Some Theorems on the Dynamic Response
of Nonlinear Transistor Networks

By I. W. SANDBERG
(Manuseript received July. 16, 1968)

Relative to the huge body of theory of linear time-invariant systems, very
little of a general and precise nature is known about the metwork-theoretic
properties of transistor circuits operating under large-signal conditions.
One basic property P which a transitor network might have is that if the
input approaches a constant, then the output approaches a constant which is
independent of the initial conditions. In this paper we prove a stability
theorem concerning a nonlinear differential equation that governs the
behavior of a large class of networks. A corollary of this theorem asserts
that if a certain condition is salisfied, then property P holds.

We consider also the problem of estimating the rate of decay of transients
in transistor networks and we prove theorems which allow us to make some
often quile conservative, but definile, statements concerning limitations on
switching speeds. A practical evample considered shows that in some cases
the bounds, which are frequently very easy to evaluate, can be quile useful.

The proofs depend in an interesting way on the relationship between
the static diode characteristic and the nonlinear capacitance associated with
a semiconductor junction.

1. INTRODUCTION AND DERIVATION OF THE DIFFERENTIAL EQUATION

We initially consider the network of Fig. 1, which contains transis-
tors, linear resistors, voltage sources, and current sources. Each
transistor is represented by a model of the type shown in Fig. 2 (see
Gummel® and Koehler?) which takes into account nonlinear de proper-
ties as well as the presence of nonlinear junction eapacitances. Asso-
ciated with this model are six parameters: ay, ar, 7o, 7¢, e, and ¢, (all
positive constants; ay < 1, o, < 1) and two nonlinear functions f.(-)
and fo(-).

Concerning f.(+) and f.(-), for our purposes it is necessary to as-
sume only that
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Fig. 1— General network containing transistors, sources, and resistors.

Assumption 1: For each transistor: f,(-) and f,(-) are strietly-mono-
tone increasing mappings of the real interval (—oco, o) into itself;
f.(0) = f.(0) = 0, and f,(-) and f,(-) are continuously differentiable
on (—o, o).
The functions f.(-) and f.(:) of Gummel’'s model' are of simple
exponential type and satisfy Assumption 1.

From Fig. 2:

i = L e + 7L 0)] + L) — ),

i = Llea. + 701 = af. o) + 1.0).

Suppose that the network of Fig. 1 contains p transistors; for k =
1,2, «++, p, let vo;_; and vay, respectively, denote the emitter to base
voltage and the collector to base voltage of the kth transistor. Simi-
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Fig. 2 — Transistor model.
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larly, for k = 1, 2, -+, p, let is—; and 7s, respectively, denote the
emitter current and the collector current of the kth transistor (with
reference polarities as indicated in Fig. 2). Then, with v = (v,, v,

y Vap) Tyt = (1g, %, *** , 12p) ", for1 (+) and capq the fo(+) and ¢, of
the kth transistor, and fo,(+) and co the f.(+) and ¢, of the kth tran-
sistor,

1= C(v + TF(@) (1)

where, for j = 1,2,. .., 2p,
[C@)]); = c; + 7:ivs) (2)
[F@)]; = 1), (3)

and T=T,®T,.@® --- @ T,, the direct sum of p 2 X 2 matrices

T in which
)
T, = 1 a,
—a” 1
fork =1,2,---,p.

We assume that the linear resistive portion of the structure of Fig. 1
introduces the constraint

i=—Gv+B (4)

in which @ is a conductance matrix and B is an element of the set ®
of all real bounded continuous 2p-vector-valued functions of ¢ on [0, «).
From equations (1) and (4)

L) + 17O + Go = B. -
Let u = C(v). Since all of the ¢; and r; are positive, and each of the

f;(+) is eontinuous and monotone increasing, there exists a C~'(-) such
that » = C~'(u). Thus,
cIta

; + TFICT' W] + GC'@w) = B. (6)

The Jacobian matrix J, of TF[C™'(v)] 4+ GC™'(u) is

H f:[g?(ul)]
T diag {c,- ¥ r,-ff-[g,-(u,-)]} + Gd‘ag{ ¥ r,f [0, (u,)]}
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in which forallj =1,2, .-+, 2p
g: (u;) = [CT'(w);
with each of the g;(-) continuously differentiable.

