, . This conjecture is in fact true.
Interestingly enough, however, its proof is not obtained as one might at
first suspect, by simply modifying the proof of Theorem 2. Moreover, the
proof of this conjecture does not even seem to follow directly from any
of the above definitions of P; . Rather, upon making the trivial observa-
tion that for every diagonal matrix D > 0, det (A™' 4 D) = det (47")
-det (D™" 4+ A)-det (D), the conjecture is easily seen to follow from the
fact that det (D + A) # 0 for every diagonal D > 0 if and only if
A £ P, . This fact is a direct corollary to the proof of Theorem 3.

IV. EXISTENCE AND UNIQUENESS THEOREM

The following theorem is the prinecipal result of this paper.

Theorem 3. If A 48 an n X n matrixz then there exists a unigue solution
of equation (1) for each F ¢ " and for each B &£ E" if and only if A ¢ P, .

Proof: (if) Let A e Py, F ¢ 5", and B ¢ E". The solution of equation
(1) is then unique (if it exists) since if # and y are both solutions then,
using the strict monotonicity property of F, there exists a diagonal
matrix D > 0 such that F(z) — F(y) = D(z — y). But[D + A](z — y) =
8 and, by Theorem 1, D 4+ A is nonsingular. This means that x = y.

We prove the existence of a solution of equation (1) by induction. For
k=1, ,nlet

() @yt Qg b,
F‘,(x) = :. f Ak = . - . s Bk —
](t(Ik) Ay = *° Qg by

Clearly, A, & Py, F, ¢ 5", and B, £ E*. Also, it is clear that there exists a
unique solution of F'; (z) + A,z = B, for each F; ¢ ¥ and for each B, e E",
and that this solution is a continuous function of b, .
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Assume that there exists a unique solution of F.(x)+ 4,z = B, for each
F, ¢ *, B, ¢ E*, and that this solution depends continuously on any
scalar parameter n upon which B, depends continuously. Let the
matrices A, ;., and A, ; be defined by

@y 41
-‘1k.:~+1 = : ’
Ay k41
Apirr = (@G =" Grar il

Then, for every real number x;., , the equation
Fuz) + Awx + Ay siTrr = By (3)

has a (unique) solution which is a eontinuous function of .., and of ».
Let the components of this solution be denoted by z; = m.(zx1 , m),
fori =1, -+, k, and define the vector M (244, , n) by My = (my, -+,
me)'.

We now prove that the function

@(37“1 ) T.') = Abu.kMk(xk-z-i ; "’.’) T Cpir,ke1Teer — bk+1(‘?)

is monotone increasing in z,, : Let z},, , 22,, ¢ E' with z},, < 2., .
Then, if M' (M?*) denotes the solution of equation (3) when x., =
Tin (miﬂ): we have

Fk(Mz) - Fk(lMl) + Ak(M2 - M”) + Ak.k+1(xi+l - xl‘;+1) = 6.

Because of the strict monotonicity of the function F, , however, there
exists a k X k diagonal matrix A > 0 such that

Fu(M?) — Fu(M") = A(M* — MY).

Hence,
M — M' = _[A + Ak]_lAk.ku(x:H - x;“)‘
Thus,

¢(x:n) - 99(33};“) = {Gasr 441 — A k(A + Ax]_lflk.k+1](-’€:+l - Illc-l-l)'

0
det A + A

0---0
det (A + A4,)

But then, from the easily verified relation

iy err — Appra[d + 4‘1k]_1“1k,k+1 =
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and since

0
det (A + 4,) > 0, det A + A4,.,| = 0 (Theorem 1),
0---0
and 27,, — 23, > 0, it follows that ¢(22,,) = ¢(z},,).

Now since ¢ is monotone increasing and, obviously, continuous in
Tpsr , it follows that the left side of the equation

Jra1(@rir) + @(@isn) = 0 4)

is a strictly monotone increasing function mapping E' onto E', and hence
equation (4) has a unique solution. If z7,, denotes this solution then

ml($:+l)

mk(x:vﬂ)
ﬂ:gﬂ
is the (unique) solution of

Fki—l(‘v) 4+ Ay = Biay .

We must now prove that this solution is a continuous function of any
scalar parameter # upon which B,., depends continuously. It suffices to
prove that x,., depends continuously on % (see equation (3)). This may
be done as follows:

Let z},, be the solution of equation (4) corresponding to n = 7".
That is, let

fk+1(552+1) + ‘p('r?'-i-l ) ’Tn) =0,

and let ¢ > 0 be given. Since f,., is a strictly monotone increasing map-
ping of E' onto E', so is f!, , and hence {7}, is continuous. Hence, there
exists 8’ > 0 such that if | fo,1(zl,,) — fesr(@esr) | < & then |z}, —
Ziq | < e Since ¢ is a continuous function of 7, there exists § > 0 such
that | n" — n | < simplies | g(al,, ,7°) — ¢(@f,,,n) | < 8. If[ 2" — 9 |<
&, and

f;-n(-l'kn) + ‘F(ﬂz'kn ) 'T) =0,
then,
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fen(@he) — fen@n) + @@, 1) — ¢@esr , W)
= —[e(@in , 1") — (@i, W]
But since both f,,, and ¢ are monotone inereasing in 24, ,
(3:2“ - wk+|)[fk+1{;rli+l) — finl@ie)] 2 0,
and
(2341 — Zea)e(@ier , M) — @(@psr , 1)] 2 0.
Therefore,
1 (33:“ - ka+1)[}lk+|(-”3£+1) - fkn(l'kﬂ}] l
< | @y — ze)le@inn , 1°) = (@i, M |-
Now, if 20,, = i, then of course | xf,, — & | < e Otherwise,
| feon@l) = fen@en) | £ | elahan, 1)) — ¢(@her, ) [
But then,
Ifkn(-’cgn) - frzn(IkH) [ < 5’:
and henece | 22,, — 2., | < e Thus, 244, is a continuous function of 7.

(only if) Suppose A ¢ Py . If det A < 0 then for sufficiently small
t > 0,det (T + A) < 0. For sufficiently large {, however,

det (¢ + A) = {"-det (1 + % A) > 0.
Thus, since det ({I + A) is a continuous function of {, there is some
value of ¢ > 0 such that det ({I + A) = 0. For this value of ¢ let
F(z) = {Iz. Clearly, for this choice of F £ §", equation (1) cannot have a
unique solution.

If det 4 = 0, but A has a negative principal minor, we can still find a
diagonal matrix A > 0 such that det (A + A) = 0; however, in this case
A will not, in general, be simply the identity matrix multiplied by a
positive constant ¢.

