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This paper presents a second-order statistical analysis for the cascade of
a bandpass limiter, and ideal phase detector and a video filter. This cascade
forms an important subsystem in the mathematical model of some coherent
communication systems where information is transmitted by phase or
frequency modulation of the carrier. We derive the autocorrelation function
R(t, , t;) of the video filter response when the bandpass limiter input is a
fized amplitude-phase modulated carrier plus stationary gaussian noise.
The video filter response is wide sense stationary for some nonlrivial cases;
these include biphase, single tome, and stationary gaussian noise phase
modulation. For these cases, we obtain the video filter output average power
spectrum as the Fourier transform of R(r) for all values of the limiter input
signal-to-noise power ratio. An application of the results of this paper is
the performance of a FM-PM demodulator for a set of parameters charac-
teristic of one mode of operation of the Apollo Unified S-Band communica-
tions system. We present the performance as a family of curves of subcarrier
channel output signal-to-noise power ratio as functions of the limiter input
signal-to-noise ratio where subcarrier phase modulation index is a param-
eter. The approach is similar to the analysis by Davenport of the signal-
to-noise ratio transfer characteristic of an isolated bandpass limiter.

I. INTRODUCTION

In some coherent communication systems, such as the Apollo Uni-
fied S-band system,® where information is transmitted by phase
modulating a carrier, bandpass limiters® are used in the IF channels
preceding the coherent demodulators. Ideally the bandpass limiter
removes any amplitude modulation that might exist before the signal
is demodulated.
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Figure 1 shows a typical coherent phase demodulator used in such
a system. This demodulator consists of a multiplication operation (a
phase detector) with post-video filtering. The phase modulated signal
is multiplied by a coherent carrier reference to yield a video signal
containing the desired information. The signal into the limiter is
usually accompanied by noise that is frequently assumed to be addi-
tive and gaussian. The presence of the noise affects the performance
of the demodulator in a very complicated way because of the non-
linearity of the limiter. Thus it is difficult to evaluate the corruptive
effect of the noise on the demodulated information.

One criterion of performance at points in a communication system
is the signal-to-noise power ratio (S/N). For the cascade in Fig. 1, a
problem of interest to the systems engineer is the video filter output
S/N as a function of the input S/N to the limiter when the input noise
is additive, stationary, and gaussian. The relationship is known between
input and output S/N for an ideal bandpass limiter where the input is
the sum of a stationary gaussian noise and a signal P(t) cos (w.t + ¢)
(see Ref. 2). For the analysis there, P(f) is a random process and is
slowly varying compared with cos w.. The carrier phase ¢ is a random
variable independent of P(f) with a uniform distribution over [0, 2x].

It is not possible to apply the known S/N transfer characteristic of
the ideal bandpass limiter found in Ref. 2 directly to obtain the S/N
transfer characteristic for the bandpass limiter-phase detector-video
filter cascade. A knowledge of the form of the signal and the noise
out of the bandpass limiter, and not just the S/N of this output, is
necessary to determine the effect of the phase detector on the bandpass
limiter response.

To obtain the cascade S/N transfer characteristic we apply the
mathematical tools used in Ref. 2. The form of the signal assumed in
the analysis of the cascade is s(f) = P cos [w, + 0(f) + ¢] where P is
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Fig. 1— A coherent phase demodulator with IF bandpass limiting in the
presence of additive noise.
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a positive constant, 8(f) is phase modulation that is slowly varying
compared with cos wt, and ¢ is a random variable representing the
arbitrary initial phase of the signal carrier. The probability density
function of ¢ is assumed to be uniform in the interval [0, 27]. The
noise input to the bandpass limiter is assumed to be additive, stationary,
and gaussian with zero mean and power spectral density N. The input
noise, the modulation 8(f), and the carrier phase ¢ are assumed to be
jointly statistically independent. For the following analysis, the limiter
is assumed to be ideal with limit level I. The transfer function of an
ideal limiter is defined by

+1, z>0
y=1Ilx) =3 0, z=0 (1)
1—1, z < 0.

A coherent carrier reference sin (w.t + ¢) is assumed to be available
for the demodulator where ¢ is the phase of the carrier.