Since J, is continuously dependent on w, and || J. || (|| - || any norm)
is bounded from above uniformly in %, it follows that there exists a

constant L such that
|| TF[C™*(w.)] + GC™'(w,) — TFIC™ (uy)] — GC™"(wy) ||

= Liflu— wl @)

12p

for all u, and u, belonging to real Euclidean 2p-space E*". In particular,
we have
[| TFIC'(w)] + GC™'(w) — B[ = L|[ul|l + [|B| (8)

for all t = 0 and all u ¢ E°%. Therefore (see, for example, Nemytskii and
Stepanov®), for any initial condition u, ¢ £**, there exists a unique con-
tinuous 2p-vector-valued function u(-) such that 4(0) = u, and equation
(6) is satisfied for all ¢ > 0. In other words, under the assumptions we
have introduced, it makes sense to study the properties of the solution
of the equation

W TFCT@) 4 GIOT@I =B (20 WO =wl

II. STATEMENT OF RESULTS, AND EXAMPLES

We need the following definitions.
Definition 1: A real matrix M of arbitrary order n is strongly col-

wmn-sum dominant if and only if forall j =1,2,...,n
m;; — Z |?n.‘,; | > 0.
i¥j

An important property of T is that it is strongly column-sum dominant.

Definition 2: We shall say that a real matrix M of order 2p is an element
of D if and only if there exists a diagonal matrix diag (d, , d,, - - , ds,)
with each d; > 0 such that

: Aoy 1
W . Gar—1
< g el
fork =1,2, ---,p, and diag (d, ,d>, -- -, ds,) M is strongly eolumn-

sum dominant.
Our main result* concerning equation (9) is:

* Proofs of all results in this section are given in Seetion ITI,
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Theorem 1: If G e D, and u,(-) and u,(-) satisfy

Gt TPIC W) + 67w = B, (20 (0)
e PIeT W) + GO ) = B, 120 (1)

with B, ¢ ® and B, £ &, and if [B,(t) — B.,(t)] — @ (the zero vector of E*")
ast — o, then [u,(l) — w,(f)] = 8ast — .
An interesting corollary of Theorem 1 is

Corollary 1: Referring to equation (9), if G ¢ D, and if there exists
a constant vector B, such that [B(l) — B.] — 0 as i — o, then there
exists a constant vector u,, such that [u(t) — u,] — 0 ast — =, and u, s
independent of the initial condition u, . In particular, if B, = 6, then
U, = 0.

Tt is interesting to observe that ¢ ¢ © whenever the base leads of all
transistors are connected together and there is a resistor between the
emitter and base, and between the collector and base, of every transistor,
for then @ is strongly column-sum dominant. Also it is easy to give
examples of conductance matrices which are not strongly column-sum
dominant, and which belong to ©. For instance, for the network of
TFig. 3.

1l
ki

ga>0
g, >0

TFig. 3 — Single-transistor network.

G =

Jda + G —gby
— 0O [

and diag (d, , d.)@ is strongly column-sum dominant for d, = 1 and
some d, such that
1 *
ap < dy < —-

r

* More generally, G of order 2p with positive diagonal elements belongs to 9O
whenever it is possible to obtain a strongly column-sum dominant matrix from
@ by adding an arbitrarily small positive quantity to a single diagonal element,
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Fig. 4 — A two-transistor ecireuit.

As another example, consider the circuit of Fig. 4, for which
473 —10 10 -—11
1 [—=10 473 -—11 10
21 10 —11 1 -—10
—11 10 —-10 11

G =

Since diag (1, 1, 22, 22)@ is strongly column-sum dominant, & & D.
Finally, for the network shown in Fig. 5,

11 —10 10 -1
G=i1 —-10 11 —11 10|
10 —11 11 —10

-1 10 —10 11

In this case, G is obviously singular and hence does not belong to .
Suppose that the source current of Fig. 5 7,(¢) is a constant and that the
transistor funections f,(-), f2(-), fa(+), and f,(-) are all bounded from
below by the constant b (this is certainly an assumption consistent with
our earlier assumptions and with the character of transistor models

n

@ _
LomeD jﬂ o

Fig. 5 — Transistor circuit for which the dec equations may have no solution.
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ordinarily used.) We wish to show that here for sufficiently small 7 ,
there does not exist a constant veetor u, such that [u(t) — u.] — 6
asl — co.
Suppose that u(f) — u., a constant vector, as ¢ — . Then there
would exist a 2p-vector v, such that u,, = C(v.) and
TF(v,) + Gv, = B

with B= (i, ,0,0,- - -,0)". Let n denote the 2p-row-vector (1,1, 1,---,1).
Then
nTF(ve) + nGv, = 1B

But »Gr, = 0, and hence
= 3200 — el + 2 11— e aloan)
which does not possess a solution v, if
o < b 30— el + (1 o).