For some positive integer k < n let 4 have a k X k principal minor
which is negative and let

A = diag [51 L, ,5"]|

Since the determinant of A + A is not altered if any two rows and then
the corresponding pair of columns are interchanged we may, without
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loss of generality, assume that the matrix A is partitioned as

A, A,
where A, isa k& X k matrix with det A, < 0. Let £ > 0 be chosen so small

that det (¢ + A4,) < 0,and let 8§, = -+ = § = & Now, if &4y =
e =6, = ¢ >0, then

det (A" + A4) = det [g[ + 4, 4, J

Ay i+ A,
. ¢+ A, A,
= """ .det
1 1 .
: A, I+ : A,

Thus, for ¢ > 0 chosen to be sufficiently large, det (A + A4) < 0.
(det (A" + A) — " *.det (I + A,) < 0 as { — «.) Now, if for
7 > 0, A® = yI, then it is clear that for 5 chosen sufficiently large,
det [A* + A] = 5*-det (I + (1/9)A) > 0. Thus, if

Ale) = A 4 (1 — A*®,

it is clear, since det [A(0) 4+ A] > 0 and det [A(1) 4+ A] < 0 and since
det [A(e) + A] is a continuous function on 0 = € =< 1, that there is a
value of e > 0 (0 < e < 1) such that det [A(e) + 4] = 0. For this value
of €, A(e) > 0 is the required diagonal matrix. O

Notice that our proof shows that if ' e " and A ¢ P, , then the solu-
tion of equation (1) depends continuously on any scalar parameter
upon which B depends continuously. The arguments of Section V show,
under these assumptions on F and A, that the operator (F + A)™" is
in faet a continuous map of E" into itself.

In the proof of Theorem 3 we see that the uniqueness of the solution
follows simply from the hypotheses that each f; is strictly monotone
increasing and that A ¢ P, . The additional hypotheses that each f;
is continuous and maps E' onfo E' are not necessary (continuity of
each f, is not explicitly hypothesized, but follows from the ‘“monoto-
nicity’’ and “onto’ hypotheses). Hence, we have:

Corollary 1. If, fori = 1, --- , n, S; is a subset of E', and ¢if 8§ = 8, X
oo X 8y, and if Fz) = (fu(@), -+, fa(xa))", where each f; maps E'
into E* and is strictly monotone increasing on S, , then if A ¢ Poand Be K",
there exists at most one solution of equation (1) in S.
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We now prove another interesting corollary of Theorem 3. We first
define some additional notation.

For each positive integer n let 8" denote the collection of all subsets of
E" defined by: S ¢ 8" if and only if § = §' X .-+ X 8" where, for i =
1, -+ ,n 8 C E' and S has the same cardinality as E'. For each
S C 8" we define the collection F°(:S) of functions mapping S onto E" by:
F e 3"(S) if and only if there exist, for? =1, «--, n, strictly monotone
increasing functions f; mapping S° onto E' such that for each z e S,

F(z) = (fa(x), =+ [a(za))"

Corollary 2. If A is an n X n matriz and the collection F"(S) is non-
empty then there exists a unique solution of the equalion

F\(z) + AF,(x) = B (5)

for each F, & $"(8), F, £ 3°(S), and each B ¢ E" if and only if A e P, .

Proof: Since F, £ °(S), F;' : E" — S exists and F; o F;' ¢ 3. Thus,
there exists a unique solution of equation (5) if and only if there exists
a unique solution of

F\(F7'y) + Ay = B. DO

As special cases of Corollary 2 we have: there exists a unique solution
of each of the equations

F\(x) + AF,(z) = B,
and
z + AF(z) = B,
foreachFl,Fz,Faﬁ“andeacthE’"iﬁ'andonlyifAePu.

In Theorem 3 (and Corollary 2) the hypothesis that each of the func-
tions f; is an onto mapping is quite necessary in order to guarantee the
existence of a solution for each A4 & P, . In the following example all of
the hypotheses of Theorem 3 except this one are satisfied:

et —x =1
e —xz + oz = —2.

It is of course impossible for these equations to have a solution since, by
adding both sides, we find that the solution would have to satisfy

et et = —1,
which is absurd.
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Even though the functions f; are not ‘‘onto,” it is still possible to
specify sufficient conditions for the existence of a unique solution of
equation (5) [and equation (1)] by strengthening the hypothesis on
the matrix A—namely, by requiring that 4 ¢ P. This is the essence
of Corollary 3. We first require additional notation.

With 8" defined as above, we define, for each S ¢ 8", the collection of
functions ¥3(S) mapping S into E" by: F = 53(S) if and only if there
exist, for ¢ = 1, --- , n», monotone increasing functions f; mapping
S* onto a connected set in E' such that, foreachz e S, F(x) = (f.(z.),- - -,
f.(z.))'. When S = E" we denote 57(S) by 52 .

Corollary 8. If A is an n X n matrix then there exists a unique solution
of equation (5) for each Fy e F5(8), Fa e F'(8S), or F, £ F°(8S), Fa & F3(8),
and for each Be E", if A & P.

Proof: If F, e (8), F;' : E* — S exists and F, o F;' ¢ ¥} . Thus, in
this case, there exists a unique solution of equation (5) if there exists a
unique solution of

F\(F7'(y)) + Ay = B. (6)

Now, since A ¢ P, it follows from the fact that the determinant of a
matrix is a continuous function of each of its elements, that there is a
matrix A* ¢ P C P, and an ¢ > 0, such that A = eI + A*. Hence,
equation (6) is equivalent to

F(y) + A*y = B, (7)
where we have defined
F(y) = Fo\(F;'(y) + ely.

But, since F, o F;' ¢ §; and el & ", it follows that F £ F". Therefore,
since A* ¢ P, , equation (7) and hence equation (6) and hence equation
(5) have unique solutions.

The case when I, € 5°(S) and F, £ §3(S) can be reduced to the case
just considered by making the simple observations that, in this case,
equation (5) has a unique solution if

A7'F,(x) + Fa(z) = A'B

has a unique solution, and 4 « P implies A" ¢ P (Theorem 2). 0O

In Corollary 3 a sufficient condition is given for the existence of a
unique solution to say equation (1) when the functions f; which specify
F are not necessarily mappings onto E'. That the condition (4 ¢ P) is not
necessary is easily demonstrated by the counterexample: Let F & &, and
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B ¢ E*; then the equations
fl(xl) — Ty = b] 3 and fz(xﬂ) + T, = b2

have a unique solution in spite of the fact that the matrix

A= [0 _1:1¢P.
1 0

This is true because the function f,(f,(x,) — b,) is obviously a continuous
monotone increasing function of x, , and hence the left side of the equa-
tion

f2(fi(zy) — b)) + 2, = by )]

is a strictly monotone increasing mapping of E* onto E*'. Thus equa-
tion (8) has a unique solution.