II. THE SECOND ORDER STATISTICAL ANALYSIS

2.1 A Cascade Model when s(t) is Narrow Band Limited

In order to obtain a S/N transfer characteristic for Fig. 1, the auto-
correlation function of z(t) is derived. When R, (t, , t,) = E.(r) the aver-
age power spectrum of z(¢) is defined by the Fourier transform of R,(7)
and the S/N transfer characteristic can be found. An analysis of the
autocorrelation function of z(¢) does not seem possible for general s(t).
However, if the signal s(f) is a narrow band-limited process such that
the bandpass filters are narrow compared with the carrier frequency . ,
the response z(t) should be the same with or without the post bandpass
filter that precedes the phase detector. The response of the nonlinearity
I(z) to an input z(f) = s(f) + n(f) that is narrow band-limited about
+w, is a family of terms narrow band-limited about the frequencies
+nw, wheren = 0,1,2,3, - - - (see equation 13-53, section 13-1 of Ref. 3).
Any narrow band-limited input to the phase detector that is not about
+w, will generate a phase detector response above the cutoff frequency
assumed for the video filter. For a narrow band-limited z(¢) the auto-
correlation function of z(f) is obtained from the analysis of Fig. 2.

2.2 The Derivation of the Autocorrelation Function of z(t)

Assume that the input z(f) is narrow band-limited such that Figs. 1
and 2 yield equivalent z(f). The autocorrelation function R,(f ,t) is
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Fig. 2— The narrow band equivalent receiver for the derivation of R. (¢, ts).

obtained by first deriving R, (t, , {,) from the model in Fig. 2. Since 2z
and w are related by the linear video filter, R.({, , £,) follows directly
from R,(Z, , t.).

The Laplace transform solution of a zero memory nonlinearity with
stochastic excitation is used to derive R, (i, , {.) (see Chapter 13 of Ref. 3).
The limiter characteristic is

1) = 5 [ [ 1:6) exp (@) do + [ 1-@) exp (@) dw] @
where
+00 1
filw) = j; I(z) exp (—wz) dx = o for Refw] >0
and

f-(w) = ji I(z) exp (—wz) dz = L , for Re [w] < 0.

w

The variable w = % 4+ jv is complex with Re[w] = u. The contours
(. and C_ are taken parallel to the » axis in the » plane with Re [w] > 0
for C', and Re [w] < 0 for C.. . For convenience I(z) is written symbolicly
as

=L f
la) = 5 | 1) exp (aw) do @)
where equation (3) means the same as equation (2) when C, and C_ are

not the same contours.
Since w(f) = sin (w.t + ¢)-I[z(f)], the autocorrelation function of

w(t) is
Rt = () [ 1) [ fdBlsin @ty + ) exp s + wm)

-sin (wot; + ¢) - exp (wasy + wany)} duw, de, 4)
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where 5; = s(t;) and n, = n(t,), ¢ = 1, 2. The order of complex integra-
tion and the expectation operation have been interchanged to get equa-
tion (4). For the assumed statistical independence of n(f), 6(t), and ¢,
the expected value in equation (4) factors into

E{sin (w.t; + ¢)-exp (w,s,)-sin (w.tz + ¢) exp (wass)}
-exp 3o’w; + 2R.(Nww, + ws) (5)

where + = t, — t,. The form for the cross correlation function
E{exp (w,n,) exp (w;ny)} where n(t) is stationary gaussian noise has been
used in equation (5) (see pp. 476-477 of Ref. 4).

For the case where s(f) is narrow band-limited with respect to w,,
the filter in Fig. 2 is a narrow bandpass filter, and is assumed to be
symmetrical about w, . Then n(f) can be written as (see pp. 373-374 of
Ref. 4)

n(t) = z, cos wl — z, sin w,i

where z, and z, are statistically independent stationary gaussian random
processes, and

R.(r) = R,(r) cos w7 (6)

where R,(r) = R..(r) = R.,(r). For a narrow bandpass IF filter, the
transform of R,(r) is lowpass with a narrow bandwidth compared to w, .
With the substitution of

=1t L=t+r,

qb* = ¢ + wctl
.« _ exp (jp*) — exp (—jé*)
sin ¢* = 2 g
and
exp [R.("ww,] = Z_: In(ww;l,) exp (jmw,7) @

(see Article 1, Chapter 3 of Ref. 5), equation (5) becomes

(=1 X2 L.(wwR,) exp (jmo.r)-E{lexp (jo.r + 2¢%)