2.1 Estimation of the Rate of Decay of Transients

Theorem 2: If the hypotheses of Corollary 1 are satisfied with B(t) = B
fort = 0, then

524, () — ey | S exp (—B) 2 d [10) — |, 120

i=1

for every set of positive constants d, , dy , * -+ , day such that

0 < K £ min min{ 1 — dd;’ ,), (g,, > ddit | gi [)}
i iy

in which —a; is the nonzero off-diagonal term in the jth column of T,

and d; = d;., for j odd and d; = d;_, for j even.

It is easy to show that G ¢ D implies that there are positive constants
d;,j=1,2, -+, 2p, such that K > 0.

As an example of the application of Theorem 2, consider the problem
of estimating the switching time of the single-transistor lnverter cireuit
of Fig. 6 in which a, = 0.968,¢, = 2 X lﬂ’mjd =17 x 107"° second,

= 0.583, c. = 1.7 X 107"* fd, and r, = 2.62 X 107° second. Here
(in mhos)
1.1886 X 107 —1.01215 X 107°

—1.01215 X 107* 1.01215 X 107*

G=
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Tig. 6 — Practical logical-inverter circuit.

which takes into account a bulk base resistance of 280 ohms and a bulk
collector resistance of 18 ohms. The ecircuit is initially at steady state
with e(t) = 0.3 volt for ¢t < 0. For¢ = 0, e(f) = 10 volts, and as{ — «,
u(t) — u,, some constant vector. With d, = 1, the number K is the
smallest of the four quantities: 0.58(1 — 0.968d;") X 10", 0.5(1.1886 —
1.012154;%) X 10°, 0.3815(1 — 0.583d,) X 10° and 0.58(1.01215)
(1 —d,) X 10°.

It is clear that d, must satisfy 0.968 < d; < 1 in order that K > 0.
Then optimal choice of d, (that is, the choice that yields the largest
value of K) is approximately 0.9709. For d, = 0.9709, K = 1.66 X 10".
Let the ‘“‘charge switching time” ¢, denote the smallest value of ¢ such
that D2, | u;(t) — ue; | is less than or equal to two percent of » 2.,
| 4;(0) — gy | forallt = ¢, . Then our upper bound on ¢, is approxi-
mately 4 X (1.66) ™" X 1077 &2 241 nanoseconds. The actual value of ¢, ,
as determined by numerically integrating the system of two nonlinear
differential equations is approximately 57 nanoseconds. Thus, for this
circuit, Theorem 2 provides a very easily evaluated and useful upper
bound on i, .

Finally, we state a result which provides an often rather conserva-
tive but easily evaluated lower bound on the rate of decay of tran-

sients.

Theorem 3: With B a constant real 2p-vector, let
du Al -1 -1
T + TF[C” (w)] + GC™(u) = B, t=0.

If there exists a constant 2p-vector wu,, such that [u(t) — u,] — fast — o,
then for any choice of positive constanis d; ,j = 1,2, --- , 2p:

2p 2p
_E d; | u;(f) — ue; | = exp (—Ki) Z d; | u;(0) — un; |, tz0
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in which
I’ 1 . 1 & .
K = max max {;—_ (1 + didi’ay), = 22 didi” | gis |}
1 1 1=
where —a; 1s the nonzero off-diagonal element in the jth column of T, and
d; = dj., for j odd, and d;, = d;_, for j even.

The arguments used to prove the results stated in this section can
be modified in a straightforward manner to prove far more general
results concerning networks that contain diodes, capacitors, and in-
ductors, in addition to the elements of the structure of Fig. 1. Some
of these more general results are described in Section IV.

