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This paper contains a perturbation theory which is applicable to the
scattering losses suffered by guided modes of a dielectric slab waveguide as a
consequence of imperfections of the waveguide wall. The development of
the theory oceupies the bulk of the paper. Numerical resulls appear in
Sections VI and VIII to which a reader less interested in the theory is
referred.

The theory allows us to conclude that random deviations of the waveguide
wall in the order of 1 percent, for guides designed to guide an oplical wave
of Ao = 1u wavelength, can cause scattering losses of 10 percent per centi-
meter or 0.46 dB per centimeter. A systematic sinusoidal deviation of the
waveguide wall can cause {olal exchange of energy from the lowest order to
the first order guided mode in a distance of approximately 1 em if the ampli-
tude of the sinusoidal deviation from perfect straighiness is only 0.5 percent
of the thickness of the guide. An rms deviation of one of the waveguide walls
of 94 causes a radialion loss of 10 dB per kilometer (index difference
1 percent, guide width 2.5u).

I. INTRODUCTION

The problem of how to transmit laser light over large distances or
carry it short distances inside the laboratory has renewed the interest
in dielectric waveguides.'™® Such waveguides usually used in the form
of clad fibers or as strips of a medium of larger dielectric constant
embedded in another dielectric medium are capable, in principle, of
guiding electromagnetic radiation. By proper dimensioning, a dielectric
waveguide can be made to transmit only one guided mode. In this
respect mode guidance by dielectric waveguides resembles mode guid-
ance by hollow metallic waveguides. Hollow metallic tubes can be
constructed to allow only one mode to propagate so that mode conver-
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sion (except for conversion to the reflected dominant mode) becomes
impossible. Such truly single mode operation is impossible for dielectric
waveguides since these guides can always lose electromagnetic energy
to the continuous spectrum of unguided modes.

The possible solutions of Maxwell’s equations for a dielectric wave-
guide consist of a discrete spectrum of a finite number of guided modes
plus a continuum of waveguide modes.” The guided modes have field
configurations which concentrate the electromagnetic energy inside
and in the immediate vicinity of the structure. The continuum of un-
guided modes extends to infinite distances from the waveguide and
consists of a superposition of incident and reflected waves. A convenient
way of visualizing the physical significance of the continuum of unguided
modes is as follows. If a plane wave is incident on the dielectric wave-
guide at an arbitrary angle, part of it penetrates the dielectric structure
while some portion is reflected. The resulting superposition field of
incident and reflected waves satisfies Maxwell’s equations and the
boundary conditions at the dielectric waveguide and as such can be
viewed as a mode of the structure, but the energy of this mode is not
concentrated near the waveguide and there are no specific restrictions
on the projection of the propagation vector in the direction of the guide
axis.

A perfect dielectric waveguide can transmit any of its guided modes
without converting energy to any of the other possible guided modes
or to the eontinuous spectrum. But any imperfection of the guide, such
as a loeal change of its index of refraction or a deviation from perfect
straightness or an imperfection of the interface between two regions
with different index of refraction, couples the particular guided mode to
all other guided modes as well as to all the modes of the unguided con-
tinuum. Imperfections of this type are unavoidable. They transfer
energy from the desired guided mode to unwanted guided modes and
the radiation field of the continuum of unguided modes, thus increasing
the loss of the desired guided mode.

This paper gives a simple, approximate theory of the losses of di-
electric waveguides, caused by imperfections of the boundary between
the inner region of higher dielectric index and the surrounding outer
region of the dielectric waveguide. Even though the method of analysis
used here can be used to describe any arbitrary dielectric waveguide,
we limit the discussion to a simple case. We describe the effects of mode
conversion for a dielectric slab surrounded by vacuum, assuming for
simplicity, that there is no variation of the dimensions or properties of
the rod as well as the field distribution in one eo-ordinate direction. The
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restriction of demanding 8/, = 0 for one of the co-ordinates y is no
limitation on the method of analysis but is imposed strictly for con-
venience. It simplifies the analysis considerably without drastically
changing the conclusions. The tolerance requirements based on our
analysis are rather stringent. They show the order of magnitude of the
losses which can be expected from deviations from perfect geometry.
Additional variations in the direction considered perfect in this paper
is unlikely to improve any of the loss predictions.

