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An upper bound on the error probability is obtained for digital communi-
cation (with average power P, and no bandwidth constraint) in the presence
of additive white gaussian noise (with one-sided spectral density N o) with
the use of a noiseless feedback link. A repeat-request strategy is used: the
receiver decodes a signal only when it is relatively sure that one particular
message was actually transmitted, otherwise it requests (via the feedback
channel) a retransmission. We show that as the coding delay T becomes
large, we can transmit at an effective rate R < C = P,/N,, the channel
capacily, with error probability P, approximalely exp [—TI(VC —
VR + € — R}, which is a considerable improvement over the reliability
altainable with a one-way channel. These results parallel those obtained
earlier by Forney for the discrete memoryless channel.

I. INTRODUCTION

In a recent paper, Forney studied a repeat-request strategy for
communication of digital information over a discrete memoryless
channel when a fedback channel is available.® In this system the
receiver decodes a received message only when it is relatively “sure”
that one particular message was actually transmitted. If the receiver
is not confident that one particular message was actually transmitted,
then it requests (via the feedback channel) that the transmitter repeat
the message. Forney showed that considerable improvement in the
resulting error probability (over the best one-way scheme) was ob-
tainable with a negligible degradation in the effective rate of trans-
mission. In this paper we apply Forney’s ideas to the additive white
Gaussian noise channel (with no bandwidth constraint) and obtain
analogous results. Furthermore, our coding scheme is constructive—
the codes being orthogonal codes.
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We will consider the following channel. The channel input signal
is a real-valued function s(t), defined on the interval [0, T, which
satisfies the “energy” constraint

f " dt = PT 1)

The average signal ‘“power” is therefore P, . The channel output »(f)
is the sum of s(f) and a sample n(f) from a white Gaussian noise process
with one-sided spectral density N, (and with mean zero). By expanding
s(t), 7(t) and n(t) on any orthonormal basis of £:[0, T, it is easy to
show that an equivalent channel model is as follows.®"® (This equivalent
channel model is the one we use in this paper.) The input signals are

are (semi-infinite) vectors x = (:1;1“, 2., ---) which satisfy
o0
>z = AT. (2)
k=1

The channel output is a vector y = (y,, %2, **+ ), where

Ye = T + 2, k=12 ...,

and the z,(k=1, 2,- - -) are independent, Gaussian variates with zero mean
and unit variance. The parameter A is equal to 2P,/N,, and we as-
sume that A is held fixed throughout the paper. We also assume that it
takes T seconds for the channel to process x, and that successive T-
second transmissions are independent.

A code with parameters M and T is a set of M signals (called “code
vectors” or “code words”) x; = (zi1, Tin, "), 2= 1,2, --- | M,
which satisfy equation (2), that is

§z3k=AT, i=1,2,.--, M. (3)

We assume that each of the M code words is equally likely to be trans-
mitted, so that the {ransmission rate is B = 1/T In M nats (natural
units) per second, and M = ¢””. It is the task of the receiver to examine
the channel output y and to announce the code word, say D(y), which
it believes was actually transmitted. Let P,; be the probability that
D(y) # x; given that x; is transmitted. The overall error probability
is therefore
1 M

P.=731 2

P,,-.

-

It is easy to show that for a given code, the “optimal’” decoding rule D
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(which minimizes P,) selects for D(y) that code word x, which maximizes
(with respect to 7) the inner product

X,y = Z Tirlx

Define P*(M, T) as the smallest attainable error probability P, for
a code with parameters M and 7. Set M = [¢"”], and let T — « with
the rate R held fixed. Then it is well known that if R < A/2 =
P,/N, £ C, the “channel capacity,”

P¥([¢""], T) = exp | —Eo(R)T1 + e(T)]}, (4)

where E,(R) > 0, and (T) — 0 as T — «."*" Thus at rates B < C,
the error probability tends to zero exponentially in 7. Further, for rates
R > C, P*([e®7], T) — 1, so that the capacity C is the supremum of
the rates for which “error-free” coding is possible.