III. PROOTFS

3.1 Proof of Theorem 1
We first show that

F[C ' (u,)] — FIC7 (w3)] = Dy(ua — us), £ = 0 (12)
and
C'(ue) — C7'(wy) = Da(uy — w), ¢ = 0 (13)

with D, and D, diagonal matrices dependent on ¢ and possessing some
special properties.

For ] = 1, 2, e, 2]3, let g,-(uaj) = [C‘l(ua)]_,- and g,-(ub,-) =
[C*(uy) ];- Then, using equation (2),

Ui — Uy = Clgi(e;) — gi(uns)] 4 7i{filgi (wai)] — filgs(ues)1}.
Thus if %.; 7 U ,

filg:(ua )] — filg:(w,)] 7i(Uas s Uans)

Uuj — Up; ¢; + mri(ia; ) Wey)

in which (for u,; # ;)
filgi(w.;)] — fi[gi(uu)]_
9i(Wa) — gi(Wn;)

In a similar manner we find that for all w,; % w.; :

iU, Wy) =

9iWai) — 9i(Us;) _ 1 .
Uaj — Upj C; + Tir(uni H ubi)

Now, let us define forj = 1,2, ---, 2p

i (Uaj , Uyy) = filgi(uas)]
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when %,; = u,; . Then since u.; and u;; are continuous on [0, =), it
follows (see Appendix A) that r;(u,;, us;) is continuous on [0, ).
Since 7; (a5 , ;) 18 nonnegative, it is clear that both

Ti(ua:' |ubi)
c; + 77 (Uai , Uay)

and

1
¢; + 7iri(Uai , W)

are continuous on [0, « ). Moreover equations (12) and (13) are satisfied
with

L T,'(uai 3 ub-")
D, = diag {C,— + 77U, :ub:‘)} "

D, = diag { L } (15)

Ci + Tr'ri(uaa' :ubi)
At this point we have
4w —w) + (D, + @DYw. —w) =B, — By, 120 (16)
with TD, + GD, continuous on [0, «).

We need the following lemma.

Lemma 1*: Let M(-) be a continuous real n X n matriz-valued func-
tion of t defined on [0, =) such that there exist positive constants e and
CijCay =y Cp, With the property that for j = 1,2, -+ ,nandallt 2 0

— Dot | my | 2 e
i#f

Let x be a differentiable real n-vector-valued function on [0, ) such that
dx
ax - >
T, + Mz =0, t = 0.

Then there exists a constant k such that forz = 1,2, .-+ ,n,and allt = 0

| z:(8) [ = k exp(—d).

Moreover, k depends only on the ¢, and the inilial values x,(0).

*In Ref. 4, Rosenbrock states a similar result, but does not give a rigorous
proof. He considers the case in which ¢y = 1forj =1,2, --- , n.
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Proof of Lemma 1: Let the functional s be defined in terms of an
arbitrary continuously differentiable scalar function ¢(-) by
se)() =1 if o) >0 or if o) =0 and (1) >0
= —1 if o) <0 or if ¢(f) =0 and (1) <O
=0 if ¢(f) =0 and ¢'(t) = 0.
Then for ¢ = 0,
Z cis(x)(Hz(H)

Il

— 2 cs@)(t) 20 maz;
= - E T; Z ¢:s(@)(Hm;
= - Z xie;s(x;)(Om;; — Z Z; E cis(@)()m;

—chmﬁ lz; | + Z|$s‘|§ca|m.~s|
1 1 Lot
s —e;[c,-:c,-l.

lIA

But D, e;s(x,) (t)x! is equal to % > i | e;xi |, the right-hand derivative

of D.; | ¢z | [see Appendix B; the derivative of | z; | need not exist
at points ¢ at which x;(t) = 0]. Therefore

&S lom | s —e X loml, 120

i

from which 1t follows that
Z leixi(t) | = exp (—ef) 2 | ezi0) |, t=0.0
7 i

If M(-) satisfies the conditions of Lemma 1, then it is easy to show
that the unique continuously differentiable » X n matrix-valued funetion
X defined on [0, ) which satisfies