V. BOUNDED SOLUTIONS AND RELATED PROBLEMS

For many systems whose behavior is described by an equation having
the form of equation (1), the vector B may be regarded as the sys-
tem’s input and the vector z may be regarded as the system’s response,
or output. Thus, if a sequence B', B*, B*, -+ of input vectors for the
system is given, the corresponding sequence z', 2% z°, --- of output
vectors is specified by equation (1). An important property that such
systems might have is that of producing a bounded sequence of output
vectors for each bounded sequence of input vectors; that is, the property
that whenever an input sequence B', B*, B®, --- is contained in some
bounded region of E", then the corresponding output sequence z', z*,
2°, +++ (exists and) also is contained in some bounded region of E”.
By considering matrices A which are not members of P, , it is easy to
demonstrate that all equations having the form of equation (1) do not
have this property. For example, if f(z) = = + € (f ¢ §'), then the se-
quence of solutions of the equation f(z) + (—1)xz = b is unbounded,
even though the sequence b = 1, 1, §, - - - of inputs is bounded. The fact
that one must resort to matrices A which are not in P, , and the fact that
by choosing any A ¢ P, , an example of the above kind can be constructed
by an appropriate choice of F & §", follows from our next theorem

Theorem 4. If A is an n X n mairiz then A ¢ Py if and only if for
each F ¢ 5 and each unbounded sequence of points ', x°, z°, -+ in E",
the corresponding sequence B', B, B*, --- (B* = F(z") + 42", k = 1,
2, 3, +++) 1is unbounded.
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Proof: (ff) If A ¢ P, then, as shown in the “only if”’ part of the proof
of Theorem 3, there exists a diagonal matrix D > 0 such that D 4 A4 is
singular. Hence, there exists some point p ¢ E*, p # 6, such that Dp +
Ap = 6. Let p; , the j~th component of p, be nonzero. Let the diagonal
elements of the matrix D be denoted by d, , - - - , d, and let the mapping
F & 5" be defined by

fw) = {dw : for i # j,
da; + €, for 1 = j.

If p; < Olet e = 1,if p; > 0 let ¢ = —1. Consider the unbounded
sequence z', z°, 2°, --- defined by 2* = k-e-p, for k = 1, 2, 3,

The members of the corresponding sequence B', B®, B, --- are B* =
©, ---,0,¢,0,---,0" %k =1,2, 3, ---, where the j-th element
of each B* is nonzero. Since fork = 1,2,3, - -+, k e p; < 0, the sequence
B', B*, B®, --. is bounded.

(only if) Our proof of the “only if” part of Theorem 4 consists of
proving Theorem 5 which is referred to later for another purpose. 0O

Theorem 6. Let F = (fi(+), -+, fu(:))' ¢ §, A ¢ Py, and, for i =

1, -+, n, a; = B: be given. There exist, fori = 1, --- , n, real numbers

v¢ < 8; such that forany B = (by, -+, b)) e E" with a; £ b, < 8, for
i = 1, .-+, n, if x satisfies equation (1) then v; = z; = §; for 1 =
1, , M.

Proof of Theorem 6: We first prove a useful lemma.

Lemma 1. Let f be a strictly monotone increasing mapping of E' onto
itself. Let x, b, a, 8 be real numbers such that zf(z) < zbwitha = b = 6.
Theny = z < 6, wherey = min {f (), 0} and § = maz {f '(8), 0}.

Proof: Let « < b < B8 and define ¥y = min {f'(a), 0} and § =
max {f'(8), 0}. Let = Sa.tlsfy zf(z) < xb. Then z(f(z) — b) = 0. Clearly,

¥y =0=<sdand henceifx = Otheny < z < 4. Ifa:>0thenf(x) =<
b =< B which implies z < f'(8) < & and hence Y =E0<z=8If
z < 0, then f(z) =2 b = o« which implies z = f~ (a) = v and hence
ySErx<0=4 0O

(Proof of Theorem &) Since A ¢ P, there exists k, € {1, --- , n} such
that z,,(Az),, = 0 and hence,

Tebe, = T fi, (@0) + 26, (A7), Z Tefi, (@)-

Thus, by Lemma 1, there exist v{? =v{" (fi, , a,) and 8, =8 (fx, , Br.)
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such that v < z,, < 6{". Now if F,_, denotes the mapping of E!

onto E"! defined by

F.., = (11(); ] fk,—l('): fk,+1(')r St fn('))‘r

if A,_, denotes the (n — 1) X (n — 1) matrix obtained from 4 by
deleting the k,-st row and column (note that 4,-, ¢ Po), if

Aoy = (@ y """ 5 Aiymt k> Biri1aka 7 "7 s Gn.i)'s
and if
Bow = (byy - vy buucsy by =00, 02,
then
Foi(2) + 4,0z = Baoy — @p@, *

Since A,_, ¢ Py, there is a k, e {1, --- , k,—1, k,+1, --- , n} such
that z,(4,-,2):, = 0 and hence, as before,

Tp, (e, — A, 6, Tk,) = Ty, fra (T, ) -

But, if iy ko é 0, then

(1) ()
g, — Qe Vi, = br, — Gy ra®r, = Br. — Gkyn i,

and if a, . > 0, then
D )
ar, — @y x, 8 = bi, — Gy T, S Bry — Gy Ya, -

Therefore, by Lemma 1, there is a v\" = v{*(fe,, &, — Gu¥i))
and 6 = §2(fe,, Bi. — @x,.r0.") such that v = a, = &) if
ay,.x, = 0, and similarly for a;, ., > 0.

