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We give a new and powerful method for the direct solution of circuit
design problems. The method begins with a prespecified topology and some
or all elements undetermined in value. The designer imposes on the circutt
any desired set of node-pair vollages, branch currents, or driving point
and transfer tmmittances. Values of circuit elements that satisfy the con-
straints are directly calculated. This direct method of solution avoids the
usual tlerative analysis-optimization schemes, reducing computer times by
up to three orders of magnitude.

A linear set of design equations is formulated by choosing undelermined
element currents and node voltages as the variables. Singular elements are
sntroduced to impose the desired constraints. Inequality as well as equality
constraints are permitted. Element values are determined from the solution
of these equations. In this paper we emphasize our method of solution in
relation to dc networks.

I. INTRODUCTION

The most significant advances made in computer-aided circuit de-
gign have been in analysis programs. The designer can now choose
from among several general purpose programs that program which
most nearly suits his particular needs. In designing a cireuit to meet
a given set of requirements, the usual approach has been to use
analysis programs in some optimization scheme. Through an iterative
process, carried out by the machine, the man, or a man-machine inter-
action, a final design is reached. The approach presented here pro-
vides a direct solution, and does not rely on such iterative schemes.

The method is most fertile in the area of active network design,
where one often wishes to choose element values in a specified topology
in order to meet some set of requirements. The method has been
applied to a number of design problems of current interest including
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biasing direct coupled transistor circuits; designing transistor ampli-
fiers for specified midband gain, input, and output impedances; and
simultaneously realizing several specified impedance or admittance
parameters of a network.

In the design of electronic eircuitry, one usually wishes to imbed
passive elements into a network containing active devices, and to
determine the required passive element values. Therefore, this paper
deals with the determination of element values in a prespecified
topology for which a given performance is required. Two new ele-
ments, a voltage forcing element (VFE) and current forcing element
(CFE), are introduced in order to constrain network voltages and
currents. These elements may be realized with independent voltage
and current sources, and the nullator, a somewhat ‘pathological”
element used in theoretical network studies.

The method of singular imbedding places the VFE’s and CFE’s
in a network to constrain the desired variables. The terminal voltage-
current behavior of the variable elements is not specified. Instead,
the constraints imposed upon the network by the VFE’s and CFE’s
are used to determine allowed voltage-current relations for the variable
elements, The formulation remains linear in these variables. The last
step involves determining the element values through Ohm’s law
once the allowed voltage-current relations are known.

By appending the original set of equations with a set of inequality
constraints, it is possible to restrict the range of element values in
the solution. For example, realizations employing only element values
between specified lower and upper bounds are possible. For simplicity,
only the case of linear de¢ networks are illustrated. Extensions of
the method to ac and nonlinear design are considered elsewhere.

II. A NEW APPROACH

To understand the philosophy of this new approach to design, con-
sider the train of events in realizing a set of requirements with elec-
tronie eircuitry. Since the choice of topology is better handled by the
man than the computer, we will assume some specified topology in
which some or all of the element values are to be chosen to meet the
given criteria. For example, in designing transistor circuitry it is neec-
essary to choose some resistance values to properly bias the transis-
tors. Similarly, one must often choose element values to give a desired
voltage gain, driving point impedance, transfer impedance, or similar
network function.
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The invariant feature in all of these problems is that a set of net-
work currents and voltages, or their ratios, has been constrained. The
design problem is to find any set of element values consistent with
these constraints. If the problem is posed with sufficient freedom,
many sets of element values may exist consistent with the imposed
constraints. Conversely, if the problem is posed with insufficient free-
dom, inconsistent equations arise and there is no solution.

If one can find a general method of imposing these network con-
straints, and can simultaneously monitor the voltage-current relations
these constraints force at the terminals of the variable elements, then
indeed a direct solution to many computer-aided design problems will
have been found.

Before proceeding, however, consider a very simple example of
how one might presently handle the design problem and the diffi-
culties that would ensue. Suppose in the network of Fig. 1, one wishes
to choose G; and (s such that V’ is constrained to be 0.1 volt. A set
of nodal equations may be written:

F;+GI —Gl}i?}=1]' n
_Gl Gl + Gg Vr_) 0

The first step involves a transformation of coordinates so that
the desired quantities appear explicitly in the equations. In general,

this will necessitate using hybrid parameters. For this case, the fol-
lowing transformation might be used:
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Inverting the relation, we have
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Fig. 1 — Simple design problem.
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and the current-law equations become

T
_Gl Gl + G2 0 1 Vz 0
T
[1 + G, 1} V:] _ 1]_ )
_G1 Gz Vg 0
Substituting the constant ¥/ = V', = 0.1, the set of equations becomes
T [
011 +G) + V. =1 ©)

—0.1G, + G,V: = 0.

Thus, even if one is successful in finding a transformation to a
basis that includes the variables that are constrained, the result is
usually a set of nonlinear equations in the network elements and
voltage variables. Solving this set of nonlinear equations for the
unknown voltages and element values is extremely difficult. A method
of handling this difficulty has been suggested, involving the use of
optimizing techniques to vary element values until the network vari-
ables take on their desired values—in this case ¥V’ = 0.1 volt.! While
this is a useful approach, it has several disadvantages. First, it is
time consuming since many iterations are required for convergence.
Second, local minima, or lack of sufficient numerical accuracy, may
prevent convergence to a correct solution. Finally, although an infinity
of sets (G4, G2) exist to satisfy the given constraints, the optimization
yields only one of these sets.

With these difficulties in mind, let us repeat the philosophy of
design presented here. We first determine how the requirements con-
strain network currents and voltages. We then force these currents
and voltages to take on the desired values. Finally, we determine the
effect of such constraints upon the voltage-current relations at the
terminals of variable elements. These v — 7 relations then determine
the values of the variable elements.

III. NETWORK CONSTRAINTS

The common feature of all network synthesis problems is that they
require some specified relation between some voltages and currents in
the network. For example, synthesis of a given driving point im-
pedance constrains the ratio of a port voltage to the current at that
port. Synthesis of a transfer impedance constrains the ratio of a port
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voltage to the current at a different port. A specified voltage or cur-
rent gain constrains the ratio of two port voltages or port currents,
respectively. Indeed the synthesis of entire network matrices is a
combination of such constraints, Similarly, the static design problem
in electronic circuits involves fixing certain branch currents and
branch voltages. For example, one usually wishes to bias a transistor
for a given collector current and collector-emitter voltage. Resistance
values are chosen consistent with these constraints.

It is essential to demonstrate a method for constraining voltages
and currents in a network. The required constraints are shown in
Fig. 2. We introduce two new elements, a current forcing element,
CFE(I,), and a voltage foreing element, VFE(V,), which will be real-
ized with more conventional elements shortly. We want the CFE (I,)
to be such that it constrains the current through branch j to be I,
without otherwise affecting the behavior of the network. We want the
VFE(V,) to be such that it constrains the voltage across branch j
to be V, without otherwise affecting the behavior of the network.

In discussing the properties of the CFE and VFE, we use the concept
of admissible or allowed pairs of voltage and current variables (v, 7).
The set of voltage-current pairs that a system N allows can be used to
completely describe that system.’ For example, let the system under
consideration, N, consist of a single resistor of value E. Then the
system is eompletely described by its allowed terminal voltage and cur-
rent pairs; namely, (R%, 7) ¢ Ny . Similarly, a capacitance of value C,
denoted N , is completely described by its allowed pairs (v, d(Cv)/dt) e
N..

We now define the CFE(I,) and VFE(V,) in terms of their allowed
pairs.

Current foreing element (I,) :

(0; In) £ NCFEUo) . (7)

Here we postulate an element which allows no voltage drop across
its terminals, and passes only a specified current I,.

Next, we postulate an element which allows only a fixed voltage
V, to exist at its terminals, and passes no current.

