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We consider the problem of transmission of digitel data over a discrete-
time Gaussian channel with the use of a Gaussian feedback channel. We
are particularly interested in the case where the signal-to-noise ratio in the
feedback channel is finite. By making use of simple extension of P. Elias’
scheme for transmitting analog data over this channel with feedback, we
show that 1t is possible at some transmission rates to increase the error-
exponent (reliability) compared to the error-exponent found by C. E.
Shannon for the one-way channel. In particular at transmission rate zero,
we show that the error-exponent can be improved by a factor of 1 +
[8/(0 + p)], where p and p are the forward and feedback signal-to-noise
ratios respectively.

I. INTRODUCTION

We consider the problem of transmission of digital data over a dis-
crete-time Gaussian channel with the use of a Gaussian feedback channel.
We are particularly interested in the case where the signal-to-noise
ratio in the feedback channel is finite.

In Sections II and III we consider Elias’ scheme and a simple exten-
sion for transmitting analog data over this channel with feedback.'"*
In Section IV we apply this extended Elias scheme to the digital trans-
mission problem. The main result is that for any rate B < E*, a number
less than the channel capacity, it is possible to transmit digital data at
a rate B with error probability

P, = exp [—E*n, + o(n,)], as n, — =,
where n, is the encoding-decoding delay, and E* > E,, the “one-way”’

exponent estimated by Shannon.” In particular, when R = 0, E, = p/4
and E* = (p/4)[1 + (1 + p)”'], where p and p are the forward and
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feedback signal-to-noise ratios respectively. Finally, we suggest a
modfication of this scheme which will probably permit extending RB* to
capacity.

Stimulated by the work of Schalkwijk and Kailath, a great deal of
research has been done on this problem (see for example Refs. 4-11).
To the present author’s knowledge, however, the result in this paper
is the first to show that a noisy feedback channel can improve the error-
exponent for digital communication on a band-limited channel. (Ref-
erences 4 and 8 treat the infinite band case.) Like the optimal coding
schemes for the one-way channel, our scheme is not constructive. Let
us remark here that this discrete-time channel is a model for the con-
tinuous-time Gaussian channel with a bandwidth constraint. (See Ref.

12 or 13.)

II. STATEMENT OF ELIAS’ PROBLEM

We define a Gaussian channel as follows. The input is a real number
z and the output is a number y = = 4+ 2, where the “noise” zisa Gaussian
variate with mean zero and variance ¢° and is independent of z. We
assume here that the channel input  is a random variable, and require
that the expectation Ex® < P, the “signal power”.

To begin with, let us suppose that we wish to transmit the value of a
random variable # with the use of N transmissions over a Gaussian chan-
nel (with parameters P and ¢°). Assume also that a feedback Gaussian
channel (with parameters P and ¢°) is available which we may use
(N — 1) times alternating with the & forward uses. We assume nothing
about the statistical nature of 8 except that the expectation E6° = o .
Our goal is to obtain an unbiased estimate  of # with minimum possible
mean-squared error. Further, we restrict ourselves to linear processing
of all data. We now state the problem and constraints precisely.

The forward and feedback channels are memoryless Gaussian channels
with signal power P and P respectively and noise power o° and ¢’
respectively. Thus for the nth use of the forward channel the input is
z, and the output is y, = x, + 2, , where Ez} = P and z, is a Gaussian
variate (independent of x,) with mean zero and variance ¢°. For the
nth use of the feedback channel the input is £, and the output is 9, =
£, + 2,, where E42 = P and 2, is a Gaussian variate (independent of
£,) with mean zero and variance ¢°. We assume that the random varia-
bles {6, z, , 2.} are independent. The condition requiring “linear process-
ing’’ means the following. The input z, to the forward channel (at the
nth use) is given by
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n—1

T, = a8, r, = a0 + Z bl n=223, --,N. (1)
k=1

The input to the feedback channel &, (at the nth use) is given by

= > ey, mn=12 - N-—1 (2)
k=1

Finally, the receiver’s estimate after N uses of the forward channel
(and N — 1 uses of the feedback channel) is

N

b= 2 dy.. ®3)

n=1

We require that é be unbiased, that is, that given that § = 6, , the
conditional expectation of  is

E@|e=296,)=0,. 4)
The mean squared-error, which we wish to minimize is
= E(6 — 6) )
Let 7%, be the minimum attainable value of ~* (over all choices of
the coefficients a, , bui , i , d,). It is easy to show that

(1) v3pr depends on P and ¢ only through their ratio p = & p/et
(the forward “‘signal-to-noise’ ratio), and on P and ¢* only through
P

(%) for a given N, p, and , ¥5py 1S proportional to o .