+ exp (—jw.t — j2¢*) — exp (jw.r) — exp (—jw.7)]
-exp [w,P cos (8, 4+ ¢*) + w.P cos (6, + ¢* 4+ w.r)]}. (8)
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Since exp (jw.r) and exp [w.P cos (8, + ¢* + w.7)] are periodic in w,r
with the period 2w, the function

exp (jmw.r)E{ } 9)

in equation (8) is periodic in w,r. Since R,(r) transforms to a narrow
band-limited lowpass spectrum, the autocorrelation funetion of z(f)
corresponds to the de component of the Fourier expansion of equation
(9). With the substitution of § = w,7, the de component of equation
(9) is

2

D oxp (jma) B )

It

> 2 LP) LwP)-E, =

r=—w k=—0w 2m

'[E¢-{GKP [im + 1+ k)8 + j@2 + r + k)¢* + jiro, + k65)])

+o0  +oo { 2T d5
0

+ Eylexp [jm — 1 + k)8 + j(—2 +r + k)¢* + jiro, + k6,)])
— By lexp [j(m + 1 + k)é + jir + k)¢* + jr6, + k6,)]}

— Eylexp [im — 1 + k)6 + jir + k)é* + jro, + kﬂz)]]}}' (10)

Since ¢* = w.t + ¢, ¢* has a uniformly distributed probability density
function on [0, 27]. The averages in equation (10) with respect to &
and ¢* follow. For example, the first average with respect to 6 and ¢*
iszerof w4+%k+4+1=#00rk+7+ 2 0,and whenk = —1 —m
andr = —2 — k = m — 1 the double average is exp [(m — 1)8, —
(m + 1)6,]. Equation (8) reduces to

(0 5 Lfowk)| 1820 1500 ELexp liom — 10, — iom + Do)

m=—00

+ I TG Elexp [im + 1)6, — j(m — 1)6,])
- Iv‘ri“-’k‘lP}ILL::ﬂi)l}E[eXp [j(m 4+ 1)8, — j(m + 1)6,]}

— LAPISGD Elexp [jim — 1)6, — j(m — 1)52]}]- (11)

The terms in equation (11) for positive and negative m can be combined
by noting that I_,(z) = I,(z). With the substitutions

+ 00 mfa+20m;n+2q'Rm+2q
Im(w]wQRn) = Z 2m+2qq! P{m + q + 1)

a=0

(12)
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and

2 2
ogw

by = Ei?; fcf(m)m* exp ( ; )I,,,(wP) do, (13)

the autocorrelation function of z(f) is

£ 0 Emeuﬁ-m
Rz(tl 3 t) = % E q;o 22”“{1! (g + m)!

Ry sqemBe(m + 1, m + 1, 8, , 1)
4+ R geemBo(m — 1,m — 1, 4, &)
— Rsr.20smlime1 2asmBo(m 4+ 1, m — 1, 4, t)
— Rnsr 2esmhmer 2asmlte(m — L,m 4+ 1,4, )] (14)

{1, m =0
€m =
2, m >0

and Re(4, B, t, , 1) = Ef{cos[A8(t,) — BO(t,)]} for any integers A and B.

where

III. THE CLOSED FORM SOLUTION FOR h,,,‘k

The autocorrelation function of z(f) given in equation (14) contains
the constants k., » where m + k are odd integers. For the ideal limiter
characteristic of equation (1), there are closed form solutions for these
parameters. Since f,(w) = l/w for Re [«] > 0 and f_(«) = l/w for
Re [»] < 0, equation (13) becomes

1

hm.k = 21'rj o

2 2
™I, (wP) exp (%) dew

+-L f 15T, (wP) exp (9&) do  (15)
27j Je. " 2

where C_ is the contour (—e — jo, —e + jo) and C, is the contour
(+€¢ — joo, +€ + jo). By the change of variable = jr and the sub-
stitution of I,.(z) = () "J.(jz), analytic continuation can be applied
form = 0and k£ = 0 to give

2 2
—a X

l +m— “ k—
b = - ()t f_m +* T .(aP) exp [T] dz. (16)

When m + k is even, the integrand of equation (16) is odd and A, = 0.



240 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1969

When m + k is odd, the integrand of equation (16) is even and
i
2 /\2’ (m + k.