Voltage foreing element (V7,) :

(Vn ) 0) £ NVFE(V.;) . (8)

TFigure 2 makes clear the use of these elements in constraining net-
work variables. In Fig, 2a, the current in branch j is forced to be
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Fig. 2— Network constraints. (a) Branch J eurrent constrained by current

forcing element (CFE); (b) Branch J voltage constrained by voltage forcing
element (VFE).
I, by inserting a CFE in series, Since the CFE(I,) allows no voltage
to exist across its terminals, its presence affects Kirchhoff’s current
and voltage laws only to the extent that branch j current is con-
strained to be I,. Notice that this would not be the case had we in-
serted a current source in series with branch j. The current source
would allow some voltage to exist between its terminals which would
have been included in Kirchhoff’s voltage law equations. Thus, a
current source of value I, would not only constrain branch j current
to be I,, but would also introduce a new degree of freedom, namely,
the voltage across the current source.

Similar reasoning can be applied to Fig. 2b. Here a VFE(V,) is
applied across branch j to constrain that voltage to be V,. Since the
VFE(V,) passes no current, Kirchhoff’s laws are affected only to the
extent that branch j voltage is now constrained to be V,. The net-
work cannot respond with a new degree of freedom, as it could if a
voltage source were placed across branch j and thus allowed to in-
troduce a new current variable in Kirchhoff’s current law equations.
It should be noted that the VFE(V,), can be placed between any
two nodes to constrain the voltage between those nodes; it need not
be placed across a branch.

By using current sources and voltage sources in conjunction with
VFE’s and CFE'’s, current-voltage ratios may be constrained. For
example, in Fig. 3a,

V. _V._ 2l _

Tl'— 7 =7 = Z. 9
In Fig. 3b,

.£L=LL__ZK=Y. (10)
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Fig. 3— Methods of constraining current-voltage ratios. (a) Impedance forcing
element [TFE(Z)]; (b) admittance forcing element [AFE(Y)].

Thus we are constraining the network N to have, in the first case,
a driving point impedance Z, and in the second case, a driving point
admittance Y. The configurations used to constrain impedances or
admittances will be denoted impedance forcing elements, IFE(Z),
and admittance forcing elements, AFE(Y). Notice that IFE’s and
AFE’s are composed of CFE’s, VFE’s, and independent sources. They
are useful in constraining a network to have a desired driving point
impedance or admittance.

We already mentioned that VFE’s and CFE’s could be realized in
terms of existing elements. The necessary elements are the ideal cur-
rent source, the ideal voltage source, and the nullator, a somewhat
“pathological” network element introduced by Tellegen.t Returning to
the allowed pair concept, the nullator is defined to be a two-terminal
element for which the only allowed voltage-current pair is (0, 0). It
can be looked upon as a simultaneous open and short circuit, since it
allows only zero voltage at its terminals and passes no current.

From its definition, one could not hope to physically realize and
isolate such a device. However it'’s characteristics may be observed at
the input to an operational amplifier imbedded in a feedback net-
work, where the input is at a virtual ground (short circuit) and yet
passes no current (open circuit). The nullator is represented sche-
matiecally in Fig. 4.

By appropriate connections of voltage sources, current sources,
and nullators, the VFE’s and CFE’s may be realized as in Fig. 5.
Remembering that the nullator passes zero current and has zero volt-
age across its terminals, the equivalents of Fig. 5 becomes clear. In

— () b

Fig. 4 — Schematic representation of nullator.
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Fig. 5 — Equivalent circuits for VFE and CFE using nullators.

Fig. 5a, the terminal voltage must be V,, and since no current exists
in the element the combination voltage source and nullator is by
definition a VFE(V,). In Fig. 5b, a current I, exists at the terminals
but no voltage drop exists across the terminals. Thus by definition,
the combination current source and nullator is a CFE(I,).

IV. ADDING FREEDOM TO THE NETWORK

In the previous section, we placed constraints on the network that
would generally lead to a set of inconsistent equations if all the
elements were also specified. However, if some network elements are
variable, we can determine how the constraints affect the voltage-
current relations at the variable element terminals, and then choose
variable elements in such a way as to be consistent with these v —
1 relations.

We propose two methods of characterizing the variable elements.
First, since the element is variable, we can ascribe no functional rela-
tion between the voltage and current of that branch. This is handled
in writing the nodal equations for the network by explicitly adding
the currents through variable elements into the equations, rather than
first transforming them into voltage variables through a funectional
relation of the form

B, = Yl (11)
where the b implies the variable refers to some branch. The nodal
equations are of the form

[Y:]V] = Is] + [C]T], (12)
where

V] is an n-vector of node voltages.
I;] is an n-vector of forcing currents at each node.
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[Y4] is the n X n nodal admittance matrix of the fixed portion of the
network.
I] is an r-vector of unknown currents through variable elements (r
is the number of variable elements).
[C] isthen X rnode cutset matrix for the graph of variable elements.
I] and V] are both vectors of network variables, and may be combined
by matrix partitioning as

(—clva|i] =12 (13)

Equation (13) describes a network in which some element values
can be chosen to meet the given constraints. In the remainder of this
paper, we combine the added degrees of freedom given by the variable
elements in equation (13) with the constraints imposed by the CFE'’s
and VFE’s. All networks, satisfying the VFE and CFE constraints
and the specified topology, with be generated.

A simple example will help clarify these concepts. Figure 6 is the
network of Fig. 1, with the 1-ohm resistor replaced by a known resis-
tance of B ohms, Currents I, and I, are those carried by the variable
conductances G, and Ga, respectively. The set of nodal equations is

[I/R 0} vl} _ 1} HF—;!tj ﬂ (14)

0 04V, 0
Rearranging into the form of equation (13),
I,
{1051 0}12=1}_ 15)
—1 1.0 0JV,| 0
V.,

From this example, the method of generating equation (13) should
become clear.

2 R lzz

Fig. 6 — Simple design problem.
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The second approach useful in dealing with variable elements in a
network is the introduction of another pathological element, the nora-
tor, shown in Fig. 7, also introduced by Tellegen.* The norator is a
two-terminal element with allowed pairs (v, 7}, with v and ¢ independ-
ent and arbitrary. Thus, any voltage and current may appear across
its terminals simultaneously, which is the property that we desire of
variable elements. We do not wish to force any functional relation
between the voltage across and the current through variable ele-
ments. We wish only to observe constraints that may be imposed on
the v — 1 relations by the VFE’s and CFE’s, The norator allows the
network the extra degree of freedom taken away by the introduction
of nullators.

V. FORMULATION OF NETWORK EQUATIONS

Since the introduction of nullators and norators into a network will
generally introduce singularities into the corresponding equations, we
call the approach we are considering the method of singular im-
bedding, It has been demonstrated that the design problem ean be
reduced to the appropriate imbedding of nullators, norators, and in-
dependent voltage and current sources. Let us now examine the effect
of such imbedding on the network equilibrium equations. Since a
nodal admittance formulation is used, it is important to determine
the effect of nullators and norators on the admittance matrix.

Independent voltage sources may be conveniently incorporated into
an admittance formulation. If a series impedance exists with the
voltage source, application of Norton’s Theorem is sufficient. If no
series impedance exists, the introduction of positive and negative im-
pedances is necessary in transforming the voltage source to an inde-
pendent current source (see Fig, 8).

The effect of nullators and norators upon the admittance matrix
of a network has been considered by A. C. Davies.’ Let us write the
nodal equations for the network with all nullators and norators re-
moved. The equations are of the form

[Y.]V] = L] (16)

Fig. 7—Schematic representation of norator.
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Fig. 8 — Equivalent circuit for ideal voltage source.
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where

[Y,] is the admittance matrix of the network with nullators and
norators removed

V] is the vector of node voltages with respect to ground

I] is the vector of currents injected into each node.

Suppose now that a nullator is connected between nodes 7 and j.
Since the nullator passes only zero current, the current law equations
at those nodes are not affected. However, since there is zero voltage
across the nullator, V; and V; are now constrained to be equal. Call
this new value V,;. Clearly, one degree of freedom has been removed
from the network response. In addition to the matrix equation (16),
one equation of the form

V.=V, (17)

is added for each nullator imbedded in the network. Thus, if k nulla-
tors are imbedded, & additional constraint equations are added.

Two viewpoints can be taken here. First, the original set of equa-
tions, equation (16), has been appended by a set of the form

[B]V] = 0] (18)
where

V] is the n-vector of node voltages.
[B] is a k X n matrix of —1, 0, 1 entries expressing the set of con-
straints of equation (17) for the k nullators.