The above process may be repeated successively until the n pairs
of real numbers v, 8", (i = 1, - - - , n) have been obtained. Thus, for
any given B with a; < b; < B; for¢ = 1, -+, n, the components of
the solution z of equation (1) will be bounded by these pairs of numbers,
provided it is known at each step which coordinate k; to choose. The
appropriate coordinate choice, however, will in general depend on the
particular solution = which is associated with the given B. For different
input vectors B the appropriate choice will in general be different. There-
fore, in order to obtain bounds on x which are valid for all B with a; =

b; < B (i =1, ---,n) we must consider each of the n! permutations of
the coordinates {1, - - - , n} and, for each one, generate the set of bounds
(v, 82:4 =1, -+ ,n} forv =1, --- , nl. We then define v; =

* In this equation z is understood to be (1, =+, Taym1,y Thyr, =+, Tn)h
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min {-y‘” =1 - ,n!}and & = max {8”:» =1, .-+, nl} for
1 =1, -+, n Then, foreach Bwitha; < b, £ 8, fort =1, ---, n,
we ha.ve that vi 2 x; = 8, forg =1, -+, n, since at least one of the
sets of bounds {y{*, §:4% = 1, --- , n} must always apply. O
If the matrix A of Theorem 5 satisfies a stronger condition than
A e P, (that is, if A satisfies a weak row-sum dominance condition),
ai; = Z'aiils for T:‘—'l,---,n,
it is possible to use a method that requires much less computational
effort than that of Theorem 5 to compute the vectors ¥ and § whose
components bound the corresponding components of the solution of
equation (1). This method of computing the bounds, a straightforward
generalization of an idea presented in Ref. 3, is explained in Appendix B.
From Theorems 3 and 4 we now have the result: Every bounded
input sequence B', B*, B®, - - - is mapped by equation (1) into a bounded
output sequence x', x°, x°, -+ , for each F ¢ ", if and only if A ¢ P, .
In the proof of Theorem 5, the number of real numbers v}, &
which must be computed, in order to determine bounds for z, is 2n X
(n!). At the expense of obtaining poorer bounds it is easy to reduce

this number to 2n°. Suppose we compute, at the first step, the 2n
(1)

numbers v, 8", -+, ¥, 8!V and set A\, = min {¥{ y 1k
uy = max {8, .-, 8}, Then, for each B with a; < b, § 8; for
2 =1, --- , n, one of the components of the corresponding z will be

bounded by A, (from below) and g, (from above). We next compute the
2n numbers v{* = v{”(f;, &; — pi"), 8 = & (f;, B: — ¢i"), where
P = max {a; N\, a;m 2§ # i}, ¢fY = min {a;;\, aip c§ # 1), and
denote the smallest v{*' by A; and the largest §* by u, . Then we have
bounds which apply for two of the components of the x which
corresponds to any B witha; < b; < 8, forZ = 1, - - - , n. By computing
YO =40l @ — PO — p®), 85 = 5O, , B — ¢ — ¢), ete,
the above process may be continued to obtain the numbers A, , -+ -, A,,

B, *** , pn. Bach component of the z corresponding to any B with
a; =b;,=B.fort=1, -+ ,nwillbebounded by A = min {A,;, - -+, \,}
(from below) and p = max {u,, ---, u.} (from above).

A matter that is closely related to the proofs of the above theorems
on the boundedness of solutions of equation (1) is that of proving: For
each F' ¢ 5" and each A e P, the solution x of equation (1) is a continuous
function of the vector B. It is obvious that it will suffice to prove that
for each F ¢ §" with F(8) = 4, and for each A & P,, the solution z
of equation (1) is continuous in B at B = #. We then note that if f
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satisfies the hypotheses of Lemma 1 and, in addition, if f(0) = O then,
due to the continuity of f7*, for every e > 0 there exists { > 0 such that
if &, B in Lemma 1 satisfy —f < &« = b £ 8 < { thenv, §in Lemma 1
satisfy —e < v £ x = & < e This observation may be used to incor-
porate a simple ‘“e-§ argument’’ into the steps of the previous paragraph
to show that when F(8) = 6 then for arbitrary e > 0, one can determine
¢ > 0 such that || B|| < ¢ implies ||z || < e.

At this point we return to the matter of the existence and uniqueness
of solutions of equation (1). We state first a theorem of R. 8. Palais
(Ref. 7—see also the Appendix of Ref. §) which shows the connection
between the concepts of existence and uniqueness of solutions and the
boundedness of solutions.

Palais’ Theorem. Let f,, -+ , f. be n continuously differentiable real
valued functions of n real variables. Necessary and sufficient conditions
that the mapping | : E* — E* defined by f(x) = (fi(z), -+, f.(2))" be
a diffeomorphism of E" onfo itself are:

(%) det [9f;/dx;] never vanishes.
('L"T:) ]imnzﬂ_.,, H f(ﬂﬂ) ” = o,

Palais’ Theorem may be used to prove a result which is almost
equivalent to our Theorem 3, that is:

Theorem 6. If A is an n X n maitriz then there exists a unique solution
of equation (1) for each F = (f(x,), -+ , f.(x.))" with continuously
differentiable, strictly monotone increasing functions f; which map E'
onto itself, and whose slopes are everywhere positive, and for each B & E",
if and only if A € P, .

A proof of Theorem 6 which is independent of our Theorem 3 is
easy to construct: For all A e P, , the rather trivial Theorem 1 guarantees
that condition (¢) of Palais’ Theorem is satisfied, and Theorem 5
guarantees that condition (77) is satisfied. If A ¢ P, then a choice of F
such as is specified in the “if”’ part of the proof of Theorem 4 provides
a case in which condition (47) of Palais’ Theorem is violated.

VI. SUFFICIENT CONDITIONS FOR A ¢ P, or P

TFor a given matrix A, it is not in general an easy task to determine
whether or not A satisfies any one of the four equivalent conditions
of IFiedler and Ptdk which are given in Section III and which serve to
define the class of matrices P, (or the conditions which define P). This
is particularly true when the order of A is large. For this reason, we
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now give several conditions which are sufficient to insure that a matrix
A isin P, or P (and which are not so difficult to verify).

Suppose it were known that every eigenvalue of A as well as every
eigenvalue of each principal submatrix of A had a nonnegative (positive)
real part. Then this would guarantee that A e P, (P). This is the main
idea involved in the following theorem.

Theorem 7. If any one of the following inequalities is satisfied by the
elements a,; of the matrix A, foralli =1, -+- ,n, then A e P, .

(7") aa.‘é(ZI“.,{ (Elaki)lu 0=a=1;

i

(X a; Y, p=z=1, pl4+qt=1,

FEd

TIV

(i7) a;;

a; positive numbers satisfying > (1 + a,)”' £ 1;

i=1
(i)  a;; = a max | a,; |, @ positive satisfying
i

n

21 [; | @ | (max | a D' S al +4), (0/0 = 0).
If any one of the above inequalities with = replaced by > is satisfied for
i=1,---,n then A e P.