Thus we can write

TEOPT = UEEQOPT(p! ﬁr N),

and our problem reduces to the determination of eoprlo, 8, N) (which
can be thought of as a noise-to-signal ratio).

Let us observe that from the linearity assumptions (equation 1, 2,
and 3) it follows that

6 = ab + g (6)
where @ is a constant and £ is a Gaussian variate independent of 8. From

equation (4) it follows that @ = 1 and Ef = 0, and from equation (5)
Eg® = 4°. Thus we ean rewrite equation (6) as

=6+ (7)

where ¢ is a Gaussian variate (independent of 0) with mean zero and
variance v°. The important point here is that the entire process may
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be thought of as reducing the N uses of the forward channel (and the
N — 1 uses of the feedback channel) to asingle one-way Gaussian channel
with signal-to-noise ratio (£6%)/(Et") = oi/v".

III. ELIAS’ RESULT

Elias solved our problem for the special case N = 2, where two uses
of the forward channel and one of the feedback channel are permitted.'"*
In his solution Elias admits the possibility that for the two uses of the
forward channel, the signal-to-noise ratios are p, and p, respectively,
where p, is not necessarily equal to p, . His result is that the smallest
attainable mean-squared error is given by

-1
2 _ 2 P12 .
vE U’[pl Tt T a0+ F p] ®

As discussed at the end of Section II, we can consider t.he entire process
as a single one-way gaussian channel with signal-to-noise ratio of/v; .
We now turn to our problem, and note that we can obtain a (suboptimal)
solution by applying Elias’ technique recursively. For N = 2 we can, by
setting p; = pa = p in equation (8), obtain a signal-to-noise ratio

= {2p + p°8/[(1 + p)* + 5]}. For N = 3 we can, by setting p, = S,
and p, = p, obtain a signal-to-noise ratio S; given by

= Pﬁsz ]
S e e e |

and for arbitrary N we can obtain a signal-to-noise ratio Sy given by the
recurrence

_ pBSH-1
Sw= St et TR+ F 8 )

with initial condition ,
S, = p. (9b)
Although equation (9) is difficult to solve explicitly we can obtain

an approximate solution valid for large N. From equation (9a)

Syr + p < Sy SN_+p+(1'f;’) (10)

so that

pN = Sy = (p + )N. (11)

l+p
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We will show that as N — =, Sy is asymptotic to the right member of
inequality (11). Let us rewrite equation (9a)

1+po+5|™
Tt 7 [‘ Ta+ p)SN] ' a2

Let Sy = [p + pp/(1 + p)IN + 8y, and expand the last term in equa-
tion (12) into a power seriesin (1 + p + 5)/[(1 + p)Sy]. We then obtain,
after cancelling terms,

S~+1—S~+P+

(445, A+po+p)’ ]
'5N+:I“' 8N+(1+p)|: (l‘f‘p)S;\r (1+P)2Si + (13)

From equation (11) we have that Sy = O(N), so that equation (13)
becomes

Sys1 — Oy = _O(I/N); (14)
and therefore
vy = —O(log N). (15)

Thus we conclude that

Sy = [ (1 _|_ )]N O(log N). (16)

An exact solution for Sy for various values of p, §, and N is given in
Table I. S;' provides an upper bound to €pr -
Elias also found a lower bound to €ypy ,

eopr = 1/[pN + p(N — 1)]. (17)

This is the mean-squared error which results when the feedback chan-
nel is reversed and used in the forward direction, and we are allowed
to use the forward channel N times and the feedback channel (N — 1)
times. Combining these results we have that

[(p + ANT" = €opr = [( )N 0(log N)] (18)

Let us remark here that the recurrence (9) can be solved exactly for
the special case j = <. In this case equation (9a) becomes
Sy = Sx—l(l + P) + p, (19)

and the solution is
=1+ - 1L (20)
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TaBrLE I—TuE ExTExpDED ELIAS SCHEME

FORWARD SNR
SNR

ASYMP.