2l k+m—1
hm.k =';(]') . s 1* Yo D) ’
2T(m + 1)[@;]

where a solution has been used for the integral

— 2
m+ 1; 2:;) (17

2 2

f " 21 (eP) exp [_g z :l dz (18)

in terms of the confluent hypergeometrie function ,F;(a; 8; —z) (see
equation A.1.49, p. 1079 of Ref.6). For the case when m and k are non-
negative integers ,F';(m + k/2; m 4+ 1; —z) can be expressed in closed
form in terms of first and second kind modified Bessel functions. A
list of these expressions is given by Middleton (see equation A.1.31,
section A 1.2 of Ref. 6). A collection of k., ; in closed form for low order
indices is given in Table I. For Table I, z = P?/2¢® is the input signal-
to-noise power ratio into the limiter in Fig. (2).

Any of the h,,;, in equation (14) ean be found in closed form from
Table I by using the recurrence relations

2(m + 1)

4(m + I)m

Biz e = Rma — —p Bt -y + —pT B k=2 » (19)
P k— — 2
hm+1.k+l = —3 hm.k - (—ﬂz—)‘ hm—l,k—l
o o
2k — -2
+ “E_“_Tgp—)m hm.k—n ’ (20)
o
and
— 8 -k
hm.k+2 = ‘(_Tn—z—klhm.k + 114 hm—i’.k - @—T_)th—l,k—l - (21)
o o o

Equation (19) is derived from equation (16) by using the Bessel
funetion identity
2(m 4+ 1)

Jnra(@zP) = B S i1 (@P) — J . (2P). (22)

Equation (20) is derived through a by-parts integration of equation
(16) and the application of equation (19). Equation (21) is derived
through by-parts integration of equation (16). In the development of
equations (19), (20) and (21), the integral in equation (16) is re-
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TaBLE I — CLosED FoRM SOLUTIONS OF SOME A, i
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hm.k

@%P— eI (w/2) — I(z/2)]

—lP o 4

ar§2) Lol — o)1o(@/2) + 21.(/2)]

(S

(2—1:;:—53“”[10@/2) - (1 + %)Il(x/m]

(2_,,.;1) _,/z[(l + -+ )I( /2) — ( +g)10(x/2)]

P

We””[(?ﬁ — 20)1(z/2) + (22 — 1)1, (z/2)]

(r%f;, g-'”[(l + i)lu(rﬂ?) - (1 + 2% + %)I @/ 2)]

(;fa "“[(1+ 12 )o(x/z) (1+ +1§+48)I (x/2)]
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stricted to the half interval [0, o) which is possible since the inte-
grand of equation (16} is even when m+k is odd.

1V. THE AVERAGE POWER SPECTRUM OF 2 (t)

The autocorrelation function of z(¢) given in equation (14) becomes
time independent such that z(f) has the average power spectrum S,(w) =
F[R,(r)] when R,(4, B, t,, t.) = Rs:(4, B, 7) for integers A and B.
There are some important cases of 8(f) for which R, is time independent.

If 6 is a biphase modulation with 6(f) = = | 6 | that has a zero mean
and autocorrelation function (see equation 9-42, section 9-2 of Ref. 4)

|0]21—JL|, for |7|=ST
Ri() = ( ) (23)

0, for |7|>T
then
R, (A,B, t,, 1)
=cos A |0|-cosB|8|-+sind|8|sinB|8|rr) (24)

where r,(r) = Ry(r)/| 8|* is the normalized autocorrelation function
of 6(t). Then R, is a functionof 7 = ¢, — &, .

For a single tone modulation given by 6(f) = m, sin (w;¢ 4+ &) where
£ is a random variable with a uniform probability density function
on [0, 27], a simple Bessel series expansion gives

o0

Ro(A,B, t, , 1) = 3 exlan(Am,)Jon(Bm,) cos (2ne,7)

n=0

+ D e ana(AM)Jpny(Bm,) cos [(2n — Dw,7]  (25)

n=1
%, n=20
€y =
2, n > 0.
For the single tone modulation, &, depends_only on the time difference r.
If 6(t) is the sum of tones

where

o) = 3 m, sin (ot + &) (26)

p=1

where &, p = 1, --- , N, are independent random variables with
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uniform probability density functions on [0, 27], R, is again independent
of time.

If 6(¢) is a stationary gaussian process with zero mean, variance o
and autocorrelation function K,(r), then B,(4, B, t, ,t;) = R4(4, B, 7).
The second-order characteristic function for the stationary gaussian
process is defined as (see equation 112, Chapter 7 of Ref. 4)

@6‘("’1 y W T) = E(exp ”[wle(t + T) + wﬂe(t)]}) (27)
= exp [—3Ks(0)(w; + «2) — Ko(r)ww,].
Then
Ry(A, B, t, , t;) = Real Part E{exp (jA46, — jB6,)}

I

exp [—5'2—3 (A* + B’)]-exp [ABK (7)] (28)

Ry«(A, B, 7).