Proof: If the right-hand side of any of the above inequalities is
denoted by the nonnegative number »; then it is well known that all
of the eigenvalues of the matrix A are contained in the union \J{C; :
i=1,---,n}of thedisks C; = {z:|z — a;; | = r;}.° But the condition
a;; = (>) r; guarantees that if z ¢ C; then Re(z) = (>) 0. Thus,
each of the eigenvalues of the matrix A has a nonnegative (positive)
real part. The same is true of each eigenvalue of every principal sub-
matrix of A, for if one of the above inequalities is satisfied by the
elements of A it is also satisfied by the elements of any principal sub-
matrix. 0O

VII. COMPUTATION OF THE SOLUTION

At present, the authors know of no single computational algorithm
which is guaranteed to yield the solution of equation (1) for all F' & ",
A e P,, B ¢ E". However, there are several ways that the solution may
be computed for large classes of such equations.

If, for example, the matrix A satisfies either a weak row-sum or weak
column-sum dominance condition (inequality (z) of Theorem 7 with
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either « = 1 or @ = 0) and if F & " with, roughly speaking, the slopes
of each f; bounded from below by some positive constant, then it can
be shown (see Appendix A) that an algorithm for computing the solu-
tion can be obtained by the use of Banach’s contraction-mapping
fixed point theorem.

If the matrix A is positive semidefinite then, as mentioned in Sec-
tion I, the existence of a unique solution of equation (1) for all F & &
follows from the earlier work of Sandberg and Minty. If, in addition,

there exists for i = 1, - -- , n, positive constants «; and 8, such that
< fiw) — f:) < 8,
u—v

for all u # », then Sandberg’s iteration scheme (also resulting from
an application of the contraction-mapping fixed point theorem) can
be used to compute the solution." In this regard, if the techniques
of Section V are first used to obtain bounds on the location of the
solution then one could modify equation (1) by changing the nature
of the functions f; outside the domain in which the solution is known
to lie (but still keeping the f; strictly monotone increasing from E
onto E') and obtain a new equation which has the same solution as
the original equation. By doing this, the functions f; in the new equa-
tion might be made to satisfy the above inequalities in cases where
this was impossible for the original f; . Also, even if these inequalities
could be satisfied for the original equation, larger values of a; and
smaller values of 8; might be used for the modified equation. This can
result in a more rapidly converging iteration process (see Section VII
of Ref. 3). Similarly, the bounds can be used to improve the perform-
ance of other iteration schemes.

In case A ¢ P, is not positive semidefinite, it might be that there exist
diagonal matrices 4, , A, > 0 such that A,AA, is positive semidefinite.
If such matrices can be found, then Sandberg’s iteration scheme could
be used to eompute the solution of the equation

AF(Asr) + AAAx = AB,

from which the solution of equation (1) may be obtained directly.
Unfortunately, it is not the case that such A,, A; > 0 exist for all
A ¢ P, . For example, it is quite easily verified that for

;1=[1 0}
10
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even though A £ P, , the matrix A,AA, is not positive semidefinite for
any choice of A, , A, > 0.

It is easily verified, however, that appropriate A,, A; > 0 can be
found for all 2 X 2 matrices A & P, except those for which

(%) a0 = 0,
and
(77) @i2asy = 0,
and
(#75) either a,, 5 0 or a,, # 0.

In particular, for all nonsingular 2 X 2 matrices A ¢ P, , appropriate
Ay, A, (A, = I) can be found. Thus, Sandberg’s iteration scheme could
be used, for example, to compute the solution of the example problem
of Section IT which was taken from Calahan’s book.

VIII. APPLICATION TO EQUATIONS FOR TRANSISTOR NETWORKS

In this section some of the above theory is applied to the equations
which deseribe the behavior of electrical networks containing tran-
sistors. By the word transistor we refer to the three-terminal device
whose equivalent circuit is shown in Fig. 2.* Considering the tran-
sistor as a nonlinear two-port network, the following equations which
express the port currents in terms of the port voltages follow imme-
diately from inspection of Fig. 2:

— I: 1 —aijﬁ(vl)]_
—Qgy 1 f2('l‘)z)

We assume, as is the case for the usual large-signal model of a physical
transistor, that 0 < a;, < 1, 0 < a,; < 1, and that both of the fune-
tions f, and f, are continuous and strictly monotone increasing. The
character of the functions f, and f, which describe the transistor’s
nonlinear conductances will depend on whether the transistor is des-
ignated as NPN or PNP. We shall, however, have no occasion to dis-
tinguish between these two cases in what is to follow.

Suppose an electrical network is synthesized by connecting together,

7

Iy

*In some respects this equivalent circuit is an ideal model of a transistor.
Nevertheless, since this model is often used in the design and the computer
analysis of transistor networks, consideration of it is important. The presence of
series resistance at the base, emitter, and collector terminals of a transistor will
be considered by the authors in another paper.



PROPERTIES OF DC EQUATIONS 21
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+

Vz l lc=fa(va) q) @yt
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+
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Fig. 2 — The equivalent, cireuit of a transistor.

in an arbitrary manner, any (finite) number of transistors, resistors
(that is, linear resistors with nonnegative resistance), voltage sources,
current sources, and nonlinear resistors which are deseribed by strictly
monotone increasing conductance functions (and which we shall hence-
forth refer to as “diodes”). Suppose the network contains n transistors

and d diodes. For k = 1, -+, n, let Zax_1, Tox, Yor—1, and Yo, denote
the voltage and current variables vy, va, %;, and i, respectively, for
the k-th transistor. For k = 1, + -+, d, let Top s and Yzu4 denote the

voltage across, and the current through, the kth diode. Let these
variables be related by Yonsx = fonyr(®angx). Then, if 2 = (24, -,
Tonta)tand y = (Y1, **+, Y2uta)’, We have

y = TF(z), 9)

where T' = diag(T,, T=), with T; a block diagonal matrix with n 2 X 2
* diagonal blocks of the form

[ 1 —af]
)
—a 1 J

and T a d X d identity matrix. The nonlinear funection F has the
fOI‘mF(.’C) = (fl(:cl)r T f‘.’n-{—d(-"vﬂn-{-d))t-

Consider now the (2n+d)-port network of resistors and independ-
ent sources which is formed from the original network by removing the
transistors and diodes. If the y-parameter matrix G of this (2n+d)-
port exists then we have the additional equation relating the vectors
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@ and y:

y= —Gzr+ u (10)

where % is some vector of constants which is, in general, nonzero since
sources are present in the (2n+d) -port.
Combining equations (9) and (10) we obtain

TF(z) + Gz = u. (11)

Now T is a nonsingular matrix and hence, if equation (11) is multiplied
by T°', we obtain an equation having the form of equation (1). If
the matrix T7'G ¢ P, then, by Corollary 1, there exists at most one
set, of transistor and diode voltages satisfying equation (11). Moreover,
if each of the nonlinear functions describing the transistors and diodes
in our network maps E' onto E', or if T7'G ¢ P, then Theorem 3, or
Corollary 3, guarantees the existence of a unique solution of equation
(11).