II. TE MODES OF A DIELECTRIC SLAB

Let us consider the transverse electric modes of the dielectric slab
of Fig. 1. True to the simplifying assumption discussed in Section I,
we assume

d
5 =0 (1)
with y being the co-ordinate perpendicular to the z and z directions, but
parallel to the slab. The only nonvanishing field components are E, ,

H.,and H, .
Leaving the z and time dependence

ei(wl*.ﬂ:) (2)

understood, we obtain the following modes of the ideal structure as a
solution of Maxwell’s equations satisfying the boundary conditions.

2d
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Fig. 1 — Geometry of a dielectric slab waveguide,
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2.1 FEven Guided Modes

For even guided modes

8, = A coswax for |x| =d, (3a)

8, = A" cosede” "™ for x = d, (3b)
i a8,

3C: - —m'u aZ ] (4)

i a8, )

i, = o oz’ (5)

The field component &, satisfies the wave equation

a*e, 9°&
da® + 9z

L opikte, = 0. (6)

The value of the index of refraction n, is different inside and outside of
the dielectric slab. For simplicity, we assume

ng=1 for |z|>d. (M)
The other constants are related as follows
k= w’em (8)
k= (k" — 6%, (9
y = (8 = kL (10)

The propagation constant 3 is obtained as a solution of the eigenvalue
equation

tan kd = L. (11)

K
The mode amplitude A can be expressed in terms of the power P carried
by the mode.

P=%Refﬁ—&xﬁmﬁﬂ%£|8JWL (12)

P is the power per unit length (unit length in y-direction) flowing along
the z-axis. We obtain for the amplitude coefficient

I (13)
pa+"
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2.2 Even Modes of the Continuum

The continuum of unguided modes of even symmetry is given by the
equations:

& =B cosox for |z | =Zd, (14a)
C'*%"** + D¢ for =z =d. (14b)

&y

The other field components follow again from equations (4) and (5)
and €&, is a solution of equation (6). The constants are related to each
other by the equations

o = ('K — gH}, (15)

p= (kK — 8% (16)
The radial propagation constant p can assume all values from 0 to .
The continuous mode spectrum starts at 8 = k and continuous to 8 = 0
at which point we have p = k. Larger values of p are obtained for
imaginary values of 8 corresponding to modes of the continuum exhibit-
ing a cutoff behavior.

The boundary conditions do not lead to an eigenvalue equation for
8 but they determine ¢’ and D’ in relation to B‘*.

' = %B‘“’e—‘“d(cos ad + i%SiD Gd) , (17)

D(e) — C“)*, (18)

(the asterisk indicates the complex conjugate quantity).
The normalization of the modes of the continuum involves a é-fune-
tion. Instead of equation (12) we use

Pap— o) =2 [ e(0ere) du. (19)
W Jg
With this normalization we get

B — 2wuP

2 (20)
rr,B(cos2 aod + %g sin® ard)
2.3 Odd Guided Modes

In a manner similar to that for obtaining the preceding equations we
obtain the equations for the odd guided modes

g = A%sinkxr for z = d, (21a)
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&, = AV sinkde """ for z = d. (21b)

Equations (4) through (10) apply to the odd modes unaltered. The
eigenvalue equation is given by

tan kd = —5- , (22)
and the mode normalization is
A" = ﬁ“—ﬁp. 23)
gd + 5

2.4 Odd Modes of the Continuum

As in Section 2.3 we obtain the equations for the odd modes of the
continuum

& =B"singzr for |z| =d, (24a)
g, = C%" + DY for x = d, (24b)
oo = %B‘“’e”'*’d(sin od — z'fpcos a'd) , (25)
DO = Cm}*’ (26)
) 2wuP
B = = . (27)
ar,.‘)‘(sin2 od + 7 cos’ crd)

All these modes are orthogonal to one another. The even modes are
orthogonal to all the odd modes, the guided modes are orthogonal to
all the modes of the continuum, and all guided modes as well as all
modes of the continuum are orthogonal among each other. The or-
thogonality of the modes of the continuum among each other was
already expressed by equation (19). Labeling the discrete modes by
indices and dropping the vector component label ¥ we can express the
orthogonality of the discrete modes by the equation

_ ﬁf" "
P b =52 | &.81dr (28)

111, MODE COUPLING CAUSED BY IMPERFECTIONS

We want to study the losses which the lowest order guided mode
suffers because of imperfections of the waveguide wall. A dielectric
waveguide with wall imperfections is shown in Fig. 2.
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Fig. 2 — Dielectric slab waveguide with wall distortions.