The final set of equations becomes

Y. _ )
[X]w-" w

A second approach to the problem was suggésted by Davies.® In
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the nodal equations below

V,
T I
| Yu Yui Yii Yin 'y
1 Uoi Yaj .
e e
: V.
i Vi
LYn1 = Yni """ Yni =" Ynn!
Val

the addition of a nullator between nodes ¢ and j makes V; = V; = V,;.
The ith and jth column of the Y matrix are both multiplied by Vi,
thus they may be added and the equations written as

v,

Yoo (e F ) o0 Ve

Yo (42 + Y2) Yon V = I;]. (21)

i7

: |
Lym i + Yni) = Yun v

The addition of % independent nullators (no nullator loops) causes k
additions of columns of ¥ and reduces the dimension of V] by k. We
denote the reduced set of equations by

[Y;]n)((n—k) V’](n—k)xl = Ifs]nxp (22)
In either interpretation, we observe that the resulting set of equa-
tions is no longer square. In the first interpretation, we are increasing
the dimensionality of the vector space that the column vectors must
span, without adding new basis vectors to span that space. In general,
the equations will be inconsistent. In the second interpretation, we are
keeping the dimension of the space fixed, but reducing the number of
vectors available to form a basis and the space may no longer be
spanned. Again inconsistencies will generally arise. In either interpre-
tation, the inconsistencies are to be expected since nullators (VFE’s
or CFE’s) have been introduced to constrain network variables.

Let us now examine the way in which variable elements (additional

degrees of freedom) remove these inconsistencies. Again two points of
view may be taken. One provides us with new basis vectors to span
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the space of possible injected current vectors Is], the second reduces
the dimensionality of the space of Is] in order that the existing number
of basis vectors might again span the space.

Section III gives the essence of the first interpretation with the
important result, equation (13). Observe that imbedding variable
elements in a network provides an additional set of column veetors,
namely, those of [—C], that may be used as basis vectors in spanning
the space of possible I]. Thus, if one has complete freedom in selecting
variable elements, a set of column vectors, the columns of [—C] can
always be found to assure that the space of all possible Is] will be
spanned, regardless of how the nullators reduce the space of the column
vector of the Y matrix. This concept, which involves growing new
elements to satisfy imposed constraints, will be the subject of future
study.

A second approach in handling the freedom introduced by variable
elements is to replace each variable element by a norator, as suggested
in Section ITI. The method of Davies may then be employed to analyze
the network containing norators.” Again assume that the admittance
matrix Y, of the network without nullators and norators is available.
Thus,

[Y,]V] = Isl. (23)

Now suppose that a norator is connected between nodes h and k, and
that the reference direction for the arbitrary norator current I, is
from h to k. The current-law equations for nodes k and k will be of
the form

Is, — 1, E Yiw: (24)

Igo + 1, = Z Yiw:. (25)

Sinee I, is arbitrary, and is not needed to solve for the node volt-
ages, adding the two equations gives

Tg + Isk = Z (Y + Yo, (26)

This corresponds to the addition of rows 2 and k of the nodal equa-
tions of the network without norators. Thus for a network containing
n nodes and r norators, only n — 1 — r independent equations can be
written. .

Observe in Fig. 9 that the effect of connecting the norator between
nodes h and k is to replace the nodal equations for nodes h and k
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Fig. 9 — Effect of connecting norator between two nodes.

by a single current law equation for the ambit (broken line) sur-
rounding both nodes h and k. Thus any functional relation between
the current and voltage of branch j is removed, as is desired for a
variable element.

To summarize thus far, the following manipulations may be per-
formed on the network current law equations to deal with VFE’s, CFE’s
and variable elements. To include network constraints, first imbed the
CFE’s and VFE’s. Write the ¥ matrix with nullators removed. Then
reduce the matrix by adding appropriate columns. This may be stated
compactly by a matrix transformation as®

Is] = [Yo](U.]V] 27)

where [U,] is a matrix obtained from the unit matrix by adding columns
corresponding to nodes between which nullators are connected. Since
the transformation [U,] is singular, not all components of V] are deter-
mined. The undetermined ones are found from the relation

[B]V] = 0]. (28)

To include variable elements, either
(7) Augment the Y matrix of the fixed portion of the network with
the node cutset matrix of the graph of the variable elements to get

-l v ] -1 (29)

or

(77) Add the current law equation corresponding to nodes to which
a nullator is connected. This is compactly stated by a matrix transforma-
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tion as®

[U,]Ls] = [U][Y.]V] (30)

where [U,] is a matrix obtained from the unit matrix by adding rows
corresponding to nodes between which norators are connected. The
vector of currents through variable resistors is then formed by equation
(29).

VI. SOLVING THE NETWORK EQUATIONS

We now wish to solve the set of equations after imbedding CFE’s,
VFE’s, and variable elements. We assume equation (29) to be our
starting point. A similar formulation may be made using equation
(30) as the starting point. CFE’s and VFE’s are imbedded, variable
elements are specified, and nullators are removed to generate the set
of equations

I I
[-C! Y] v] - 1. (31)
Addition of nullators to the network adds the set of equations
BV] = 0] (32)

and, from equation (27), the corresponding transformation [U,] on
the admittance matrix. Thus the final set of equations becomes

_C : YfUc IS

I I
— = =—| (33)
{0 \ B JV] o}

As seen in the previous section, the transformation [U,] (which adds
columns of Y) is consistent with the set of equations [B]V] = 0. Thus
the second matrix equation in equation (33) will always have a solu-
tion, provided the first one does. It remains only to solve

[—C | Y,U,] VI-] = I;]. (34)

in order to determine the proper element values. Let

1] _
v (r+n—k)x1 - X]'

By using the Gauss-Jordan method one can bring these equations

into the form
Ul 2] 1] _ I_]
[0: 0] X.] I (35)
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where

X,|X,] is a vector of node voltages and currents through variable
resistors,
[a] is the unit matrix,
[Q], Is,], Is.] are the resulting submatrices after transformation.
If Is;] = O (the equations are consistent), the first equation can be
solved for X,] in terms of X,].

X, = 131] - [Q]Xz] (36)

The case Is,] # 0 implies that there are no values of variable elements
consistent with the imposed constraints. For Ig,] = 0], equation (36)
generates all solutions to the problem. Some network variables X,]
can be chosen arbitrarily and the remaining variables X,] determined.
At each setting of X,] the variable elements can be determined since
all node voltages and eurrents through variable elements are known.

Thus

I

where 71 and ¢2 are connection nodes of the 7th variable element. By
allowing the free variables X;] to take on a continuum of values, all
solutions to the problem are determined directly.

Returning to the example already discussed (Fig. b), let us apply
the method of singular imbedding. The ecircuit is redrawn in Fig. 10
with the introduction of a VFE to constrain the voltage between nodes
1 and 2 to be 0.1* volt. With the nullator removed, a set of nodal
equations is written in the form of equation (13)

Z; = for 1=1,r (37

I,
1 0.“1/3 0 0|1 1
-1 1.‘| 0 1 -1 i’: = —0.1}- (38a)
0 010 -1 1)V, 0.1

Val

The introduction of a nullator between nodes 1 and 3 results in the
addition of the corresponding columns and the equality V, = V3 =

*Since the nullator passes zero current, the series battery in the VFE model
may have a nonzero resistance and still maintain the proper terminal voltage.
Thus the introduction of positive and negative resistances are unnecessary here.
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Fig. 10 — Network after singular imbedding.

V13 . ThUS,
[101& 0] I 1
T L Rt (38b)
Loo 1 —1)7e 0.1
Ve

With B = 1 ohm for ease of visualization, elementary row operations
yield

10051 L 0.9
o010 1| =09l (39)
' 14
00 1,—1 Jw 0.1
V.
Thus,
I, 0.9 1
IL|=09 -V, 1] (40)
Vi 0.1 -1

It is clear that Vs can take on arbitrary values while maintaining the
constraints. We will demonstrate this for two particular values o
VL‘- For V2 =0 -
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L | 09

L |_o09

Vie| 0.1

v, 0

Vi—V, _1
R, =—7—"=35,
Rz=:f—’=0.
1

It is easily verified that these values, when substituting into the
cireuit of Fig. 1, result in ¥V = V; — V, = 0.1 volt.
Similarly for V>, = 0.6 volt

I,] 03
L |_03
Vis| 0.7
V.| 06

and B, = V4, R, = 2.
Again it is easily verified that V/ = V; — V, = 0.1 volt. With this
simple example in mind, let us consider the solution of more com-

plicated networks by computer.