We have been careful to distinguish between the case when our
theory guarantees only the uniqueness of a solution and the case
when it guarantees both the solution’s existence and its uniqueness
for the following reason: In the analysis of transistor networks the
nonlinear functions which are used to describe diodes or to describe
the nonlinear conductances in the equivalent circuit of a transistor
are often taken to be of the form

fl@) = L(e™ — 1),

where I, and ) are constants. The range of such a function is not the
entire real line. Presumably, therefore, one can construct transistor
networks having the property that if functions of the above type are used
in a transistor’s equivalent circuit then the network admits no solution.
We now give a simple example of such a network. We wish to emphasize,
though, that even for these networks whose equations may sometimes
have no solution, our theory still guarantees that if 77'G ¢ P, and if a
solution of equation (11) exists, then it is unique.

Consider the network of Fig. 3. For this network, equation (11)

becomes
l: 1 '—a]zjl [fl(vl)] + ': g _g:Hvl] - [Ia]
—ay 1 f2(v2) —g g Uy I,

Suppose a;3 = 0.5, as; = 0.9, and g = 5.5 mhos. Then, the above equa-
tion is equivalent to '
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f@) 5 —5|(n 120 10}]1,

+ =11 :
fz(vz) -1 1 Vs 18 20 |7,
Hence, v, and v, must satisfy

fi(vy) 4+ 5fo(va) = 101, + 1.).

If we now assume that the transistor’s nonlinear conductances are
deseribed by the functions

fie) = =L = 1),
folvs) = =L ™" — 1),

where the parameters I,, I., A,, and )\, are each positive, then for
all v, , v, we have

fi(w) + 5favs) < I, + 51, .

Hence, if the values of the independent current sources of Fig. 3 are
chosen such that

Iq+1b21410.10+%151

then the equation for this network has no solution.

Let us now consider the problem of determining whether or not, for
a given network, the matrices 7' and G in equation (11) satisfy the
condition T7'G ¢ P, (or T7'G ¢ P). (The existence of many transistor
bistable circuits assures us that this condition is not always satisfied.)

|

I V2 Li-c=fz(Vz) asle I

l v, Tta—fq(‘ﬁ) aic I

1a( | | + I

Fig. 3 — A transistor network whose equations may have no solution.
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There is a large class of networks for which this condition is satisfied,
and for which a simple inspection of the G' matrix suffices to identify
a member of the class.

Since the matrix T satisfies a strong column-sum dominance condi-
tion, that is, since

t.‘,‘> th,,l fOl‘ i=l,"',2ﬂ+d,
i#i
the following theorem guarantees that if the matrix G also satisfies a
strong column-sum dominance condition, then T7'G ¢ P, and that if
the matrix (f satisfies a weak column-sum dominance condition,
gii = E | gii |,
PR

then 77'@ & P, and, hence, the above conclusions concerning the ex-
istence and the uniqueness of a solution follow.

Theorem 8. If the square matriz A satisfies a strong column-sum dom-
inance condition and if the square matrix B satisfies a weak (sirong) column-
sum dominance condition, then A™'B & P, (P).

Proof: Suppose A7'B ¢ P, . Then, by the main result of the “only if”
part of the proof of Theorem 3, there exists some diagonal matrix
D > 0such that det (D + A7'B) = 0. Butdet (D + A7'B) =det (47")-
det (AD + B), and det (A™") # 0. Likewise, det (4D + B) = 0
since AD + B satisfies a strong column-sum dominance condition.
Hence, A™'B e P, .

With B strongly column-sum dominant, let & > 0 be such that
B — 384 also possesses the strong dominance property. Suppose that
A7'B — &I ¢ P, . Then, as above, there is a D > 0 such that A™'B —
6 + D = A7'[B — 84 + AD] is singular, which is a contradietion.
Therefore A™'B — 61 ¢ Py, and, by Theorem 1, A™'B ¢ P. 0O

IX. COMMON-BASE TRANSISTOR NETWORKS

We now consider a special class of the networks which are comprised
of transistors, resistors, diodes, and independent sources. We consider
the class of all such networks for which there is a single node (called
ground) to which the base terminal of each transistor is connected.
Let us first consider a subclass of this class of networks; that is, let us
temporarily assume that no diodes are present. I'or all networks in
this subeclass it is easily verified that when the G matrix for equation
(11) exists, then it satisfies the above weak column-sum dominance
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condition and hence, by Theorem 8, T7'G & P,. This fact is made
evident if we consider the network of resistors which is described by
G (that is, the linear multiport to which the transistors are connected,
with all sources removed) and first simplify this network by using the
star-mesh transformation to remove all internal nodes. Of course for
many networks of this subleass G is strongly column-sum dominant,
in which case 77'G ¢ P.

It is clear that the networks for which the G matrix fails to exist
are exactly those networks in which either one or more of the collee-
tor or emitter terminals are connected, through the resistor network,
directly to ground (that is, through a branch having infinite con-
ductance), or else two (or more) of the transistors’ collector or emitter
terminals are connected directly together (through a branch of the
resistor network having infinite conductance). These direct connec-
tions can exist in the resistor network either because of corresponding
short-circuits in the original linear multiport, or because of corre-
sponding connections involving branches which contain only ideal
voltage sources.

If one assumes that each transistor in the network has a nonzero
series resistance associated with both its emitter and its collector
terminals (this assumption certainly being consistent with physical
reality) then one need not be concerned about the possibility of the
nonexistence of the (¢ matrix since the situations mentioned in the
previous paragraph cannot occur. We now show, however, that one
need not rely upon this assumption in order to prove the uniqueness
of the solution of the equations which describe the networks that we
are considering.