X Mx =0 120 X0 =1
possesses the property that (for any norm || - || on E") there exists a
constant K, such that
| XWX || £ K, exp [—¢(t — 7)]

forallt = 7.
Returning now to equation (16), assume that [7'D, + GD,] satisfies
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the conditions on M (+) of Lemma 1. Then with ¥ the solution of
X 4 wp, +6DJY =0, 120 [¥(O) =1
we have
u(t) — w(t) = Y(§)[u.(0) — ,(0)]
+ [ YY) Br) — Bu(D)]dr, 2 0.
Therefore, fort = 0
|ty — w(®) [| = || Y(Oua0) — u,(0)]]]
+ [ 1 vOY@™ 1 B - B dr
= || Y()[u(0) — w(0)] ||
+ K, [ exp (=et = 91 || B — B || dr

for some positive constant K, . Since || B,(r) — By(r) || = 0as 7 — =,
it follows that || w.(t) — w,() || > 0ast— e,

It remains only to prove that [TD, + GD,] meets the conditions
imposed on M(-) of Lemma 1. Since G ¢ D, there exists a diagonal

matrix diag (d, , d», -+ , ds,) With d; > Oforj = 1,2, --- , 2p and
af < %"7‘ < ;Elg
fork = 1,2, ---, p such that both
diag (d,, dy, -+, dy,)CG
and
diag (d,, dy, -+, dop) T
are strongly column-sum dominant. Thus for j =1, 2, --- , 2p

i — 2o ddi |ty | >0

i#]

3ii — Z d.d; | i 1 > 0.

179
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Let W = TD, + GD, . Then, forj = 1, 2, , 2p,
_ T 1
wii t“- C‘ + Tin + gj, ¢ + TJT,
and
-1 — -1 1
;d"di |Wsi‘—;d;fh -|-'r1" +9’.,C T
Therefore
r;
= 2 dd [ [ 2 - — 2 dd" [ty D
¢ + Ty (gii = ?;,' didi” | g:; - (17)

Since r; = 0, the right side of equation (17) is bounded from below by
some positive constant e uniformly in { and j. O

3.2 Proof of Corollary 1
By Corollary 3 of Ref. 5 there exists a unique » ¢ E*” such that

TF@®) + Gv = B., (18)

whenever @ is such that all principal minors of 77'G are positive.
In Reference 5 it is proved that T~ 'G will have this property if 77'G can
be written as A™'B with both A and B stongly column-sum dominant.

Let H = diag (d,, dy, -~ , ds,)G be strongly column-sum dominant
with all d; > 0 and

C’fj(’“ < d:;_l < :(lk)
2k Oy
fork = 1,2, ---, p. Then U £ diag (d,, d», --- , da,) T is strongly

column-sum dominant, and T7'G = U™'H, which proves that equation
(18) possesses a unique solution ».

With » the solution of equation (18), let u, = C(v). Clearly if B, =
then u, = 6. Let u, satisfy

W 4 PRICT )] + GIC @] = (20

with 1%,(0) = u, . Of course, u;(t) = u, for allt = 0. By Theorem 1,
[u(t) — u,] — 0 ast — o, independent of u, .
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3.3 Proof of Theorem 2
Following the proofs of Theorem 1 and Corollary 1,

%(u — Us) + (T'D, + GD)(u — ua) = 0, t=0

in which
. r,-(u,- ,un:i)

D, = diag {C:' + rriu; umr’)}
and

et}

, = dlag c; _|_ TjTr'(u" ,uao!')
Therefore
%delu,-(t)—umJé—Kz_:df|“f(0)_u°°"|' P20

in which

K = min min {Tl (t;; — Z d; d | tu ) (Q'f:' - E did;l | Gii |)}
i ¢ ing

H i
Butforj=12 ---,2p
— >ddi' |ty | =1 — didi'a; . O

(=51

3.4 Proof of Theorem 3
Since TF[C™'(z)] 4+ GC'(z) depends continuously on z & E*, u,

satisfies (see Ref. 6)
TFC ™ (up)] + GC ' (uy,) =
Therefore, following the proofs of Theorem 1 and Corollary 1,

%(u —w) + (TDy 4+ GDYw — us) = 0, £20

in which

-Dl — dl&g{ Ti(ui 1ucni) }

Ci + Tiri(ur' ’ uwi)
and

' 1
D, = diag {Ci + rri(u; ,uwr')}.
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For any z e E*, let || z || denote 2, d; |z; | . Then, fort = 0