=P

= limy_, SWN

=p+

pb
145

FEEDBACK SNR = 5
ASYMP. E(0) = E*(0)

FORWARD SNR = 0.01

FEEDBACK SNR

ASYMP.  SNR = 0.010099 ASYMP.  E(0)
N EQ. SNR = Sy EQ. E®) = Ey(® | CAPACITY =y
1 0.01 0.0025 4.97516E-03
2 0.020001 2.50012E-03 4.95089E-03
3 3.00029E-02 2.50024E-03 4.92693E-03
4 4.00058E-02 2.50036E-03 4.90328E-03
5 5.00095E-02 2.50048E-03 4.87992E-03
6 6.00142E-02 2.50059E-03 4.85686E-03
7 7.00197E-02 2.50071E-03 4.83408E-03
8 8.00262E-02 2.50082E-03 4.81158E-03
9 9.00334E-02 2.50093E-03 4.78935E-03
10 0.100042 2. 50104E-03 4.76740E-03
FORWARD SNR = 0.01 FEEDBACK SNR = 0.1
ASYMP.  SNR = 1.09901E-02  ASYMP.  E(0) = 2.74752E-03
N EQ. SNR = Sy EQ. B(0) = Ey(0) CAPACITY = cy
1 0.01 0.0025 4.97516E-03
2 2.00089E-02 2.50112E-03 4.95284E-03
3 3.00266E-02 2.50222E-03 4.93078E-03
4 0.040053 2.50331E-03 4.90895E-03
5 5.00878E-02 2.50439E-03 4.88738E-03
6 6.01309E-02 250546 E-03 4.86604F-03
7 7.01823E-02 2.50651E-03 4 84493E-03
8 8.02417E-02 2.50755E-03 4.82405E-03
9 9.03091E-02 2. 50859E-03 4.80340E-03
10 0.100384 250961 E-03 4.78297E-03
20 0.20154 2.51924E-03 4.59009E-03
30 0.303354 2.52795E-03 4.41569E-03
40 0.40574 2.53587E-03 4.25704E-03
50 0.508622 2 54311E-03 4.11197E-03
100 1.02871 2.57178-03 3.53701E-03
150 1.55532 2.50219E-03 3.12725E-03
200 20861 2.60762E-03 2.81727E-03
250 2.61979 2.61979E-03 2.57283E-03
300 3.1556 2.62967E-03 2.37410E-03
350 3.69305 2.63789E-03 2.20869E-03
400 4.23179 2.64487E-03 2.06844E-03
450 4.77156 2.65087E-03 1.94771E-03
500 5.31219 2. 65609E-03 1.84248E-03

t The notation “3E-5"" means 3 X 1073.

=0.01
= 2.52475E-031
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TasLe [—(Continued)

FORWARD SNR = 0.01 FEEDBACK SBNR =
ASYMP. SNR = 0.019901 ASYMP. E(0) = 4.97525E-03
N EQ. 8NR = 8, LQ. E(©) = Ey(0) CAPACITY = e
1 0.01 0.0025 4 97516 E-03
2 2.00495E-02 2.50619E-03 4 .96279E-03
3 3.01483E-02 2.51235E-03 4.95045E-03
4 0.040296 2.51850E-03 4 93816 E-03
5 5.04925E-02 2.52463E-03 4 92591 E-03
10 0.102197 2.55493E-03 4 .86529E-03
15 0.155082 2.58470E-03 4 .80572E-03
20 0.209115 2.61394E-03 4.74722E-03
40 0.436077 2.72548E-03 4. 52394E-03
60 0.678846 2.82852E-03 4.31755E-03
80 0.935508 2.92346E-03 4.12731E-03
100 1.20434 3.01085E-03 3.95214E-03
300 4.31176 3.59313E-03 2.78320E-03
500 7.79234 3.89617E-03 2.17388E-03
700 11.4295 4.08196E-03 1.80005E-03
900 15.1502 4.20840E-03 1.54552E-03
FORWARD SNR =1 FEEDBACK SNR = 0.1
ASYMP. SNR = 1.05 ASYMP. E0) = 0.2625
N Q. SNR = 8y | EQ. E@©) = Ey(0) CAPACITY = ¢,
1 1 0.25 0.346574
2 2.02439 0.253049 0.276677
3 3.05731 0.254776 0.23342
4 4.09453 (.255908 0.203521
5 5.13433 0.256716 0.18139
6 6.17584 0.257327 0.164227
7 7.21857 0.257806 0.150457
8 8.26222 0.258194 0.139122
9 9.30658 0.258516 0.129599
10 10.3515 0.258788 0.121468
FORWARD SNR =1 FEEDBACK SNR =1
ASYMP. SNR = 1.5 ASYMP. E) = 0.375
N EQ. SNR = S, EQ. E(0) = Ey(0) CAPACITY = ¢
1 1 0.25 0.346574
2 2.2 0.275 0.290788
3 3.4973 0.291441 0.250579
4 4.84722 0.302951 0.220746
5 6.22905 0.311453 0.197811
6 7.63202 0.318001 0.179623
7 9.04989 0.32321 0.164826
8 10.4788 0.327462 0.152531
9 11.9162 0.331005 0.142138
10 13.3603 0.334007 0.133223
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TasLe I—(Continued)