The validity of equation (14) depends on the narrow band-limited
assumption for the modulated signal s(t) at the carrier frequency
w,. For s(t) to be narrowband limited, the parameter values that the
modulation functions can have are restricted.

V. AN APPLICATION OF THE I, RESULTS TO THE PERFORMANCE OF A SUB-
CARRIER CHANNEL

A modulation technique sometimes used for communication is FM-
PM where the carrier is phase modulated by a subcarrier that is in
turn frequency modulated by the information waveform. The FM-
PM signal is of the form

s(t) = P cos {w.t + ¢ + m, sin ot + & + AB)]] (29)

where P, w, , w, and m, are constants, ¢ and ¢ are independent random
variables usually assumed to have uniform probability density fune-
tions over [0, 2x], and A(f) is the integral of the information waveform.
In a typical application, w, > «, and A(t) is slowly varying compared
with cos w,f. With these restrictions the information A(f) can be re-
covered from s(f) with the receiver shown in Fig. 3.

The purpose of the bandpass limiter is to remove the effect of varia-
tions that might occur in P. For the ideal case where s(t) is not per-
turbed by noise, the subecarrier filter input z(t) is
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Fig. 3 — FM-PM receiver with ideal bandpass limiter.

o(f) = —%Zsin {my sin [w,t + A1) + €]
(30)
- _:‘g 3 Jauma(m)) sin {20 — Diont + MO + 81},

If A(f) is slowly varying compared with cos w,t, the information can be
recovered with a subcarrier filter that passes only the first component
of the sum in equation (30). For the noiseless case the subearrier filter
response is then

2L 7 ) sin font + 2 + 81 )

After additional processing in a subcarrier demodulator, A(t) is obtained
from equation (31). One criterion of performance of the receiver is the
S/N out of the subearrier filter as a function of the limiter input S/N,
z = P?/24°. Since \() varies slowly compared with cos w,t, the output
S/N for the subcarrier filter is determined with sufficient accuracy by
setting A(f) = 0. If A(t) = 0, the subcarrier output S/N follows directly
from equations (14) and (25). Substitution of equation (25) into equa-
tion (14) gives the power spectrum

S, (w) o~ 2h%, i Jao_i(my)-Fleos (2n — 1w, 7]

@=mynin (@, t+§) n=1

+ (Dloho — oharJo(2my)]* - Flr,(7)]

+ B 3 JA2my) - Flru(r)- cos (nwy)]

n=1

+ (B, i T () - FI(r) - cos @n — D]

+ ({) i ealo s (my) — 0 haad J(3m,)]* - Fri(7) - cos nw, 7]

n=0
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+ (ﬁ)[“ahna - 03h23J0(2m1)]2'F[T?(T)]

+ (Z)o'hds 3 J22m) - FIA(r)-cos myr]
+ (3%) i [0 hoa o(2my) — o hysd (4my)] - Flri(7) - cos nw, 7]

+ () o Jh(my) - FIr(r)-cos (2n — Dyr]

n=1

L

+ (T&T) E En[a-th-l']u(ml) - 04h34Jn(3m1)]z'F[T:('r) - COS T, 7)

n=0

+ (+5%) i en[c*haa (3 m,) — o hss S (5m,)]? -F[ri(7)-cos nw,7]  (32)

where r, = R,/R,(0) = R,/s’. The approximation, equation (32),
neglects all the terms of equation (14) containing the factor E}**™
where 2¢ + m > 4. The terms in equation (32) are the significant terms
of 8,(w) for the single tone modulation. The spectrum in equation (32)
is the weighted sum of terms of the form

FI¥(r) cos mur] = 2% FIr(#)] * Fleos mw,7] (33)

where * is the convolution operation. Since F[cos mw,r] is a pair of
impulses of weight = at +mw,,

F[ri (1) cos ma,7] = 3[8, (0 + mw,) + 8,..(0 — mw))] (34)

where
S, .a(w) = Fri(7)].

The first term in the spectrum of equation (32) is the signal content
of z(t). All other terms of equation (32) correspond to noise alone or
a combination of signal and noise. All terms of equation (32) except
the first term are usually combined to give the interference (noise)
spectrum at the output of the video filter.