The waveguide with wall imperfections is mathematically deseribed
by a refractive index distribution

n*(x, 2) = ni(z, 2) + An’(z, 2). (29)
The index distribution
ni, 2) = {” =] <d (30)
1 |z | >d

describes the ideal dielectric waveguide whose TE modes were given in
the Section II. The additional term An” deseribes how the guide deviates
from its perfect shape. Consider a deviation shown in Fig. 3. The
corresponding distribution An® is (n, = index of refraction of the di-
electric material of the guide)

0{:c<d if d < ()
z < @) if d> @)
ne—1 d<z<{ik if d<{@
—m -1 @) <z<d if d>E)
0{:c>3‘(z) if d< /@)
z>d if d> f@)

(31)
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Fig. 3 — Illustration of the wall distortion function f(z).

The field distribution E, of this waveguide is a solution of

’E, &°E,
ax’ + Frs

+ (nsg + ADEE, = 0 (32)

with H, and H, given by equations (4) and (5). The modes of the perfect
waveguide form a complete orthogonal set for all TE modes with no
variation in the y-direction. It is, therefore, possible to express any
field distribution on the waveguide with imperfect walls by the expansion

Bo= @6+ X[ o660 do. 33)

The first summation extends over all even and odd modes of the discrete
spectrum of guided modes. The integral extends over all modes of the
continuum, and the summation sign in front of the integral indicates
summation over even and odd modes. The expansion coefficients C,
and g(p) are unknown functions of z.

To obtain a coupled system of differential equations for the expansion
coefficients we substitute equation (33) into equation (32). Multiplying
the resulting equation by

B

5‘;‘ 8: ’
integrating over z from — © to 4 e, and using the orthogonality rela-
tions and the fact that &, and &(p) are the (discrete and continuous)
modes of the perfect guide leads to

&Cw

o,
2 218, o = F.(2) (34)
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with
F.() = _M[EC&) fw 8% An’ 8, dx
m gqu ~ n e m n he
+ 2 [ doato,2) [ ek antep d.r]- (35)
] -
Similarly multiplying by
B ()
2wp
leads to
& glp’ ., dglp’ X
P gigr 200~ (e (36)
with

kel

rkﬂ
((p' z) = _;{i‘yﬁ l:Z C.(z) [ &*(p) AR &, dx

+ 2 f: dpg(p, 2) j: &*(p’) An*&(p) d..r:\- (37)

No n-label on the power term P is necessary since we assume that all
the normal modes are normalized to the same amount of power. The
actual power carried by each mode relative to the power of the other
modes is given by the C, coefficients. Solutions of equations (34) and (35)
with appropriate initial conditions provide us with exact solutions of
the imperfeet waveguide. It is interesting to note that this method of
solution does not require the consideration of boundary conditions.

The normal modes &, and &(p) were assumed to have the time and
z-dependence of equation (2); this means they represent waves traveling
in the positive z-direction. However, the solutions of equations (34) and
(36) introduce waves traveling in positive as well as negative z-direction.
To see this, let us assume that An* = 0 so that F,(z) = 0. The equation

Oy 00 _

az" 218, dz 0 (38)
has the solution

C.(2) = A + Be*™* (39)

with constant 4 and B. The product of A with &, results in a wave
traveling in the positive z-direction but the product of B exp (218,2)
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with &, results in a wave traveling in the negative z-direction. So, even
though we started out with waves traveling in the positive z-direction
the expansion (33) contains partial waves traveling in positive as well
as negative z-direction.

For the purpose of obtaining perturbation solutions of equations
(34) and (36), an integral form of these equations is more useful. Treat-
ing equations (34) and (36) as inhomogeneous differential equations,
we can immediately write the following integral equations

= A, + Bue 2""-'+~2—ﬁ— f 9= 1) df,  (40)

2ifi'e ]- * 21 (2— 7
o0',2) = Co) + DN + 5 [ 70 — 1166, ©) e,

(41)

It is important to know which part of equations (40) and (41) is as-
sociated with waves traveling in the positive or negative z-direction.
Therefore, we introduce the notation.

C. = ¢ + ¢ (42)
with
+) 1 :
CHG) = A, — % f F.(5) dt, (43)
C.” ) —{ + 55 f L) df}e“"'"‘. (44)

The superseript (+) indicates the coefficient which after substitution
into equation (33) produces waves traveling in positive z-direction,
while (—) indicates the part which produces waves traveling in negative
z-direction. A similar notation and resulting equations is used for g{p’, 2);
however, the corresponding equations are obvious and are therefore
omitted.