FORWARD SNR =1 FEEDBACK SNR = 100
ASYMP. SNR = 51 ASYMP. E(0) =12.75
N Q. SNR = Sy EQ. E(0) = Ey(0) | CAPACITY =
1 1 0.25 0.346574
2 2.96154 0.370192 0.344158
3 6.70566 0.558805 0.340326
4 13.5159 0.844743 0.334405
5 24.9907 1.24954 0.325774
6 42 434 1.76808 0.31427
7 66.142 2.36222 0.300486
8 95.3736 2.98042 0.285515
9 128.952 3.58201 0.270398
10 165.782 4.14455 0.255834
50 2073.46 10.3673 7.63746E-02
90 4079.34 11.3315 4.61885E-02
200 9646.14 12.0577 0.022936
FORWARD SNR = 100 FEEDBACK SNR =1
ASYMP. SNR = 100.99 ASYMP. E(0) = 25.2475
N EQ. SNR = Sy EQ. E(0) = Ey(0) | CAPACITY =cy
1 100 25 2.30756
2 200.98 25.1225 1.32704
3 301.965 25.1638 0.95227
4 402.952 25.1845 0.750162
5 503.94 25.197 0.622444
6 604,928 25.2053 0.533897
7 705.916 25.2113 0.468637
8 806.905 25.2158 0.418403
9 907.894 25.2193 0.378457
10 1008.88 25.2221 0.345879

Since the capacity,  log (1 + Sy), of the equivalent Gaussian channel
(with signal-to-noise ratio Sy), cannot exceed N times the capacity,
1 log (1 + p), of a single channel (with signal-to-noise ratio p), Sy as
given by equation (20) is in fact optimal. Thus

GEPT(P; @, N) = [(1 + P)N - 1]-1: (21)

which is an exponential in N.

IV. APPLICATION TO DIGITAL COMMUNICATION
4.1 Schalkwijk—K ailath Technique

Suppose we wish to transmit one of M equally likely messages over
a Gaussian forward channel with signal-to-noise ratio p with the aid of
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TasrLe I—(Continued)

FORWARD SNR = 100 FEEDBACK SNR = 100
ASYMP. SNR = 199.01 ASYMP. E(0) = 49.7525
N EQ. SNR = 8y EQ. E(0) = Ey(0) | CAPACITY =o¢y
1 100 25 2.30756
2 297.078 37.1347 1.42434
3 495.429 41 .2858 1.03457
4 694.043 43.3777 0.817997
5 892.77 44 6385 0.679545
6 1091.56 45.4816 0.583023
7 1290.39 46.0853 0.511677
8 1489.25 46.539 0.456669
9 1688.12 46.8923 0.412887
10 1887.02 47.1754 0.377164
FORWARD SNR = 100 FEEDBACK SNR = 1000
ASYMP. SNR = 1090.1 ASYMP, E(0) = 272.525
N EQ. SNR = Sy EQ. E(0) = Ey(0) | CAPACITY =cy
1 100 25 2.30756
2 1092.78 136.597 1.74935
3 2173.1 181.091 1.28073
4 3258.25 203.641 1.01116
5 4345.00 217.253 0.837702
10 9786.78 244 .669 0.459444
15 15232.7 253.878 0.321.042
20 20680.1 258.501 0.248424
40 42474 8 265.467 0.133209
60 64272.6 267.803 9.22575E-02
80 86071.7 268.974 7.10184E-02
100 107871. 269.679 5.79435E-02
120 129672. 270,149 4.90532E-02
140 151472 270.486 4.26006E-02
160 173273. 270.738 3.76957E-02
180 195073. 270.935 3.38365E-02
200 216874. 271.093 3.07177E-02