We have observed that the matrix G will not exist if and only if
the linear multiport has fewer independent port voltages than it has
ports. In this case we modify the nonlinear multiport in such a man-
ner that we can break some of the connections to the linear multiport
so that it then possesses a G matrix and hence can be described by
an equation having the form of equation (10). The modifications
to the nonlinear multiport which are called for are obviously the ad-
dition of voltage sources between certain nodes, the values of these
sources being the same as those of the voltage sources connecting the
corresponding nodes in the linear multiport. This simple concept is
illustrated in Fig. 4. Here, the network of Fig. 4a, containing a linear
6-port, has been replaced by the “equivalent” network of Fig. 4b con-
taining a linear 3-port. Although the G matrix of the 6-port does not
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(b)

Fig. 4 — Example of a grounded-base transistor network.

exist, it does exist for the 3-port which can be deseribed by

7 1 =1 0f|n —1
1| = —| —1 3 0fve| + 4f-
2 0 0 1w, 0

We have shown that the above artifice allows an equation having the
form of equation (10) to always be written to describe the linear
multiport contained in our network. We now show that an equation
like equation (9) can be written to describe the nonlinear part of our
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modified network. The equation which we obtain is of the form y =
PTF(Ptz + C) with P an m X 2n matrix (m < 2n) and C a 2n-vector.

Consider the equation which describes the nonlinear part of a com-
mon-base transistor network before any of the above-mentioned
modifications (that is, the addition of voltage sources) are made.
This equation has the form of equation (9) with T being a 2n X 2n
block diagonal matrix (recall that n is the number of transistors
present). Let us consider the effect on this equation of the modifica-
tion of the network by adding voltage sources, one at a time. There
are two different ways of adding voltage sources that must be con-
sidered.

Suppose a voltage source of voltage E is connected between nodes
j and k (with plus reference at node j), and suppose the connections
between node j and the linear multiport are then open-circuited. This
situation is illustrated in Fig. 5. Using the notation indicated in this
figure, we have

TF@),

1, = 1, for v #= j, k,

ii=0r
B =1 + %,
U‘-=Uk+E.

Let us now define the vectors »* and * to be the (2n—1)-vectors
obtained from » and %, respectively, by deleting the »; and ¢; elements.
Then, if F*(v*) is the 2n-vector obtained from F(v) by replacing the

li.. $i._;=o ii.|.‘ li.an

Vi VJ? E ka Van
. - _+““_7-—1. . cen ‘
I e

NONLINEAR MULTIPORT

1

Fig. 5— Typical modification of the nonlinear multiport network.



28 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1969

argument v; by v, + E, we then have that
* = T*F*(%), (12)

where the (2n—1) X 2n matrix T* is obtained from 7' by adding the
j-th row to the k-th row and then deleting the j-th row. Observe that
T*F*(v*) can be written as QTF(Q‘v* + R) in which the j-th element
of the 2n-vector R is E, all other elements of R are zero, and @ is obtained
from the identity matrix of order 2n by adding the j-th row to the k-th
row and then deleting the j-th row.

In case a voltage source of voltage E is connected between node j
and ground (with the plus reference at node j) and all connections
between node j and the linear multiport are open-circuited, then we
can again form equation (12) from equation (9) by simply replacing
v; by £ wherever it appears in the argument of F, to form F*(v*),
and deleting the j-th row of the matrix 7, to form T*. In this case
T*F*(v*) can be written as QTF(Q'v* 4+ R) in which R is as defined
earlier, but in this case @ is obtained from the identity matrix of order
2n by simply deleting the j-th row.

The above processes can be applied repeatedly to account for the
addition of an arbitrary number of voltage sources to the nonlinear
multiport. The resulting equation which describes the multiport will

have the form
y =@, QQTFQ: - Qx + C)
= TF(x)

with C some constant 2n-vector and each of the Q; obtained from the
identity matrix of the appropriate order in one of the two ways described
above.

Consider equation (9) in which 7' is a square matrix. Due to the strict
monotonicity of each component function of F, the mapping TF(x)

has the following property: If p, ¢ are arbitrary 2n-vectors then there
is a diagonal matrix D > 0 such that

TF(p) — TF(q) = TD(p — q), (13)

and furthermore, the matrix 7D is strongly column-sum dominant
(since T is strongly column-sum dominant). We now wish to show that
a similar fact is true in the more general case.

With m the number of rows of @,, let p and g denote arbitrary
m-vectors. Then since there is a diagonal ) > 0 such that

t

FQQ: --- Qup + C) — F(QiQ: -+ - Qg+ C) = DQ,Q; --- Q,(p — ),
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we have
TF@) - TF(Q’) =Q, - Q2Q1TDQ:Q; T Q::(.’P - Q’)-

The fact that Q, --- Q.Q.TDQ;Q; --- @, is strongly column-sum
dominant follows from the very easily verified proposition that the
product Q.MQ: (k = 1, 2, --- , p) possesses that property whenever
M does.

Therefore if z' and z* denote two solutions of the “generalized equa-
tion (11),” then [TD 4 G](z' — 2®) = 6 in which

T=Q,---Q@T and D=DQQ:---Q;.

But 7D, and hence TD 4+ @, is strongly column-sum dominant and
hence, nonsingular. This implies that 2! = z°.

We have now shown that in any network constructed from resistors,
independent sources, and transistors having a common-base connection,
the transistors’ base-emitter and base-collector voltages are unique. It
is a trivial matter to show that the same result applies when diodes
are also allowed to be present in the network.

Suppose the result was not true for some network containing at least
one diode. Then there would be two different sets of voltages and cur-
rents which satisfy Kirchoff’s laws. Thus for each diode in the network
there would be two (not necessarily distinet) pairs of points (5", 7,
(8, ©") at which the diode is biased, corresponding to each solution.
Letting f denote the strictly monotone increasing function which
characterizes the diode we have " = {(»{") and #;” = f(v{). But
then, suppose the diode is replaced by the series combination of a
resistor » and a voltage source E whose values are chosen so that the
line 3, = (1/r)v, — E/r passes through the points (¢, #") and (v;” ,
7). (Due to the strict monotonicity of f, this can certainly be done
with some positive choice of r.) Performing the above type of sub-
stitution for each diode in the network, we obtain a new network of the
type already considered. This new network would possess two different
sets of transistor base-emitter and base-collector voltages (the same
as before). This contradicts our previous result, and hence the previous
result must apply, even when diodes are present in the network.

To determine the equilibrium solutions of the differential equations
which describe a network containing inductors and capacitors as well
as the elements mentioned above, one must determine the solutions of
a de equation for a network of the above class. Thus, in summary,
what we have shown is: One cannot synthesize a bistable network
which consists of resistors, inductors, capacitors, diodes, independent
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voltage and current sources, and an arbitrary number of (Fig. 2)
transistors having a common base connection (or, in particular, only
one transistor).
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APPENDIX A
Algorithms for Computing Solutions of Equation (1)

In this appendix two algorithms for computing the solution of
equation (1) are presented. It is proved that one of the algorithms will
always converge to the solution of equation (1) if the matrix A satisfies
either a weak row-sum or column-sum dominance condition (inequality
() of Theorem 7 with either « = 1 or @ = 0) and if, roughly speaking,
the slopes of each f, are bounded from below by some positive constant.
In each case the proof of convergence relies upon Banach’s contraction-
mapping fixed point theorem, and therefore also represents an inde-
pendent proof of the existence and uniqueness of a solution of equation
(1) for the conditions stated above.