The constants 4., B.., and so on, ocecurrng in equations (43), (44),
and the corresponding equations for g(p’, z) must be determined from
initial conditions. We always assume that the lowest order guided mode
is incident on the imperfect waveguide at 2 = 0. Using the subscript 0
for this incident mode we get immediately from equation (43)

CH =0 for m=#0 at z=20
or
A, =0 for m#0, (45)
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but
Ay = L. (46)

We imagine that at z = L the waveguide is connected to a perfect guide
so that at that point there are no waves traveling in negative z-direction.
This leads to the condition

B, =

— 1 - =2ifm{
s | ) d @

for all values of m. The power loss AP of the incident mode due to mode
conversion is given by

IR

= S0 P+ 1600 ]

+ 2 j;m [ ¢, L) >+ | g7, 0) |’] do. (48)

Equation (48) states that the total power lost by mode conversion from
the incident mode escapes at z = L in spurious modes traveling in posi-
tion z-direction and at z = 0 in spurious modes traveling in negative
z-direction. The factor P is the normalized power factor of equations
(12) and (19); it is the power incident in mode 0. Notice that because
of equations (45) and (47) only the integral terms of equations (43) and
(44) (taken from z = 0 to z = L) enter into equation (48).

The integral equations (43) and (44) can only be solved approxi-
mately. We perform first order perturbation theory by using C.(0)
instead of C,,(z) and g(p, 0) instead of g(p, 2) in equations (35) and (37).
Furthermore, we realize that C{(0) for all m is a quantity of first
order and will therefore be neglected in equations (35) and (37). The
same is true for C$" (0) with m # 0. In the spirit of first order perturba-
tion theory we use therefore

Cm = 6Om (49)
and

g(p) = 0 (50)

in equations (35) and (37).

The perturbation theory is feasible not only when n; — 1 < 1 but
also when n} — 1 is arbitrarily large but the geometrical deviation of
the guide walls from perfect straightness is slight. In either case we
obtain from equations (35) and (37) the simple approximations
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o) = =2 02— )i[i6) — d)end, 2 85, 2

2wul’
- [h(z} + d] gu(_dj z) &n _ds z)’l (51)
k*
G(p,9) = =50 (03 = DIE) — d1&*(p, d,2)8,(d, 2
— [h(z) + d])&*(p, —d, 2) &(—d, 2)}. (52)
The function f(z) describes the dielectric-air interface in the vicinity
of # = d, while 2(z) describes it near z = —d. We assumed that f(2)
and A(z) depart so little from @ = d and & = —d that the functions

&(z, 2) could be replaced by &(=xd, 2).

IV. EVALUATION OF THE SPURIOUS MODE AMPLITUDES

We begin the discussion of the consequences of our scattering theory
by caleulating the coefficients C.,” and ¢*’. We obtain [from equations
(43) and (51) with the help of equations (3a) and (13) for the even
modes] the following

2
o) =B w1+ "”S;"d 008 o T e ¥ 69
[(ﬁﬂd + J)(ﬁmd + _m_):]
Yo Ym
The coefficients ¢,, and ,, are defined by
1 [t —i(Bo—fm)z
on =1 [ U@ — e s (54
Jo
and
L
Vo =1 [ 1) + D e, (55)
4 Jdo

These are the Fourier coefficients of the functions f(z) — d and h(z) + d
which are expanded in a domain

0=z=1L.

The amplitude of the mth even mode depends on the Fourier components
of the wall function whose “spatial frequency” T is

o

™

= 1_," = |6U - Bm . (56)

P m

The corresponding expression for the even modes of the continuous
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spectrum is:

Lk*
24 (m)?

cos kofd cos ade(B) — ¥(B8)]

1) 3 i 67
[:(ﬁ..f + B") (0052 od + '%5 sin® od)]

with [8 = B(p) see equation (16)]

9."(p, L) = (n, —

L

e® =1 [ 16 — die e d, (59)
1 ‘ I —i(Bo—f)z
v(B) = 2 [” [h(z) + d]e dz. (59)

The corresponding expressions for the odd modes are

'S oS k,d sin k,d

Coo'(L) = 5 (ng — 1) 7 (e + %), (60)
[(ﬁud + f—)(ﬁd + ;f?)]
gé“(p, L) 2]4(]‘:)& (TL 1) Ccos Kod sin D'd[ﬂa(.ﬂ) + kf’(ﬁ)] *_
[(ﬁud + &)B(sm od + 2 7 cos’ ad)]
Yo

(61)

The Fourier coefficients ¢ and  are given by equations (54), (53),
(58), and (59) except that 3, and 8 are now the propagation constants
of the odd modes.