Although this type of behavior of P* is typical of a large class of
channels, the present channel is unique in two ways. First the exponent
E,(R) is known exactly, namely

¢/2 — R, 0 <R < C/4,

<
ED(R) =
[c* —RY?, C/4<REZC.

(5)

Second, an explicit construction of codes which achieve error probability
as in equation (4) is known. In fact, P, as in equations (4) and (5)
can be achieved when the code is any set of M orthogonal vectors.
The simplest such code is that for which z;, (the kth coordinate of x,)
is given by

(AT}, & =1,
0, k # i,

i=1,2-,M, k=12 --. (6

ik =

For this orthogonal code, the inner product of y and the 7th code word is
&, y) = 94T}, =12 -, M;
so that the optimal decoding rule is
D(y) =x; i y:>y; for all 7 # 7, 127 M. )

With probability one, (7) is satisfied for exactly one 7. Notice that
the coordinates y;(j > M) are irrelevant to the receiver. Further,
from the symmetry of the orthogonal code (6), we can without loss
of generality, assume that code word x, is transmitted. Hence, the
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error probability is
hig
P.=P,=Pr Uln =y, ®)
i=2

where the probability is computed with {y,}{’ independent unit variance
Gaussian random variables with By, = (A7) and Ey; = 0(2 < j = M).

Now suppose we can use a noiseless feedback link. As before, we
transmit one of a set of M = ¢"7 orthogonal signals {x,}", where x, is
given by (6). Instead of the decoding rule (7), let us use the rule

Diy) =x; ify, >y; + A forallj =4 1=35= M, 9)

where A > 0 will be chosen later. If no y; satisfies (9) then we
request, a retransmission via the feedback channel, and use (9) on
the second received vector, and so on. The probability of error de-
creases as A inereases. The price which we pay for this increased reli-
ability is an increase in the length of time which it will take to complete
the transmission of the M-ary message, and the consequential reduction
in the effective rate of transmission. In fact, let K5 be the event that we
ask for a retransmission, and let P(E3) be its probability. Then from
the assumption that successive transmissions are independent, the
expected number of T-second transmissions required to accept a
message is

> j Pr {j transmissions are required}

i=

Il

3l — PEMPEN = [ - PED) 2 P

1 1
[1 — P(ER)]'[I _ P(ER)]? 1= P(ER).

Thus the average length of time required to transmit the M-ary message
is T = T/(1 — P(Eg)). If P(E) is small, then T is not much greater
than T.

Suppose that we use this repeat-request strategy repeatedly—that is,
if the receiver does not call for a retransmission, then the transmitter
sends a new M-ary message. Fork = 1, 2, - - - , let the random variable
N be the number of M-ary messages which the receiver accepts (that is,
it does not call for a retransmission) in kT seconds. Then we can write

N, = EE:’)

i=1
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where the random variables & = 1 if the receiver accepts a message
on the jth T-second interval, and & = 0 otherwise. Note that Pr{¢ =
0} = P(Eg), and that the {&}.%, are independent (since we have as-
sumed that successive T-second transmissions are independent). Thus
(@) EWN. = kE®E) = k(1 — P(Eg))
(#) No/k—1 — P(Eg), ask— =, (10)
with probability 1.
Statement (i) follows from the strong law of large numbers (see Ref.

3, p. 190). Since each M-ary message contains In M = RT nats, the
effective rate of transmission R, in the light of (10),

_ [EWNJIRT
B kT

= R[1 — P(Ey)] = R(T/T).

R

nats/sec

(11)

Let us turn our attention to the probability of error. Since we are
using the orthogonal code of (6), we can, as above, without loss of
generality, assume that code word x, is transmitted. Using the decod-
ing rule of equation (1.9) we make an error only when for some j > 1,
y; > 9.+ Aforalli = 1,2, ---, M and 7 5 j. (In this ease D(y) = x;.)
Thus the error probability is

A
P, =Pr UM ly; > v + 4} (12)
i=2 i
As in (8), the probability in equation (12) is computed with Ey, =
(AT and Ey; =0 (2 < j < M).
Let us further define E, as the event that either an error occurs or a
repeat-request occurs. If x, is transmitted, £, has probability
M