The following notation will be used: For fixed F = §°, B ¢ E", let
f(x) = F(z) — B, also, if A is a given n X n matrix with elements a,; ,

we define the diagonal matrix D by D = diag [a,,, G2, - - - , @..), and
letA=A4A — D.
Theorem A. Ifthen X n matriz A satisfies
a;4§Z|a,-,-|, for i=1)"';nr

FE
and if F ¢ ", B ¢ E", and if there exists some ¢ > 0 such that for each
a:ﬁcElJ Ela - ﬁ! = lf-(a) - fi(ﬁ)lfori = 1: e !n,theneguation
(1) possesses a unique solution, and if x° is an arbitrary point in E", the
sequence z°, ', x°, - - - defined by
zk+1 — (f + D)—I(__A)zk
converges to the solution.
Proof: Equation (1) may be rewritten as
f(z) + Dz + Az = 6.
Hence, if the operation T: E* — E" is defined by T' = (f + D)~'(—A4),
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then the solution of the equation # = Tz is identical to the solution
of equation (1). We now prove that the sequence «’, z*, z°, - - - converges
to this solution by proving that T is a confraction.

Let z and y be arbitrary points in E” and let ¢ = Tz, h = Ty. Then,
{(g9) + Dg = —Az and f(h) + Dh = —Ay. Thus, forz = 1, -+, n,

filg) — bi + awg: = —(Az),
and
fi(hs) — by + auh: = —(Ay), .
Subtracting, we obtain
filgs) — f(hs) + aulgs — hs) = (Ay): — (Ax); .
Since f, is strictly monotone increasing, we have
| f:(g) — fi(h) | + au lg: — k| = | (a2); — (Ay): Iy

and hence, since € + a,; > 0,

g0 = b | S g | (Qa)s — (B |
Now,
(o) = (@i | = | D e — v |
= §(| aii || @ — wi D)
= (2 lay )maXIx =y |

i

Thus, defining the metric p on E" by p(z, y) = max |z; — y;|, we
have, fori =1, --- , n, f

Eg‘—hiléa”_!— (Zlaui)p(xy)

But, since 0 < Z | a;; | < @i + ¢ there exists K, 0 £ K < 1, such

that | g; — h: | < K-p(z, y) for7 = 1, - -+ , m, and in particular, p(Tz,
Ty) = max | g; — hi| £ K-p(z, y). Hence T is a contraction. [

Theoren'z B. Ifthen X n malriz A satisfies

a;; = Ela,-.-l, for ¢ =1, ---,n,
iFi

and if F ¢ 5", B ¢ E", and if there exists some € > 0 such that for each
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d,ﬁEEl, ela - IB| = |f-(a) — f:(8) l fori =1, ---, n, then equation
(1) possesses a unique solution, and if 2° is an arbitrary point in E", the
sequence 2°, 2', 2°, - - - defined by

zk+1 —_ _'A(f 4' l))—lt
converges to some point z* and the solution of equation (1) is given by
z* = (f + D)7'z*%.

Proof: As in Theorem A, the solution of equation (1) is also the solu-
tion of z = (f + D)'(—A)z. For each z ¢ E", let z = (f + D)z and
hence z = (f + D)7 'z. Thus, 2* is the solution of equation (1) if z* =
(f + D) 'z*, where z* is the solution of z = — A(f + D) 'z. The theorem
is thus proved if it is proved that the operator T = —A(f + D) 'isa
contraction.

Let P denote the operator (f + D)7", and let z and y be arbitrary
points in E". Then, proceeding as in the proof of Theorem A, we obtain

1 .
|(P'r)f_(Py)iléa”_'_e[a'i_yilj for 3_11"'rn'
Thus, if g = Trand h = Ty, then fori =1, -+- , n,
g = — E al’j(Pz)J' and i= = Z a’n(P"‘
iR i
Hence

lgi — hi | = | 22 aii((P2); — (Py),) |

HEY

= 2 (lay || (P2); — (Py); )
PR
1
s 2 (1o st lm - w )
Therefore,
Slo—hls ¥y lolia g
i=1 i=1 j§#14 17
- las | )
I(EJGH—FG I-'L', y’]-
But, there exists K, 0 £ K < 1, such that, forj =1, --- , n,

T lal <k,
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and hence

Zlgl—h’l KZIJH—?I,

i=1 i=1

Defining the metric p on E™ by

oz 4) = 3 12— ¥,

i=1

we therefore have

o(Tz, Ty) = 21 ] g; — h; I = K-p(z, v,
and hence T is a contraction. O
APPENDIX B

Determination of Bounds on the Solution of Equation (1)

In this appendix we present a method for determining bounds on
the solution of equation (1) when F ¢ ", 4 is weakly row-sum dominant,
a.nd (forgivena =(ay, +,a),8= 1, ,B) e E)B= (b,

, b,)" satisfies a; £ b; £ B; forz = 1, -+, n. The solution bounds
are, in general, easier to compute than those of Theorem 5. The method
presented here is a generalization of an idea presented in Ref. 3.

The computation of the solution bounds proceeds in two steps. First,

one solves each of the equations

F(z) = (14a)
and
F(z) = B. (14b)
Denoting the solutions of equations (14a) and (14b) by u = (4,
cop)and v = (v, ---, )", respectively, and defining
N=max{|m |, o leal [o ] ooy [wlly

and

=(§lali l:"':_2|aﬁi l)l?

irn

one then solves each of the equations

F(x) + diag [ay, , +- - , @]z = a — \B’, (15a)
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F(x) + diag [ay, , --- , am]r = 8 + AB’. (15b)

Denoting the solutions of equations (15a) and (15b) by v = (v,

<, Ya) and § = (§,, -+, §,)", respectively, one has y; < 2% £ §; for
t=1,---,n, where 2’ is the solution of equation (1) that corresponds
to any B satisfying ¢; < b, £ g fori =1, ---, n.

To prove that the components of the vectors v and 8, determined by
the above procedure, are indeed bounds for the corresponding compo-
nents of the solution z” involves no more than a word-for-word repetition
of the proof of Theorem 2 of Ref. 3, with several quite obvious modifica-
tions. We omit the details.
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