VII. COMPUTER SOLUTION

A program has been written to solve the design problem for resis-
tive networks. The program performs the following operations

(?) Accepts input of circuit description in conversational mode. The
circuit may contain resistors (both fixed and variable), VFE’s CFE’s
batteries, independent current sources, and current controlled current
sourees.

(#7) Generates C, Yy, and I5 matrices for the network.

(#i7) Reduces equations to triangular form by a Gaussian reduction
which pivots around largest elements in array.

(&) Those variables not in the basis after gaussian elimination are
passed to the right side and stepped through specified range. Resistance
values are printed for each setting of the free variables. Each set of
resistance values will satisfy the given constraints.

Four examples demonstrate the flexibility of the method. Suppose
in the circuit of Fig. 11 one wishes to choose Ry and R, to provide



CIRCUIT DESIGN 293

12v
12600 T Ra

%% Y

SET I =5mA

R,i 10000

Fig. 11 — Transistor design problem.

a collector current of 5 mA. A CFE of value 0.005 is placed in series
with the collector and the circuit of Fig. 12 is fed into the program as
in Table I. After the program sets up the equations and performs the
gaussian elimination, it prints, that the voltage at node 3 is free. It
can be arbitrarily chosen to generate sets of solutions.

This free voltage is then, at the user’s request, stepped from 7 volts
to 10 volts in 1 volt increments. Combinations of B, and R which
provide a collector current of 5 mA are printed in Table I. To verify
these results the program pcanar? was used to determine the transistor
collector current for the fifth set of resistor values. As the table shows,
the collector current is 5 mA.

A second example involves simultaneously constraining I, = 5 mA
and VCE = 5 volts. As I'ig. 13 shows, R,, R», and R; are variable.
The network with a VFE and CFE imbedded is shown in Fig. 14, and
the results given in Table II. Verification of the first set of resistance
values is given. Observe that I, = 5 mA and VCE = 5 volts.

ot ]

|2vp }—O_|92

1260 |ok <)
200 0.005 n

J”

—- ‘%@
R, kK =12V
1 1

0

Fig. 12— Network after transistor modelling and singular imbedding.
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TaBLE I—PRINTOUT OF THE SESSION TO SOLVE THE CircurT oF FI1GUrE 11

TYPE NO. OF BRANCHES, NODES,CONTROLLED SOURCES,BATTERIES, CURRENT SOURCES
Az7 51 3 @
TYPE BRANCH RESISTAMNCES
B=1. 1. 1260, 200, 1.,E3 1,E4 I.
TYPE FOR EACH BRANCH: INITIAL NODE,FINAL NODE,BATTERY NO.
c=1 51 1 152 523 121 321 1 a2
TYPE UALUES DF BATTERIES
D=9, 12, -.7
EYEEAFUR EACH CONTROLLED SOURCE: BRANCH NO. AND CONTROLLING BRANCH NO.
TYPE VALUES OF BETAS
F=15,

OPTION COMMANDS=DESIGN R

TYPE NO, VAR. RESISTANCES, NO, VOLTAGE CONSTRAINTS, AND NO CURRENT CONSTRAINTS
1=2 a1

TYPE BRANCH NO, OF VARIABLE RESISTANCES

=1 2

J=
TYPE BRANCH CURRENTS BEING CONSTRAINED

Mz=6
TYPE VALUE OF EACH CURRENT BEING CONSTRAINED
Nz.0085

THE FOLLOWING NODE VOLTAGES ARE FREE
3

ENTER LOWER LIMIT AND INCREMENT FOR EACH FREE VARIABLE AND NO., OF SETTINGS

=7. 1.

THE FREE VARIABLE:= 7,
RC 1)=1,1859722E+03
RC 2)=9,9908085E+082

THE FREE VARIABLE= 8,
RC 1)=1.1841104E+03
R¢ 2)=7,9900003E+@2

THE FREE VARIABLE= 9.
RC 1)=1.1831496E+03
RC 2)=5,99000000E+02

THE FREE VARIABLE= 10,
RC 1)=1.1821898E+83
RC 2)=3.9899998E+02

DESIGN COMMAND=KEEP
ENTER VALUES OF FREE VARIABLES FOR DESIRED SET
=18.

OPTION COMMAND=TRAN ALL
VCE IC

TRANS #
1 4,9398502 4,9999999E-03

R
1260 3

SET I¢=5mMA

% \ VeE=5vV

R, R
2

Fig. 13 — Transistor design problem.
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1260 751 10K‘ i L)&O‘B{_—J
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Fig. 14 — Network after transistor modelling and singular imbedding.

A third example involves the rather complex three transistor eircuit
illustrated in Fig. 15. The imbedding of VFE’s and CFE’s to con-
strain collector emitter voltages to 5 volts, and collector currents to
10 mA is shown.

Table 111 illustrates the results of a computer solution to the problem
by the method of singular imbedding. Observe that currents through
variable resistors 10 and 14 can be arbitrarily chosen and sets of resistors
R,, through Rs generated. Four such sets are presented in Table ITI.
Observe the results of an analysis indicating one such set properly
biases the network. Table IV presents the results of an optimization
program, based on pattern search,’ to bias the network, for which
forty-eight exploratory moves and 105 pattern moves were required.
Each exploratory move involves between eight and 16 circuit analyses.
Each pattern move involves an average of four analyses. Thus, approxi-
mately 1000 matrix inversions are required. Since each inversion involves
(n®)/3 operations, the number of operations to generate a single bias
network ~243,000.

Singular imbedding increases the number of nodes from 9 to 15.
However, only one matrix inversion is required to generate a solution.
Thus the number of operations =n’/3 = 1125.

Singular imbedding increases the efficiency in finding a solution to
this problem by a factor of approximately 200. What is even more
important is the ease with which equivalent networks are generated.
Each equivalent network is generated by a matrix multiplication of
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TapLE II—PRINTOUT OF THE SESSION T0O SOLVE THE CIRCUIT OF FicUrE 13

TYPE MO, OF BRANCHES,NODES,CONTROLLED SOURCES,BATTERIES,CURRENT SOURCES
AzT 5 | 3 0

TYPE BRANCH RESISTANCES

Bzl. 1. 1. 1268, 200, 1.E4 |,

TYPE FOR EACH BRANCH: INITIAL NODE,FINAL NODE, BATTERY NO.

c=1 31 121 541 132 323 421 52

TYPE VnLUESvﬂF BATTERIES

D=0, 12. =

TYPE FOR EACH CONTROLLED SOURCE: BRANCH NO, AND CONTROLLING BRANCH NO,

5
TYPE VALUES OF BETAS
F=75,

OPTION COMMANDS=DESIGN R

TYPE ND. VAR, RESISTANCES,NO., VOLTAGE CONSTRAINTS, AND NO CURRENT CONSTRAINTS
%YgE ERGNCH NO. OF VARIABLE RESISTANCES

#BR EAGH VOLTAGE CONSTRAINT, TYPE PLUS AND MINUS NODES

¥;;E2VhLUE OF EACH VOLTAGE CONSTRAINT

%;3& BRANCH CURRENTS BEING CONSTRAINED

M=6
TYPE VALUE OF EACH CURRENT BEING CONSTRAINED
N=.925

THE FOLLOWING NODE VOLTAGES ARE FREE
3

ENTER LOWER LIMIT AND INCREMENT FOR EACH FREE VARIABLE AND NO, OF SETTINGS
P=4, 2. 2

THE FREE VARIABLE:= 4,

RC 1)=6,3601035E+02

R( 2)=6.497925@ E+02

RC 3)=7.,4140005E+02

THE FREE VARIABLE=6.