a Gaussian feedback channel with signal-to-noise ratio g, using the
forward channel N times and the feedback channel N — 1 times. T'ol-
lowing Schalkwijk and Kailath,"” we assign to message ¢ (I =
1,2, --+, M) the number § = 6; = ¢ — (M + 1)/2. Thus the M mes-
sages are equally spaced on the interval [—(M — 1)/2, (M — 1)/2] at
distance 1 apart. We can now apply the results of Sections IIT and IV
to transmit 6. The expectation E6* = oj is

= M+ )M —1)/12, M =1,2,3 . (22)
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When message 7 is transmitted, the output of the system is § = 0; + &,
where £ is a zero mean Gaussian random variable with variance v*. We
select as the decoder output, that j(1 = j = M) which minimizes
| & — 6, |, so that we make an error only when | £ | = . This event has
probability

P, = 28(—1/27y), (23)

where ®(z) = 1/@m)} [2_ exp (—z"/2) dzx is the cumulative error
function. Thus the smallest error probability attainable using this
scheme (with parameters N, p, p) is

Pe.upT=2<1>[—‘ L ] 24)

—)‘EOPT(PJ P N)'J'e

where o, is given by equation (22) and e;pr in Section II. The bounds
on el pp In Seetion IIT immediately yield bounds on P, oz -

Let us assume that every T seconds, a digital message source emits
one of M = €7 equally likely messages (R is the message ‘rate”).
Further assume that N = a7 (for example, if the ‘‘physical” channel
has bandwidth W eps, then & = 2W). Consider two cases:p = o, < .

(i) When p = oo, it follows immediately from equation (21) and
(22) that as T' —

1 \/— (1 + .0) ‘/3 e(cfmr, (25)

2egpr(p, =, N)ﬂ'e

where C = (a/2) log (1 + p) is the channel capacity in nats per second.
Thus, provided R < C, as T — « the argument of & in equation (24)
becomes infinite and P, gpp — 0. In fact, (since ®(z) ~ (2rz*)? exp
(—2%/2), a8 & — =)

1:)ﬂ oPT = th [ (C—R)T+ G(TJ]! as Tn — w, (26)

a double exponential decay. This is the celebrated result of Schalkwijk
and Kailath.'*'"!

(77) If we try to apply the same scheme when the feedback signal-
to-noise p < =, then from equation (18) (2eppras) ' — 0 as T' — o,
Thus it is not possible using this scheme to obtain vanishingly small
error probability as T — o« with fixed signal-to-noise ratios in the
forward and feedback channel. This is so no matter how large § may
be, provided it is finite. For finite 7' however, equations (18) and (24)
yield useful estimates of attainable error probabilities.
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4.2 Improving the One-Way Error Exponent

Suppose that, as in Section 4.1, we wish to transmit one of M = ¢"”

equally likely messages in 7’ seconds. Suppose that we use only a for-
ward Gaussian channel (with signal-to-noise ratio p) n, = «T times.
Then it is well known that one ean attain an error probability

P, = exp [—E(g ) p)aT + O(T)] , a8 T — e, (27)

where E,(R/a, p) > 0,if B < a/2log (1 4+ p) = C, the channel capacity.
As indicated, the quantity ¥,(R/«, p) depends on E and « only through
their ratio. Although F, is not known exactly, estimates are given in
Ref. 3.f In particular, £,(0, p) = p/4 and E,(C/a, p) = 0.