A computation was made for the subcarrier filter output S/N as a
function of the input S/N z. The following conditions are assumed for
the computation.

(7) The power spectrum of the input gaussian noise to the cascade
in Fig. 1 is uniform over the bandwidth of the prelimiter bandpass

filter.



246 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1969

(%) The prelimiter bandpass filter is assumed to have a gaussian
transfer function such that

_ .22
r.(r) = exp [T“’] (35)
(#i) The subecarrier amplitude transfer function is
1, wl-—%<|m|<wl+%
| H(je) | = (36)

0, all other o,

where Aw << w, . Also, w, = 12.566 X 10° and w, = 6.434 X 10° are
assumed. Substitution of equation (35) into equation (34) gives

8..ale) = FIH(] = 755 exp [—% (2—)] 37)

From condition 77, the noise spectrum in the passband of the subearrier
filter is approximately constant when @ = w,. The signal and noise
powers out of the subearrier filter follow from S,(w,). The signal power
is 2h3,J3(m,); the noise power is

1
27
where Af is the width of the subearrier filter and where S! is equation
(32) with the first term omitted. The function

2h12nJ Iz(m'l)
T [S:(ﬁ-‘l)]
was computed for x between 0.01 and 100 with m, as a parameter. The

results of the computation are shown in Fig. (4). For a given m, and z,
the output S/N for the subcarrier filter is z/2Af-S(m,).

_: [8.(w) — 2R 1(m,) - F(cos wyr)]+ | H(jw) |* dw =2 [Si(w)]-2 Af

S(my) = (38)

VI. SUMMARY

A general, second order statistical analysis is presented for the cascade
of a narrow bandpass limiter, an ideal phase detector, and a video filter.
In this analysis, the input to the limiter is assumed to be the sum of a
stationary gaussian noise and a fixed amplitude phase modulated sine
wave. The autocorrelation function of the cascade response is obtained
as a function of the signal-to-noise ratio z at the limiter input, the nor-
malized autocorrelation function of the lowpass equivalent for the
limiter input noise r,(7), and the phase modulation 8(t).

The cascade response z(f) has the autocorrelation function E,(t, , t5)
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Fig. 4— The unit bandwidth subcarrier filter output, 8/N normalized by =z
where 10~ =< z =< 10® and M, is a parameter.

that can be time dependent. However, for some important cases of 6(f),
R.(t,, t,) = R.(r), and the cascade response has the average power
spectrum S,(w) = F[R,(r)] where F is the Fourier transform operation
with respect to 7. The cases of 6(f) considered that yield R,(r) are the
random biphase waveform 6 = =| 8 |, the single tone 6(t) =m, sin (w,t+£),
and the stationary gaussian process with autocorrelation function K,(r).

The dependence of R,(t, , t,) on the limiter input 8/N appears in the
h parameters. These parameters can be obtained in closed form as fune-
tions of the modified Bessel funetions I,(z/2) and I,(x/2). The lower
order h parameters encountered in the first few terms of the series for
R, are found, and recurrence relations are derived through which
higher order & parameters can be derived easily.

For the modulation types that make R, a function of r alone, the
power spectrum S, () is known for all values of the limiter input 5/N z.
Then the 8/N can be derived in any frequency band at the output of
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the video filter in Tig. 1 as a function of any S/N into the limiter.

The performance of a subcarrier channel was considered where 6(f) =
m, sin [w;t + A({) + £]. The subcarrier was assumed to be phase mod-
ulated by a narrowband low pass process A(f). The 8/N at the output
of the subcarrier filter was obtained by computation of the approxima-
tion of equation (32). For this example, a gaussian prelimiter bandpass
filter was assumed. For this filter shape, 72(r) and its transform S, .(w)
are gaussian for all integers n. Some representative parameters from
the Apollo unified S-band communication system' were assumed. These
were

(7) A prelimiter noise equivalent bandwidth of 4 MHaz.
(i) A subearrier frequency of 1.024 MHz.
(79%) A subearrier noise equivalent bandwidth of 0.2 MHz.
(7v) An input S/N range of 0.01 £ z = 100.
() A set of modulation indices m, = (0.2)k, k = 2, 3,4,5,6,7, 8,
9, 10.

The results are given in Fig. 4. The differential between subcarrier filter
output 8/N at low and high values of z is a monotonically increasing
funetion of m, for 0.4 < m, = 2.0. The shapes of the curves are similar
to that of the (S/N)o/(S/N), curve obtained by Davenport.”
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