RC 1)=1,2768783E+03

RC 2)=1.0458373E+D3

RC 3)=3,4140001 E+02

DESIGN COMMAND=KEEP
ENTER VALUES OF FREE VARIABLES FOR DESIRED SET

=4,
OPTION COMMANDS=TRAN ALL
VCE IC

TRANS #
1 5.8000E+@@ 5.200] E-23

the vector of free variables, which is stepped through a specified
range, and the matrix of vectors not taken into the basis after tri-
angulation. In this case the matrix is 19 X 2 and the vector of free
variables is 2 X 1. Each multiplication involves 2 X 19 = 38 opera-
tions. This means that up to 14,000 equivalent networks can be gen-
erated with the same number of operations needed to give one solution
by optimization techniques.

The value of singular imbedding is apparent here. Only one equa-
tion need be solved, and from it, all solutions are generated.

As a fourth example, a network was designed for a specified 24
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C—-45V

Tig. 15 — Three transistor network with VFE’s and CFE’s imbedded for desired
biasing.

and z»;, simultaneously. The circuit is given in Fig. 16. R4, E2, and R,
are to be selected to give z;; = 24 and 2., = 14. After proper imbed-
ding of VFE’s and CFE’s the network of Fig. 17 results. Table V
gives the results of a computer run to design the cireuit. The third
get, Ry = R, = Ry = 2 is shown to give the desired z-parameters
through the ¥ — A transformation of Fig. 18.

VIII, RESISTOR CONSTRAINTS

In many design problems it is desirable to constrain the values that
the parameters take to lie within certain limits. For example, in
biasing a transistor network, although solutions in which some resis-
tors are negative are mathematically correct, in practice such net-
works are unacceptable.

1f the designer has a good feeling for the circuit he is working
with, his choice of the free variables resulting from gaussian elimina-
tion with maximum pivoting will usually yield resistors with posi-
tive values. There are, however, instances involving multiple feed-
back paths where intuition cannov always be relied upon. In these
instances it is possible that the values given by the designer to the
free variables yield negative resistances. Furthermore, it may be
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TaBLE III—PRINTOUT OF THE SESSION TO SOLVE THE CIRCUIT OF
Ficure 15
THE FOLLOWING BRANCH CURRENTS ARE FREE
10
14

ENTER LOWER LIMIT AND INCREMENT FOR EACH FREE VARIABLE AND NO. OF SETTINGS
0=1.,E-3 |.,E-3 1,E-2 ,2E-2 2

THE FREE VARIABLES ARE
1,000E-03 |.008E-22
R{18)=4,236666TE+B3
RC11)=1,1828088E+@9
RC12)=3.T00B484E+03
R(13)=4.0579244E+23
R(14)=4,16854TTE+Q3
R(16)=3,3704454E+03
R(17)=3,781107@E+03
R(18)=4,1917495E4023

THE FREE VARIABLES ARE
2,000E-D3 l.0P@E-D2
RCIAY=2.1183333E+03
RC11)=1.1372T16E+A9
R(12)=3,9956586E+A3
R(13)=3.7284580E+A3
R(14)=4,16854TTE+A3
R(16)=3,3T04454E+03
RC17»=3,7811B70E+D3
R(1B)z4,1917495E+33

THE FREE VARIABLES ARE
1.@@AE-B3 1.200E-82
R(10)=4.236666TE+03
« | 183293 E+03
R(12)=3,7P08484E+A3
R(13)=4.5290360PE+03
R{14)=3,473789TE+D3
RC16)=3,37TP4454E+23
R(17)=3,781 1070 E+83
R(18)=4,191T495E+23

THE FREE VARIABLES ARE
2.000E-03 1.200E=-02
RC18)=2,1183333E+03
RCL1Y=2,1183293E+03
R(12)=3.9956586E+D3
R(13)=4,4512615E+03
RC14)=3,4T37BSTE+D3
R(16)=3,3704454E+03
R(17)=3.7811070E+B3
RC18)=z4.1917495E+03

DESIGN COMMAND=KEEP
ENTER VALUES OF FREE VARIABLES FOR DESIRED SET

=2.E=3 1.E-2
OPTION COMMANDS=TRAN ALL
VCE IC
TRANS #
1 5,0000 E+0@ 1.0000E-02
2 5.0000E+00 1.08¢0E-D2
3 5.0000E+00Q 9.9559E=-03

difficult to explore the space of the free variables looking for regions
where all the resistors are positive.

One possibility for finding positive resistor regions is to use an
optimization technique in which, considering the free variables as
adjustable parameters, the sum of the absolute magnitudes of the
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negative resistors is reduced to a minimum. If there exist solutions
with all resistors positive, the minimum (zero) hopefully would be
found automatically by the optimization routine.

This optimization is more efficient than solving the problem by
exploring a space in which all the variable resistors are parameters
to be adjusted.?

Although the method given has been tried with success, a superior
method having several advantages over the one proposed is explained
in Section IX. The method avoids some of the most important problems
associated with nonlinear programming,

Some of these problems are:

(7) The routine may get trapped in local minima.
(i1) Depending on the shapes of the surfaces involved and on the
methods used the convergence towards the minimum may be very slow.

(#22) If the optimization is with constraints the nonlinear constraints

are usually difficult to handle.
If it were possible to reduce the problem to a linear programming
problem, the following would have been gained:

(7) If the problem has a finite minimum it will be achieved in a

TaBLE IV—PRINTOUT OF OPTIMIZATION PROGRAM

INITIAL BRANCH RESISTANCES

R(10)=8,5000E+04
RCI1)=0,5000E+84
R(12)=0,3000E+04
R(13)=@.3000E+D4
R(14):=0.3080E+04
R(16)=08,3000E+04
R(17):=0,3002E+04
R(18)=0,3000E+D4

EXPLORATORY MOVES 48
PATTERN MOVES 1e5
FINAL BRANCH RESISTANCES

R(10)=08,3730E+B4
RC11)=0,4342E+D4
R(12):=0.3732E+24
R(13)=2,4377E+B4
R(14)=0,3795E+84
R(16)=0,33T2E+24
RC17)=8,3783E+04
R(18)=8,4197E+@4

TRANSISTOR OPERATING POINTS

TRANS # VCE 1C
1 5.08@E+00 1.0A0E-B2
2 5,.800E+BR2 1.828E-82
3 5.000E+20 - 1.880E-82
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R SET Z,=2/3

A Z21=1/3

Fig. 16 — Z-parameter design problem.

finite number of steps. No local minima which are not also global
minima exist.
(%) Algorithms exist which converge to the minimum efficiently.
(##i) The linear constraints generally complicate the problem only
moderately.

In Section IX the problem of biasing transistor networks is reduced
to a linear programming problem.

IX. APPLIED LINEAR PROGRAMMING

Let us start by assuming a network in which the designer knows
the correct signs of the node voltages with respect to the datum and
the direction of the currents in the variable resistors. Generally the
former is an easy task since it only involves knowing the nodes with
the lowest potential. If this node is chosen as the datum, all the node
voltages will be positive. Knowing the correct direction of the cur-
rent through the variable resistors requires a better understanding of
the circuit operation. Furthermore, there may be solutions in which
the current through some resistors may flow in either direction. For
this reason this requirement will eventually be relaxed.

Linear programming requires the right side vector of equation (33)

Ra
A A
2/3 2/3
g e E
l

Fig. 17 — Network after singular imbedding
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TABLE V—PRINTOUT OF THE SESSION TO SOLVE THE CIRCUIT OF FIGURE 16

TYPE NO. OF BRANCHES,NODES,CONTROLLED SOURCES,BATTERIES,CURRENT SOURCES

Az6 4B 1 1

TYPE BRANCH RESISTANCES

Bzl, l. l. 66666667 66666667 66666667

TYPE FOR EACH BRANCHM: INITIAL NODE,FINAL NODE,BATTERY NO.
I

c=121 141 241 231 341 3
TYPE VALUES OF BATTERIES
D=8, 12, =.7

TYPE FOR EACH CONTROLLED SOURCE:BRANCH NO, AND CONTROLLING BRANCH NO.
E=6 5

TY;E VALUES OF BETAS

F=75.

TYPE FOR EACH INDEPENDENT SOURCE: INITIAL NODE AND FINAL NODE

o=l 2
TYPE VALUE OF EACH INDEPENDENT CURRENT SOURCE
H=l.