Now suppose we have a Gaussian feedback channel available with
signal-to-noise ratio 3. Let us divide the n, forward channel uses into
v = n,/N groups of N forward channel uses. In each of these groups we
use the extended Elias scheme, (of Sections III and IV, with N uses of
the forward channel and N — 1 uses of the feedback channel) to gen-
erate an equivalent forward Gaussian channel with signal-to-noise ratio
Sy given by the recurrence (9). We then use a one-way coding scheme
with » = n,/N = (a/N)T uses of the equivalent forward channel.
With N held fixed as T — «, we can attain an error probability as in
equation (27) with « replaced by (a/N) and p replaced by Sy—namely,

P, = exp [4(‘1"1 8.y o(T)]- (28)
@ N
Thus the new error-exponent is

1 ‘
Bk, 0 p) = wE(EY s,)- (29)

[23
Since N is arbitrary, we can state our result:

Theorem: Given a forward and feedback Gaussian channels which can
each process a inpuls (independently) per second, with signal-lo-noise
ratio p and p respectively. Then it is possible to transmait digilal data at a
rate R nats per second with error probabilily

P, = exp [—E*aT + o(T)], as T — o, (30a)

t The conventional power constraint for a one-way channel is that the time
average of the square of the inputs must not exceed P. The power constraint used
here is that the statistical expectation of the square of each input not ex-
ceed P. Nither of these constraints imply the other. However, it is not hard to
show that the estimates of E: (in Ref. 3) are valid for both constraints.
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where
E* = E*(E- . o, ﬁ) = sup Ey = sup —L’ (RN SN) , (300)
@ 15N<w 1sN<w N

Sy s the solution to the recurrence (9), and E, s the reliability (error-
exponent) for the one-way Gaussian channel as in equation (27), and T
18 the encoding-decoding delay.

Remarks:

(i) Since S, = pand E,(R/a, p) > 0for R < a/2log (1 + p) =
then E*(R/a, p, §) > 0 for R < C.
(?:T’) Since EI(OI p) = p/4s

RN
EN(OI P, P) 1( o 1 SN)

so that from equation (16),

reo 4N’

A Sy P( P )
Des = L
L'(O,p,p)24N-—¥4 1 1 e as N — «.

In fact, since Sy/N can be shown to be non-decreasing, E*(0, p, p) is
in fact equal to this quantity. Thus the use of the feedback channel
represents an improvement of a factor of [1 -+ /(1 + p)] in the error-
exponent at zero rate.

(#i) We can get a rough idea of the behavior of E*(R/a, p, #) as
follows. Let r = R/a be the rate in nats per channel use. Let us crudely
approximate the one-way exponent E,(r, p) as r varies from 0 to ¢ =
C/a (the capacity in nats per channel use) by a straight line connecting
(r =0, E, = p/4) and (r = ¢, E, = 0). See Fig. 1.
Then E, has r = 0 intercept at

B0, o, 7) = =2 P+———_ﬁ”2 >
2T 0y 8[(1 + o) + 7l
and E,(r, p, p) = 0atr = ¢, A (1/2)(1/2) log (1 + 8,). Similarly, Ey
has » = 0 intercept at

SN SN
Ex©, p, p) = VAN = 1)

and Ey(r, p, 3) = Oatr = ¢y & (1/2N) log (1 + Sy). From Fig. 1,
we see that for each value of r > 0, there is a value of N(1 = N < o)
which maximizes Ey(r, p, §) to achieve E*(r, p, p). Values of Ey(0, p, 5)
and cy are tabulated for various values of p, §, and N in Table I.



NOISY FEEDBACK 3185

Z
n|— w- b= z|-

P
s ~e \;D_/

ENES

Tig. 1—TF*(r, p, #) vs. r (an approximation).

(1) We see from Fig. 1, that the feedback scheme offers no improve-
ment over the one-way scheme (that is, By < E,, for N > 2} for r* <
r < ¢ where r* is the solution of £, = K, , that is,

31, (2%, 8.) = E\(r%, p).

However, the rate r* — cas p — .

Actually, it is probably possible to improve on our results substantially
and in particular bring about an increase in the error-exponent for all
r < c Let {N,,N,, -+, N.} be a set of positive integers (not neces-
sarily equal). Then divide the n, = a7 forward channel uses into » =
n,/(N, + N, + --- N,) uses of an equivalent channel which is the
parallel combination of k¥ Gaussian channels with signal-to-noise ratios
Sy, , Swv. s -+, Sys . These k& Gaussian channels are generated by
N., N., .-+, N, iterations, respectively, of the Elias scheme. One
must then compute the error-exponent for a parallel combination of
channels to obtain a new improved exponent.’ We leave this task as an
open problem.

(v) Let us finally remark that although the expectation of the channel
input power z” is constrained, the quantity z° is in fact a random vari-
able distributed on the interval [0, ). This is in contrast to the one-way
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schemes where the channel input is bounded. This point is discussed

n

Ref. 13.
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