H %(“ = Us) ‘ = || (I'D, + GD,)u — u=) ||
-1 Tl'(u’:" ) umf)
: m?x {(1 + didi'a) ¢; + Ty Uey)
S 1
+ .E-l d.d; | Gii I ¢, + s ,uwi)} H u(t) — e “

But, since 7;(u; , U.;) = 0,

K z max {(1 + ddi'a;) iU 5 Ueny)
i

¢; + 7iri(u; y Ueo)

2p 1
1 .
+ Z didi” | g ‘Ci + riri(u; uwi)}

i=1

Thus
d _
Ha(u——um) léKHu—u,H, i =0. (19)
Clearly,
d 1
‘C—ﬁ(u—uw) ’=11m—€|1u(t+e}—um~—u(t)+um||, t=0
Also, for t = 0, the limit
.1
lim —[Hu(i) — U H - Hu(t—l_ f) — U H]

=0+ €

+

+
exists and is equal to — % || v — e || in which as before a
the right-hand derivative (see Appendix B). But, since for any e > 0

and t = 0,

denotes

[| @) — uel] = || ult + & —us || = [|ult + & — us — ut) + Uy ||,
we have
d " d ‘
—d£||u—um||§|dt(u—um) . t=0. (20)
Therefore, using equations (19) and (20),
lu—wllz —Rllu—ull, 20
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and, for ¢ = 0,
[ — w, || = exp (=K || u(0) — uy, |[. O

IV. A SIGNIFICANT EXTENSION

We can easily extend our results to cover an interesting class of
networks containing diodes, eapacitors (not necessarily linear), and
(not necessarily linear) inductors, in addition to the elements of the
Fig. 1 network.

Let each diode be represented by a model of the type shown in
Fig. 7 in which

iy = gg leavs + 7afa(va)] + fava),

with ¢; and 74 positive constants. Assume that f,(-) satisfies the con-
ditions placed on f,(+) and f.(-) of the transistor model. Let there be
g diodes and let vy,,,, and 7o, (k = 1,2, -- -, q) be the voltage and cur-
rent associated with the kth diode.
Suppose that the kth capacitor (we assume that there are r capacitors)
is governed by
d

a [Cops gk Woprarr)] = Topsgun

fork = 1,2, .-+, r, where ¢y, q.:(-) is a strictly-monotone-increasing
continuously-differentiable mapping of E' onto itself such that ¢y, o.x(0)
= 0 and the slope of ¢sp.q:x(+) is uniformly bounded from above and
from below by positive constants.

Finally, let there be s inductors which introduce constraints

d

E [I'.‘ﬂ-iq+r+k(i2p+q+r+k)] = Vspigir+k
L
VWV ="y (vg) ig
-—
o —0
I RN /
1T /S
Cd T4

Vd

Fig. 7— Diode model.
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fork = 1,2, --- , s, in which each l,,.,.,.:() is a function of the same

type as the cspeqsa(-).
Assume that the linear resistive portion of the network introduces
the constraint

i= —Hv+ B, Be®

. . -~ . . . i

in which 7 = (11 y Y2y "y laaprasry UVzpigersny T vz:a+u+r+-) r, v =
. - tr .

(03, V2, **  Vaprasr s Taprasrsrs *° " » lapsqsrss) » and H is a constant

hybrid-parameter matrix of order (2p + ¢ + r + s). Then

4 (¢@) + T76) + Ho = B

where
([C@: = [CQ); , i=12---,2p
=cp;,+ 1), i=2p+1,2p+2,---,2p+¢
= ¢;{v;), j=2p+q+1,--- ,2pt+qg+r
= L), i=2+q+r+1, - 2p+qtr+s;

T'is the direct sum of matrices 7@ I, @ 0, ., , in which I, is the identity
matrix of order ¢ and 0,,, is the zero matrix of order (r + s), and

[F(v)]g [F(U]:) j=112:"':2p
= f;), j=2p+1,--,2p+ ¢

Under our assumptions €'(+) ™" exists and, with % = C(p),

% + TF[C™ (@) + HC '(w) = B. (21)

Let © denote the set of all real matrices M of order (2p + ¢+ r + s) such
that there exist positive constants d,, do, **+ , dopigirsa with the
property that

u) dzr. 1 1
Sy Sa®
fork = 1,2, ---, p (when p 5 0) and diag (d, , da, ** , dapegersa) M
is strongly column-sum dominant.