OPTION COMMANDS=DESIGN R
TYPE NO. VAR. RESISTANCES,NO. VOLTAGE CONSTRAINTS, AND NO CURRENT CONSTRAINTS

1=3 22

TYPE BRANCH NO. OF VARIABLE RESISTANCES

J=1 2 3

FOR EACK VOLTAGE CONSTRAINT TYPE PLUS AND MINUS NODES
K=2 1 41

TYPE VALUE OF EACH VOLTAGE CONSTRAINT

L=.66666667 .33333333

THE FOLLOWING BRANCH CURRENTS ARE FREE

|
ENTER LOWER LIMIT AND INCREMENT FOR EACH FREE VARIABLE AND NO. OF SETTINGS
Oz~l, 433333333 3

THE FREE VARIABLE = =-1.0800
RC 1)= 0.666666TAE+DD
R( 2)=-P.6666666TE+00Q
R( 3)=-0,666666BDE+D0

THE FREE VARIABLE = =-0,666TE+30
RC 1)= 0.10020000E+21
R( 2)=-0.20000000E+01
R( 3)=-0,19999995E+01

THE FRE VARIABLE = =-0,3333E+00
RC 1)= 0.1999999TE+A1
RC 2)= 0,2000000QE+01
RC 3)= 0.20000013E+01

2 Zy=2/3
NV Z2,=1/3
2/3 2/3 1
© NV VNV © o A, 0

0 o,

(@) (b)

Fig. 18 — Verification of computer solution.
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to have positive entries. This may be achieved by multiplying by —1
all those rows in equation (33) which have a negative entry in the
right side vector and thus obtain the set of equations

H, |H,|I| f
— -] =- (41)
0 H, V] o

B
[—c

Y U. f I
| —— and —-| from —
Lo | B 0 0

by possibly multiplying some rows by —1.
To foree all the branch voltages to be positive let us add the constraint

—[C]V] = 0] (42)

where [C] is the matrix appearing in equation (12).
Equation (41) and inequality (42) together with the condition

where

is obtained from

v‘] > 0] (43)

can be looked upon as a linear programming problem in which it is
desired to find the value of a positive vector satisfying a set of linear
equalities and inequalities and which minimizes the linear funection
where

I
z = Bv] (44)

,...’O]_

(=]

D=,

Since the minimization of the constant zero is of no interest, all that
is required is to obtain the feasible solutions of the linear programming
problem.®

Once the feasible solutions are obtained, the fact that the solution
satisfies equation (41) guarantees that the eircuit is properly biased
while the positivity condition on the vectors IJI_\'T and —[C]V] guarantee
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that all the variable resistors are positive, since both the currents
and voltages across them are positive.

To obtain the feasible solutions phase I of the two phase simplex
method may be used.®

Phase I of the simplex method finds the basie positive solutions of the
system of equations

— [ | T

'H,|H, | o | 1] f]

0 |H,| 0 jv =0 (45)

Lo |-c —UJ wl 0
where the vector w] (which is constrained to be positive) is a slack
vector and U is a unit matrix.

By denoting with A the matrix on the left of equation (45), with x
the column on the left, and with b the column on the right side, equa-
tion (45) may be written

Ax = b. (46)

Let the dimensions be: A, m X n;x,n X 1;b, m X 1. Let Aand [A | b]
have rank r. This implies equation (46) is compatible. (The case in
which this is not true is of no interest since in such ease no solution—
whether positive or not—exists.)

Phase I of the simplex method finds positive solutions of equation
(46) for r of the variables x;, 1 = 1, 2, +++ , r setting the rest of the
x,j =r+ 1, -+, nto zero.* Each one of this set is a basic feasible
solution. There may be several such sets for a given problem. The
totality of nonnegative solutions of equation (46) is the convex hull
of the basic solutions. By extending the simplex algorithm so that
once a basic feasible solution is found the other basic feasible solu-
tions are also searched for, it is possible to obtain all basic feasible
solutions,

Suppose 2%, 2%, - -+ , z” are basic feasible solutions, Then any vector
x satisfying
with =M F N4+ KP.I'PI

MaAa, oo, A 20 J' 47)

MEtXA+ s+ =1
is also a feasible solution.

and

* In case no nonnegative solutions to equation (46) exist, the simplex algorithm
is able to detect it.
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If a4, 22, - -+ , aP is the set of all basic feasible solutions, then all the
solutions of equation (47) constitute the complete set of feasible solu-
tions.

X. RESISTORS WITH UPPER AND LOWER BOUNDS

In the previous discussion the appearance of nonnegative resistors
was precluded by adding inequality (42). Often it is desirable to im-
pose lower and upper bounds for the resistors because the technology
used to realize them requires it. For example, if tantalum thin film
resistors are used it is desirable to restrict them to lie between 10 and
10° ohms.

Let the kth variable resistor be connected from node ¢ to node j. The

value of R;, is given by
Vl' - V_,"
I,
If it is desired to have this resistor lie within 10 and 10° ohms the
following conditions are imposed
V“ - V,'
1
V; - V,:
L
which may be rewritten (recall I;; is nonnegative)
V.-V, —10I, = 0}_ (48)
V-V, =10, £0

If instead of equation (42) inequalities similar to equation (48)
are written for all variable resistors, the resulting circuits will have
all variable resistors within specified upper and lower bounds (except
for the possibility I, = 0, which implies an open ecircuit, in which
case the resistor disappears altogether) .

The problem of biasing of transistor networks with positive resis-
tors is equivalent to solving

[Hl Hz} 1} f}
0 |H. ]V, o

o, | -c14]2?] (49)

R, =

> 10, Te# 0

<10°, I, #0
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-0 <]

=1

where D, and D, are diagonal matrices whose diagonal elements contain
the minima and maxima for the variable resistors. By adding positive
slack vectors w, and w, , equation (49) is equivalent to

™1, H, | o lo]1] £

0 H,| 0 |0 ]|V 0
— — | =- (50)
D, —-C|—-TUj|o0 ’wl 0

D, —C| 0 UJ\;_ 0]

where U is a unit matrix and the vector on the left is restricted to be
nonnegative.

XI. RELAXING SIGN CONDITIONS

So far it has been assumed that the direction of the current flow in
variable resistors is known beforehand. This condition may not hold
for some cases and hence it is desirable to relax it.

When a variable in a linear programming problem is not required
to be positive it is customary to write it as the difference of two posi-
tive quantities. Thus if I, and V; — V,, = V are not required to be
positive one may write

Ik = IJ,' - ]k"
V[ = I"y[' —_ V]H
where I;‘- ’ I;‘u ¥ V:' 3 V;u = 0.

A current I, of variable sign may be restricted to have a magnitude no
less than I.; = 0 by imposing the pair of conditions*

Ik % Iak or '—Ik é I,,k . (51)

Likewise a branch voltage V, of variable sign across a resistor may be

* The constraint set on the currents is not convex, therefore it is necessary to
solve the problem twice, once with each ineauality, and take the union of the
two solutions. If n variable resistors may have currents flowing in either direc-
tion, the solution will be the union of the solutions of 2" problems in which
all the combinations of the inequalities are used.
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restricted to have a magnitude no greater than V,, = 0 by imposing the
pair of conditions

Vi2Vy and =V, 2 V,. (52)

If V, is the voltage across the kth resistor and I, its current, then in-
equalities (51) and (52) insure that the magnitude of the kth resistor
satisfies

Y ¥
= Ink

The resistor K, may be negative or positive. However, if each variable
resistor is made of two resistors in series one of value V,./I.. and the
second to be determined by the computer subject to equation (53), the
series combination of the two resistors will never be negative. This
constitutes a technique for guaranteeing positive variable resistors
without previous knowledge of the directions of current flows.**

The method deseribed can also handle circuits with variable resistors
whose values lie within upper and lower limits. If E,,,,, and R,,,. are
the minimum and maximum values allowed for the kth variable resistor,
the fixed series resistor should be

R, (53)

Ry = Riwin + Va/Io (54)
with V,./I,; chosen such that
Vnk/Iok = ka,n - kain . (55)

The value of Ry, ,, may be zero. Thus, a resistor may disappear as a short
circuit. If instead of bounding the value of a resistance from above, the
value of an admittance is bounded, a dual method may be used to
guarantee positive resistors.