Pr(E,) = Pr \.{ vy = v + Al (13)
where as above, the probability in (13) is computed with Ey, = (4 T}
and Ey; = 0, § > 1. Clearly the probability of a repeat-request is

P(ER) = P(El) - P, = P(El)- (14)

Consider the parameter A. In the interest of minimizing P,, we want
to make A large. However, in the interest of minimizing P(E;) and
therefore making R as close to R as possible, we want to make A small.
The approach which we will take is to choose A just small enough so
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that as the parameter T — o (R is held fixed), P(E,) — 0; so that
by (14), P(Ez) — 0. Thus the effective transmission rate R ~ R.
We will see that this results in a considerable improvement in P,
over that of equations (4) and (5). Roughly speaking, we will show
that the resulting exponent is increased from that in equation (5) to

approximately
Ex(R) = [C* — R + C — R = 2C}(C* — RY). (15)
The exponents Eq(R) and Eg(R) are plotted in Fig. 1. Notice that the

improvement is greatest in the neighborhood of capacity where (as
R — CO)Ex(R) ~ (C — R) and E,(R) ~ (C — R)*/4C.

II. SUMMARY AND DISCUSSION OF RESULTS

The main result is given as a corollary to the following two theorems
which provide information on the trade-off between P, and P(F,) as
A is varied. The proofs are given in Section III.

Theorem 1: Let {y.}¥, be independent Gaussian random variables with
unit variance and expectaiion

Ey, = (AT)i’ (16)
Ey; = 0, 2=j=M.
2C
1.5C
1C
Er(R)
05C AN
Eo(R) \
0 \
0 025C 05C 075 C 1C

Fig. 1 — Exponents for white Gaussian noise channel: Eo(R)-one way exponent,
Er(R)-repeat-request exponent.
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Let M = "7, where 0 < B < A/2 = C,and let A = 8(2T)}, where
¢ — @R} =5 < C— R a7
Then

PEB) =Pr \J (s S v, +A) S2exp (—[CH— BV = 8PT).  (18)

Notice that 8 = 0 will satisfy (17) if R = C/4. In this case P(E,) = P,
(see (8)), and (18) yields Eo(R) = [C* — R'I(C/4 = R = (), a fact
which is contained in (5). In fact, the proof of Theorem 1 closely
parallels the derivation of P, for orthogonal codes (for a one-way
channel).

Theorem 2: Let {y:}", be independent gaussian random variables with
unit variance and expectation

Eyl = (AT)l, (19)
Ey; =0, 2=j=M.
Let M = e®7, where 0 < R < A/2 = C, and let A = 8(2T)}, where

5> ¢ — (4R (20)
With R and 6 held fized, and 0, , 0, arbitrary but satisfying
91 > 0, (21&)
L]
0<6< R (21b)
5 — [C' — (4R)')
2 H

then for T sufficiently large,

P, =Pr UMy > v + 4
F=2 ] (22)

21 + 8,) exp {—[(R} + 6 — 6,)° + (C* — R} + 6,)* — R]T}.

Again notice that § = 0 will satisfy (20) if B > C/4. In this case
also, (22) yields Eo(R) = [C* — R, when R > C/4 (since 6, can
be made arbitrarily small).

Let us now use these theorems to find the value of A = &(2 T)} which
gives the smallest upper bound on P, without substantially changing
the effective rate B = R[l — P(Z,)]. Since P, is a decreasing function
of &, we choose & as large as possible with the proviso that P(E,) — 0.

A
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From Theorem 1, this value of § is
6=C — R -y, (23)

where v, > 0. If v, is sufficiently small, this choice of & satisfies (17)
and (20). With é so chosen, for any v, > 0 we can find a 7 sufficiently
large so that B = R(1 — v,). Further, substitution of equation (23)
into equation (22) yields an exponent

—[C* — v, — 6.)" + (C* — R 4+ 4,)* — RIT.

Finally, since v, , 72, 0, and 6, can be made arbitrarily small we have
our main result:

Corollary: Let 6, > 0, ¢ > 0 be arbitrary. Let B < C. Then for T
sufficiently large, there is a repeat-request communication system using
orthogonal codes with an effective rate of K and error probability

P, =201 4 6)exp {—[(C' — RY)* + C — R — dT}.