With straightforward modifications of the arguments already pre-
sented, we can prove (i) that for each @, & E™* """ equation (21)
possesses a unique solution defined on [0, «) such that @(0) = % , and
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(#7) the analogs of Theorems 1, 2, and 3 and Corollary 1. To be more
specific, the analogs of Theorem 1, Corollary 1, and Theorem 2 are:

Theorem 1': If H ¢ O, and i, and @, are solutions of equation (21)
with B = B, and B = B, , respectively, for t = 0, and if [B.() — B,(f)]
— 0 [the zero vector of E***** """ as t — o with B, ¢ ® and B, ¢ ®, then
[T, (t) —Tp(t)] — B ast — .

Corollary 1':  Referring to equation (21), if H & D, and if there exists
a constant vector B,, such that [B(f) — B.] — 6 ast — o, then there exists
a constant vector i, such that [ii(f) — ii,] — 0 as t — o, and @, 18 in-
dependent of the initial condition @, . In particular, if B, = 8, then i, = 6.

Theorem 2';:  If the hypotheses of Corollary 1’ are satisfied with B(t) =
B, fort = 0, then with j, = (2p + ¢ + r + ), we have

334150 — ey | S 0w (—K) 34, |40 — |, 120

for every set af positive constants d, , dy , * -+, apsgsrss SUch that 0 < K =
min (K, , K, , K3} where

K, = min min {_ 1 - Ed ‘-‘f;); (gn E did;" | gi; D}
1sis2p Ti i
K2 = min mln{l (gn E dt'd;l | Gii |)}
2p+15752p+q T i
= . 1
K, = min { (g:i — E did;" | gis D}
2p+q+15iS2p+q+r+a i iy
in which s; = supci(:)forj=2p +q+1, - ,2p+q+ ;8 =
supli(Yfori=2p+q+r+1, - ,2p4+qg+r+s; —a;isthe

nonzero off-diagonal term in the jth column of T; and d; = d;., for j odd
and d; = d;_, for j even. Moreover there exists one such set of constants {d;}.

V. FINAL COMMENTS

The results presented here are quite encouraging in that they are
concerned with the equations of reasonably realistic nonlinear network
models, and provide some understanding of a precise nature in an
area where there is a great need for many results of similar type.
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APPENDIX A

Proof that r;(Ua.; , Us;) 18 confinuous.

Tt is clear that r;(u.; , ;) is continuous at each point ¢ such that
u;(t) # us;(t). Suppose now that ¢ is such that () = u,; (1), and
let € > 0 be given. Since %, , % , g and f] are continuous, there exists
8, > 0 such that

| 11 {g:luas (8 + DI} — 77 {gslwa @1} | = e

forall | 5| < & . Then for | n| = &, either u,;(t + n) = u; (¢ + 1) in
which case

“"i[unf(t + 7), wy(t + )] — rilu.; (@), i (t)] ¥ = ¢
or Uss(t + 1) 5 uy(t + n) and (using the mean-value theorem)

filgilu.;(t + w1t — f:'{gi[uhi(t 4+ )]}
gilua;(t + m] — g:lw,i(t + 1))

riluai (4 1), ui(t + 7] =
= fi(®)
in which
| & — gilua; (1)) | £ max { | gilua;(t + 2)]
—giluai O] | | gils; ¢ + m)] — gilua; ] ] 3.

In the latter case, there exists 8, > 0 such that | f/(§) — ' {g;[u.; (0]} |
< eforall|n| £ 8. Thus for all | n | £ min (8, &}, we have

| 7iltei (& 4 1), wes @ 4 1)1 — 7{wa; (8), wes (D)) | = e
APPENDIX B

Proof that the Right-Hand Derivative of | x; | exists and s equal to
s(x;) (1)
If ¢ is a point such that z;(f) 0, then it is clear that

% |z, | = s(z) (i)

Il

At t such that z;(t) = 0 and zi(t) # 0,

lim stz () BEED a0

s(x;)(Dz; I . di
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Finally if z;(t) = 0 and «(f) = 0, then
0= lim [ap) | = lim BEEOL Ly

=0+ =0+
tstst+e

since z; is continuously differentiable.
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