Instead of equations (51) and (52) the following restrictions are
imposed

I, I, and —I, I, ) (56)
V,g 2 V,,k or f-V; ; ]!7,,:, T (57)

IIA
lIA

* Both Ve and T, are variables in the linear program which will be determined
by the simplex algorithm. The ratio is constrained by a linear inequality To: | B |
—Va <0, where | R | is given.

*+ Another approach is to reverse the reference direction of the current and
voltage drop across each variable resistor and apply the methods of the previous
section. If n variable resistors may have currents flowing in either direction
it is necessary to consider 2" possibilities.

1 See footnote to equation 51.
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These guarantee that
I ok

Vo

1G] = (58)
where G, = 1/R, . G, may be positive or negative if each variable
resistor is made of two resistors in parallel, one of admittance I,./V ..
and the second to be determined by the computer subject to equation
(58). However, the parallel combination of the resistors will never be
negative.

The dual method can also handle eireuits with variable resistors whose
admittance lies within upper and lower limits G4,,,. and G,..,, . The value
of G4,.,, may be zero. Thus a resistor may disappear as an open circuit.

XII. CHOOSING TOPOLOGY BY COMPUTER

As already pointed out, Phase I of the simplex method obtains the
basic feasible solutions of a set of linear equations. The set of equa-
tions may come from a set of equalities and inequalities to which
slack variables have been added. Usually the number of variables
(including slack variables) is greater than the number of equations
and the system is redundant. If » is the rank of the system and n is
the number of variables (including slack variables), at least n-r
variables are set to zero in obtaining a basic feasible solution. Some of
the variables set to zero may be node voltages or variable resistor
currents. If a node voltage 1s set to zero, the corresponding node is
grounded. If a variable resistor current is set to zero, the corre-
sponding resistor disappears as an open circuit. If a slack variable
is set to zero, the inequality constraints are met with equalities.

For example, for equation (50) if the kth entry of w, is zero, the
kth resistor acquires its minimum allowed value.

One way of viewing equation (50) is to consider the columns of
the matrix on the left as elements of a vector space and the entries
of the column multiplying the matrix as those positive coeflicients
which synthesize the column on the right in the form of a linear com-
bination of the columns of the matrix. A final tableau of Phase I of
the simplex method will contain a number of independent unit col-
umns (with all entries zero except one) equal to the rank of the mat-
rix on the left side of equation (50). The unit columns are obtained
by the special gaussian reduction provided by the simplex algorithm.
Each column corresponds to a variable in the column multiplying the
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matrix of equation (50). Those variables whose corresponding col-
umns are not unit columns are get to zero.

If a set of columns corresponding to the currents through a set of
variable resistors are linearly dependent, one or more of the currents
will be set to zero. This implies the disappearance of a resistor as an
open circuit. The choice of which resistors disappear is automatically
determined with the aid of the simplex algorithm, so that the non-
zero currents acquire positive values (if such a choice exists). If two
columns of the matrix of equation (50), corresponding to currents
through variable resistors, are linearly dependent it means that Kirch-
hoff’s voltage and current law may be satisfied with one of the cur-
rents zero, making one of the resistors unnecessary.

The above argument provides a method for letting a computer pro-
gram choose the topology and resistor values of a de network in
which certain voltages and currents are imposed by CFE’s and VFE’s,
One connects an excess of resistors between different nodes (includ-
ing additional internal nodes if desired). By using a linear program-
ming formulation some node voltages and variable resistor currents
are set to zero by the computer program, thus determining a set of
“linearly independent positive resistors” that satisfy all the circuit
equations.

XIII. EXAMPLES

Consider the circuit of Fig. 19(a). The equivalent circuit is shown
in Fig. 19(b) with a VFE and CFE in place. As indicated on Fig.
19(b) it is desired to impose on the transistor a collector current of
5 mA and a collector-emitter voltage of 5 volts. The resistors marked
Ry, R and R; are variable.

The nodal equations for the circuit after the effect of the nullators
introduced by the VFE’s and CFE’s are taken into consideration
are, in matrix form

—1. 1. 0. 0.005 —0.005 0. —1 X 107
0. 0. 1. —0.38 0.3811 —0.0011 0.
| 0. 0. 0. 0. 0. 0.00333 0
| 1. 0. 0. —1.X 107 0. 0. 1
. 0. 0. 0. O —0.001  0.001 0.
L 0. 0. 0. 0375 —0.3751  0.0001 0. |
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F;lig]. 19 — Circuit biased with constrained singular imbedding; (a) circuit, (b)
model.

Ll 1 00035

I, —0.27

I 0.035
AR - (5%)
Vs 0.005 |

Vil | 02675

A

By multiplying the second row by —1, the entry —0.27 in the right
side vector is made positive. (As indicated above, linear program-
ming assumes the right side vector is nonnegative). Notice that since
the matrix in equation (59a) is 6 X 7, we therefore generally expect
a one parameter infinity of solutions. If the system of equations were
solved using the simplex method (with arbitrary cost coefficients),
solutions in which all the variables acquire non-negative values may
be obtained. Resistors R, and Rj, which are grounded, will auto-
matically be positive. However the voltage differences across un-
grounded resistors may turn out to be negative, yielding negative re-
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sistances. To assure a non-negative voltage difference across R, the
following additional constraint will be imposed

Vei—Vaz 0
which may also be written*
V. —Vs:=0. (59b)
There are two basic feasible solutions to this problem:
1,1 5788 1 5.9966425 X 107°]
I, 5.78794 0.
I, 5.060073 X 107° 5.060073 X 107°
V.| = 6212 , 6.212 . (60)
Vs 5.5 5.5
V., 10.5 10.5
Vsl 6.212 i 11.99994 ]

The first basic solution yields the following set of resistors

Vs — V, 6212 — 6.212 _

e 5.788 0 chms

V. 6212 _
R, = T, = 578704 — 1.073266 ohms (61)
R, = Vo 5.9 — 1086.941 ohms.

=T,  5.060054 X 10°°
R, is a short circuit.
The second basie solution yields the set

R, = 97008.514, R, = =, R, = 1086.941.

R, is an open cireuit. Notice also that R; is the same for both solu-
tions. This is expected since the voltage of node 3 is virtually fixed
by the requirements.

The totality of the solutions with non-negative voltage differences
across the variable resistors may be written, according to equation (47)
= 4 (1 —N2°
where x' and z* are the basic feasible solutions of equation (60), and

0=N=1
* When the right side of an inequality is zero, it is preferable to write it as

a = inequality because the corresponding slack variable may be used as an
artificinl variable with savings on the size of the matrix to be manipulated.
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Choosing N = 3 yields
| 2.89402

2.80397
5.060073 X 10°°
x =| 6.212

5.5

10.5
| 9.10597

which yields the set of resistors

B, = 0.997906, R, = 2.146532, R, = 1086941.

311

A continuous set of equivalent circuits, which achieve the require-
ments exactly and which have positive resistances, is obtained by

varying A between O to 1.

Suppose now that further considerations require that R, lie be-

tween 1000 and 2000 ohms. By replacing (59b) by

K”___ V. >
T, = 1000 and T,

which may be written

Kﬁ___.& < 2000

10007, =V, + V., =0
—=20001, +V;,— V=0

the resistor R, is forced to remain between 1000 and 2000 ohms.

(62)

When the new problem is solved the basic feasible solutions are

5.782218 X 107%] 2.892554 X 107 |

5.722218 X 107° 2.832554 X 107°

5.060073 X 107° 5.060073 X 107°
= 6.212 , = 6.212

5.5 5.5

10.5 10.5

11.99422 J 11.99711 ]
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The basic feasible solutions yield the following sets of resistors

' 'R, = 1000., R, = 1085.593, R, = 1086.941
2 iR, = 2000., R, = 2193.074, R, = 1086.941.

Notice that R, acquired its allowable extreme values in each basie
feasible solution.

Other sets of resistances may be obtained by convex combinations
of the two basic feasible solutions.