Let us turn our attention to (4) and (5) which give the error prob-
ability for the one-way Gaussian channel. The fact that E,(R) =
(C* — RY® can be demonstrated by a “sphere-packing” argument.”
This argument states that P*(M, T) = @, where @ is the probability
of error which would result if it were possible to subdivide Euclidean
M-space into M congruent cones (each with apex at the origin), one
for each code word, and each code word were placed on the axis of its
cone at a distance (A7)} from the origin. Setting the “sphere-packing
exponent”

Esp(R) = (C* — RY?,

we have from the above corollary that for effective transmission rates
R < C we can obtain an error exponent arbitrarily close to

EF(R) = EEP(R) + C — R (24)

For discrete memoryless channels it is possible to find a lower bound
to the optimal (one-way) error probability using an analogous sphere-
packing argument.” Forney showed that using a repeat-request strategy
similar to the one used here, one can obtain an error exponent arbitrarily
close to that of equation (24) [with the appropriate Esp(R)].* Forney
also studied the so called (discrete) “very noisy channel,” which is
closely related to our Gaussian channel* and obtained results similar

*Our Gaussian channel may be thought of as a “very noisy channel” since
the signal-to-noise ratio per coordinate is zero.



REPEAT REQUEST STRATEGY 79

to our results. Thus, in the light of Forney’s results, the above corol-
lary is not surprising.

Let us also remark that Kramer has found a scheme for our white
noise channel with a feedback link that attains an error exponent of
C — R, which is less than that in equation (24).* In Kramer’s scheme,
the receiver observes the signal until it is sufficiently confident that
one particular message was actually transmitted. It then informs the
transmitter, via the feedback channel, to start the next M-ary trans-
mission, thereby using the feedback channel only once per M-ary
message. In the repeat-request scheme studied here, the number of
uses of the feedback channel per M-ary transmission is an unbounded
random variable. Thus the two schemes, while similar (in that the
feedback channel is used only to convey a “decision”), are not di-
rectly comparable. On the other hand, there are schemes which use
the feedback channel considerably more heavily (so ealled “informa-
tion feedback”) which in some cases attain somewhat better per-
formance than the repeat-request strategy. (See for example Refs. 5,
6, and 10).

Finally, an' important problem which has been completely ignored
here is the requirement that the transmitter have a buffer in which it
can store data which will accumulate at the transmitter at times when
the receiver asks for retransmissions. If the buffer has finite capacity,
it will occasionally overflow, introducing a further source of errors.
Some quantitative results on this problem have been obtained by the
author, and will be reported in a future paper.

III. PROOFS OF THEOREMS

We begin with some definitions. Let

0a) = Gy oD (—a7/2), —» <a <,
be the standard Gaussian density, and let
o) = [ g da, —w <u<
be the eumulative error function, and let
(1) = fm g@)da = 1 — d@w), —w <u<w,

be the complementary error function. Let b = (AT)! = (2CT)! so
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that y, has density gla — b) and y; (2 < j < M) has density g(a).
We will use the following

Lemma 1: Foru = 0,®,(u) < exp (—u°/2); and for u £ 0,®,(u) =
exp (—u*/2) (Wozencraft and Jacobs Ref. 8):

Proof: For u = 0,

fum f 9(@)g(p) da df < f [ o@o® de d = %—J) ,

(®.(w)]?

where ® = {(e, 8): & + 8° = 2u°, @ = 0, 8 = 0}. Taking square roots,
we have

2. s E2 YD < oxp (/).

The rest of Lemma 1 follows on noting that ®(u) = ®.(—u).

Proof of Theorem 1: Let R (0 < R < C) and & satisfying (17) be
given. Since y, has density g(a — b), and the {y.}}* are independent,

(A%

P(E1)=Prg{yi 1 — A}

at least one
Yi = h — A

=j:dag(a—b)Pr{ y1=a} (25)

=j:dag(a—b)PrH[y,-_2_a—A}.