As an example in which the topology of a circuit is determined by
the computer, consider the circuit of Fig. 16 in which R,, Rs, and Ry
are to be selected to give z;;7 = 24 and 2z,; = V4. The example was
previously solved without linear programming techniques. Several
solutions appear in Table V. By maximizing the negatives of the cur-
rents in the resistors, those currents which may be set to zero by tak-
ing them out of the basis for a basic feasible solution will be con-
verted into open circuits. After the effect of the nullators introduced
by the VFE's is accounted for, the matrix corresponding to the
circuit of Fig. 16 is 5 X 6. We therefore expect a one parameter in-
finity of solutions and two basic feasible solutions which are

] 00 ) 0.28174743

I, 5.9652404 X 107 4.5937138 X 107°
o Lu| _ 5965238 X 10 7 , . _ 00

V.|  44.096881 43.602828

Vs 0.3333333 0.33639577

V.,J 0.3333333 1 0.3333333

Notice that V, remains constant for both basic feasible solutions. This
is expected since a VFE is connected from node 4 to node 1 (datum).
The resistances corresponding to the basic feasible solutions are

a' (R, = R, = 55.879273, R, = 7336.429
2’ 1R, = 154.4759, R, = 72.5629, Ry = oo,

In both basic feasible solutions one of the resistances disappeared as
an open circuit. This indicates that given K4, Rs and Eg with the
values indicated in Fig. 16 the circuit is achievable with two topologies,
each containing 5 resistors.

Let us now make Rg a variable resistor. The nodal matrix after the
elimination of the nullators is now 5 x 7. Thus we expect a two
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parameter infinity of solutions and at least 3 basic feasible solutions.
The following sets of resistors correspond to basic feasible solutions

() R,
(i) R, =
(iii) R,
(iv) R, = 1.3333336, R,= «, R;= o, R, = 0.66666651.

These sets provide four different topologies with which given two
of the resistors (R4 and R;) a resistive network having z1, = 24, 2x
= 14 may be realized.

The example illustrates how using the methods of this paper can
solve the problem of realizing portions of a resistive matrix with cer-
tain elements prespecified. The prespecified elements need not be
resistors but may also include controlled sources, gyrators, ideal trans-
formers, and so on.

The methods discussed have been implemented on a time-shared

|
8

, R, = o, R, = 1.33333, Rs = 0.16666667

l
8

o
I

0.333333, R, = 0.4444456, Ry = o
0.88888898, R, = 1.333333, R; = o, Ry =

TaBLE VI—PRINTOUT OF THE SESSION To SOLVE THE CIRCUIT OF
Ficure 19

TY;ESND. OF BRANCHES,NODES,CONTROLLED SOURCES,BATTERIES,CURRENT SOURCES
A= 1 302

TYPE BRANCH RESISTANCES

Bzl. l. 1. 208. 1.EA 3@0, I,

TYPE FOR EACH BRANCH: INITIAL NODE,FINAL MNODE,BATTERY NO.

c=5 2 1 211 311 232 431 143 153
TYPE VALUES OF BATTERIES
Dz0. =.7 12

TVPE FOR EﬂCH CONTROLLED SOURCE: BRANCH NO, AND CONTROLLING BRANCH NO.
E=6 5
TYPE VALUES OF BETAS

=75.

OPTION COMMANDS=DESIGN CKT
TYPE NO VARIABLE RESISTANCES,NO. VOLTAGE CONSTRAINTS, AND NO CURRENT CONSTRAINTS

TYPE BRANCH NO, OF VARIABLE RESISTANCES

J=1 2 3

TYPE PLUS AND MINUS NODES FOR EACH VFE
K=4 3

TYPE VALUE OF EACH VFE

L=5

TYPE BRANCH CURRENT FOR EACH CFE
M=3

TYPE VALUE OF EACH CFE

N=.005

TYPE COST COEFFICIENTS

0zle 1o 1 1a 1

TYPE MINIMA OF VARIABLE RESISTANCES
Pz1028. 0. O.

TYPE MAXIMA FOR EACH VARIABLE RESISTANCE
Q:2000. 1.E8 1.E8

RC 1)= 9.9999995E+02
RC 2)= 1.0855930E+03
RC 3)= 1.0B69498E+D3
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computer system. The program is conversational. A portion of a ses-
sion in which a basic solution corresponding to the circuit of Fig. 19
with R, constrained betwen 1000 and 2000 ohms appears in Table VI.

XIV. CONCLUSIONS

The method of singular imbedding has been shown to be efficient for
solving the following problem: Given a eircuit with a prespecified
topology, some of whose elements are prespecified, find the values of
the unspecified elements which will yield desired node-pair voltages
or branch currents. The unspecified element values may be restricted
to lie within given upper and lower bounds.

By letting the upper and lower bounds become infinite and zero,
the problem of finding the topology for the circuit may be also solved.

The method has been implemented on a time-shared computer,
and several examples, including some practical transistor circuits, are
given.

The usual approaches to the problems of this paper have been itera-
tive analysis-optimization schemes. Singular imbedding requires, for
a three transistor amplifier, three orders of magnitude less computa-
tion time. This makes the method appealing for time-shared applica-
tions.

Two new singular network elements, the voltage forcing element
and the current foreing element, constrain node-pair voltages and
branch currents without otherwise affecting the circuit. Elements of
unspecified value are modeled by branches carrying unknown ecur-
rents.

With the aid of these elements, the problem of design is reduced to
one of analyzing a cireuit containing unknown current sources and
nullators. If there are more free elements than requirements, the solu-
tion space may be a linear manifold. By allowing the free circuit
variables to take on a set of discrete values, sets of exact solutions
to the design problem may be generated economically.

When the unspecified elements are required to lie within upper and
lower bounds, the problem is one of analysis with linear inequality
constraints. This may be solved efficiently using linear programming
techniques.

Among the practical problems solved by singular imbedding are
biasing a direct coupled transistor amplifier, designing midband gain
and driving point impedance, synthesizing networks for several given
admittance parameters, and determining circuit topology.

Areas being investigated include using singular imbedding in the
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synthesis of resistance networks (the synthesis of a single eolumn of
a specified resistance matrix has been illustrated). Synthesis of an
entire resistance matrix results from the intersection in resistance
space of the solution spaces for each column of the matrix. Similarly,
by considering the intersection of solutions spaces for hoth a small
signal design and a biasing design, the method may be extended to
designing transistor circuits for desired small signal design and bias
points simultaneously.

Although only fixed value CFE’s and VFE’s were used in this
paper, CFE’s and VFE’s which may take any value within a given
range may also be used. For example, a branch current may be forced
to be greater than 1 mA and less than 10 mA. These elements are also
useful in insuring that models for devices stay within their valid
limits. For example, a transistor can he constrained to remain in the
active region, for which the linear model used is valid.

For simplicity, only the case of linear d¢ networks has been il-
lustrated in this paper. However, the method has usefulness in ac
design, combined ac and dc design, and non-linear design. These topies
will be covered elsewhere.

REFEREN CES

1. Murray-Lasso, M. A. and Baker, W. D,, “Computer Design of Multistage
Transistor Bias Circuits,” Proc. Fifth Annual Allerton Conf., Monticello,
Illinois, October 1967.

2. McMillan, B., “Introduction to Formal Realizability Theory,” BS.T.J., 31,

No. 2 (March 1952), pp. 217-279.

. Newcomb, R. W., Linear Multiport Synthesis, New York: McGraw-Hill, 1966.

. Tellegen, B. D. H., “La Recherche pour une Sefie Compléte d'éléments de
Circuits Ideaux Non Linéaires,” Rendiconti Seminario Mathematico ¢

Fisico, Milano, 25 (1953-54), pp. 134-144,

5. Davies, A. C., “Matrix Analysis of Networks Containing Nullators and
Norators.” Electronics Letiers. 2, No. 2 (February 1966), pp. 48-49.

6. Dantzig, B. B., Linear Programming and Eztensions, Princeton, N. J., Prince-
ton University Press, 1963.

7. Murray-Lasso, M. A. and Kasper, T. J., “On-Line Circuit Analysis and
Optimization with Commercially Available Time-Shared Computer Sys-
tems,” Proceedings of the Design Automation Workshop, Washington,
D. C., July 1968.

H 02