Now since the y; (j > 1) have density g(a),

M 1
P"H‘y'g"““é{(M—l)Pray,-ga—A}gMas:(a—A).
(26)

Letting a be a parameter to be specified later, we break the integral of
equation (25) into two parts, @« < a and @ = a. We then apply the first
upper bound of (26) in the first part, and the second bound of (26)
in the second part. Thus

P(E) < f_ gla — b) da + M fﬂ ola — b)d.(a — A) da.

If we assume that
A, (27

)
(1%
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we can use the bound of Lemma 1 on ®.(a — A) and obtain
PE) s [ oo~ dat M [ gla—b)exp—(e— 4/2)da

= P, + MP,. (28)

We now overbound P, and P, . First,
a a=b
- g(a—b)dcx:f o(@) dee = ®(a — b).

If we further assume that

1A

a=b (29)

we can use Lemma 1 and obtain
P, < exp [—(b — 0)*/2]. (30)

Second,

P, = [ Gy o0 [—Ha — b exp [—3a — &) da

- f ) (2—}04, exp [—(a - 9*—@)] exp [—(b — A)*/4] da

= H\b/é- 4 (211r)* fv2[a_(b+A),zl exp (=0°/2) dv

itz (4]

If we now make a third assumption that

sz 2t2 (31)
2
we can use Lemma 1 again (and 27} £ 1) to bound P, :
P, £ exp [—(b — 4)"/4] exp{ [ b ns A)] }
(32)
— exp [—(b — @)*/2] exp [—(a — 4)"/2].

Inserting the bounds on P, and P, into (28), we obtain

P(E,) < exp [—(b — a)*/2]{1 + M exp [—(a — 4)°/2]},  (33a)
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where from (27), (29), and (31),

IIA
)

I\
o

(33b)

It remains to choose the parameter a. A good choice will probably
result when the upper bound of (28) is differentiated with respect to a
and the result set equal to zero:

gla —b) — Mg(a — b) exp [—(a — 4)°/2]= 0,

or
M exp [—(a — A)*/2] = 1, (34a)

or since M = exp (RT) and A = §(27)%,
a = (R* + 8) (2T (34b)

Let us now verify that when 0 < R < C, constraints (33b) are satisfied
for this choice of a. Since R > 0, a = A. Further, since b = (20T)},

—(B8) = o - e - an| 2]

since & satisfies (17). Finally, from (17),
b—a=I[C'— (B + 8))T)' 2 0

1%

0,

Thus constraints (33b) are, in fact, satisfied. Thus from (34) and (33a)
P(E,) = 2 exp [—(C' — R* — 8)°T],
which is Theorem 1.

Proof of Theorem 2: Let R (0 = R < C), 8 > €' — (4R)} and
0, , 0, satisfying equation (21) be given. Then

P, —Prun[y‘<1,—A] EPrn{J,<y,—A},

i=2 i#j i=2 i]
or

P,=MPr Ny <y — A}, j =2,
LE F]
The last inequality follows from the symmetry of the distributions of
the y; (j = 2). Recalling that the density for y; ( = 2) is g(a), and that
the {y:};" are independent,
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_ ® for all z'#j} _ }
—Mf_mg(a)daPr{yi<yi_A Y = a

=Mf g@) da Pr () |y < a — Al

—o0 177

Again using the independence of the y, and the fact that the density of
1y, is g(a — b) we have

Pridivo<e—a) [ s waa]| [ o0 aa]”

Bla — A — b)[Pla — AR

li

Substituting, we obtain
P.<M f " @b — A — B)da — A" da. (35)

Also note that
[Bla — A" = [1 — &fa — )]
exp [—(M — 2)®.(a — A)].

(36)

A

As in the proof of Theorem 1, we break the integral in (35) into two
parts @« < a and a« = a, where a will be specified later. In the range
a < a we overbound ®(a — A — b) by unity, and [®(a — A)]" " by
(36). In the range « = a, we overbound [®(a — A)]"™* by unity. Thus

P <M f " gl exp [—(M — 2)b.(a — A)] de

+ M fm gla)®a — A — b) da = MP, + MP, . (37)

We now overbound P, and P, . First,

P, = [ gle) exp [~ — Da — )] da
< exp [—(M — 2)d.(a — )] f_ " () de (38)
< exp [—(M — 2)3.(a — A)].

Second, if we assume that

a<b+ A (39)
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we can write

P,=f:°g(a)q>(a—a—b)da

= f ’ gl@)®P(e@ — A — b) da + j:a gl@)®(e — A — b) de.

In the first integral, « — A — b = 0, so that we may use Lemma 1 to
bound ®(a — A — b). In the second integral, we overbound (e« — A — b)
by unity. Thus

Pos [ o@ewi—@—a—b72dat [ o) da

< fm oe) exp [—(a — A — B)/2] da + ®.(A + b).

Since from (20) and the fact that B < C,
A+b=(6+cHen > 2ct - RHEM >0,

we can again use Lemma 1 to overbound ®,(A + b). Using the definition
of g(a), we have

P, < fm(—z—}r)j exp (—a’/2) exp [—(a — A — b)*/2] da

+ exp [—(A + b)*/2]

= exp [—(b + A)*/4] (2) fﬂoexp[—(a—HTA)z]da

+ exp [—(A + b)*/2]
—1/2 =
= exp [—(b + A)°/4] -(25-3; exp (—v*/2) dv

VZ[a—(b+A)/2]
+ exp [—(A + b)*/2]

Sexp[—(b+ A)’/4]¢,[\/§(a _b _'2_ A)] + exp [—(A + b)*/2].

If we further assume that
az b+ 4)/2 (40)

then we can again employ Lemma 1 to bound &.[4/2(a — (b + A)/2)].
Hence



REPEAT REQUEST STRATEGY 85

exp [—(b + A)*/4] exp {—[a — (b _; A)]g}

= exp [—3[0" + (@ — & — b)’]} + exp [—(a + B)'/2].
The difference between the second and first exponents in (41) is
A+ - @+ @— A= b)) —de— (A+DI=O,

by (39) and (40). Thus, the first term of (41) is not less than the
second, and

P,

A

P, < 2exp {—3a* + (@ — A = b)’]}. (42)
Inserting the bounds on P, (38) and P, (42) into (37), we obtain

P, < Mexp[—(M — 2)2.(a — 4)]
+ 2M exp {—3}[a* + (@ — & = b)]}, (43a)
where from equations (39) and (40),

b+ A
2

It remains to choose the parameter a, and here we will simply state
a good choice of a without giving a motivating argument. Let

a = (R + 8 — 6,)2T)} (44)

(where 8, is the arbitrary parameter which was selected at the begin-
ning of the proof). We must verify that constraints (43b) are satisfied
for this choice of a. First, since R < C and 62 > 0,

b+ A—a=(C'— R+ 6)2D!>0.
Thus a < b + A. Second, from equation (21b),

<a<b+ A (43b)

o (2E2) = 35 - [} - 4N - 200D} 2 0,

o that @ = (b + A)/2 and (43b) is satisfied.

Now consider the second term in (43a). Direct substitution of (44)
shows that this term is

2 M exp {—[(R* + 8 — ) + (C* — R' + 6)'IT},

a single exponential decay in T (as T — ). Finally consider the
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exponent of the first term of (43). Substituting (44), it is
—(M — 2)®,(a — 4) = —(exp (RT) — 2)&.{[R} — 6,](2T)}}.

Making use of the asymptotic formula ®,(u) =~ (2wu)~}™* as
u — o (see p. 106 of Ref. 2), and letting T — o« (and noting that from
equation (21b), B! — 6, > 0), this exponent is asymptotic to

—1
@ — ayery &P KD

where K > 0. Thus the first term of equation (43a) decays to zero as a
double exponential in T, very much more rapidly than the second term
of equation (43a). We can find a T sufficiently large so that the ratio of
the first to second terms of equation (43a) < 6, . With T so chosen

P, = (14 6)2exp {—[(R*+ 6 — 6,)" + (C* — R* + 6,)* — R]T}
which is Theorem 2.
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