The corresponding expressions for €~ and g~ are obtained by
replacing 8,, with —@,, and 8 with —g in equations (54), (55), (56), (58),
and (59).

(=)

V. SINUSOIDAL WALL DEFLECTIONS

As a specific example, let us assume that the wall imperfections have
sinusoidal shape. Then

f(z) — d = asin 6z (62)
and
h(z) + d = —asin (62 + ). (63)

The phase factor « allows us to consider either a waveguide whose width
varies sinusoidally

a =0, (64)
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or one whose direction changes sinusoidally

a = (65)
We obtain from equation (54) with

6 = Bo — Bn (66)

the Fourier component
on = 2 (67)

and from equation (55)

@ a

‘pm - _2?:6 . (68)

A term of the order a/L < 1 was omitted in equations (67) and (68).
It is apparent that only one spurious mode is excited by the sinusoidal
wall deflection since condition (66) can be satisfied for only one value
of B, . If condition (66) is not satisfied, ¢. and ¢, are of the order of
a/L << 1. The fractional power scattered into one spurious guided
mode due to a sinusoidal wall irregularity is [from equations (48), (53),
(67) and (68)]

(%) th‘z:k’ W — 1 cos?® xod cos® knd cos”% 69)
” (ot + 2) (ﬁ.,,d + ﬁ—"‘)
Yo Y

for even modes or [from equations (48) and (60)]

2 9992 2 + 2
(Alf’) L c;, & W — 1 cos® kd sin’® k,.d sin? & (70)
0g & Bm 2
Bud + ~ Bn.d + 7—‘

for odd modes. However only one even or one odd mode can be excited
by one particular sinusoidal wall deviation since it is impossible to
satisfy the “‘resonance’’ condition (66) for more than one mode simul-
taneously.

If & = 0, that is if the width of the guide changes sinusoidally, only
even modes can be excited while sinusoidal deviations from straightness
(a = =) couple the even fundamental mode only to odd spurious modes.
It must also be noticed that for a long period length

A=

NS

@)
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equation (66) can be satisfied only for forward scattering modes. To
couple to backward scattering modes, the period length D must be
approximately equal to half the wavelength of the guided modes.
The fact that only one spurious mode is coupled to the incident mode by
sinusoidal wall imperfections (it can be shown that the coupling to the
continuous mode spectrum is also weak if one guided mode can couple
strongly) allows us to give a much better description of the coupling
process.

Since the mode amplitudes C,, can change only slowly in the distance
of one wavelength we can neglect the second derivative of C,, in equa-
tion (34). Labeling the incident mode 0 and the one coupled spurious
mode 1 we can write the equation system (34) in the following form

ac,

T

9z = —kaC , (72)
%~ co (73)
with
‘o = %} - 1) oS ko COS k,d . exp (i %) cos g_ (74)
[(sod + B")(ﬁ,d + 5')]

Yo
The coupling coefficient «,, of equations (74) holds for coupling from
an even mode 0 to an even mode 1. The case of coupling from an even
mode 0 to an odd mode 1 can be treated similarly. In fact, except for
an unimportant phase factor, we get it from (1/L)[(AP/ P),,]! of equa-
rion (70). In equation (72) we omitted a term with C, on the right-hand
side, and similarly a term with C, was omitted in equation (73). These
terms would be multiplied by sinusoidally varying functions and would
describe the local change of phase velocity as the guide dimensions vary.
These terms give no contribution if we use an average over C, and C,
over the mechanical period length of equation (71).
Assuming C, = 1, C, = 0 at z = 0 the equation system (72) and (73)
has the solution

Co

cos | ko | 2, (75)

C,

I

e\ .
(:c_) sin | ko | 2. (76)

01

Total exchange of energy is possible between the two coupled modes.



3202 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1960
The distance D over which all the energy is exchanged is given by

D (77)

- T

2 | ko |
Finally, we need the power loss to the modes of the continuous spectrum.
From equations (48), (57), (61), (62), and (63) we obtain

(A_P) _ a’lk’ 2 — 1)’ cos® k.d
. r

P Bud + 2
Yo
- g sin® od sin® g-
‘j; - o + o
.6‘((30:-32 ocd + p sin® od) jB(sin2 od + p cos’ ad)

cos® ad cos’

'T
\
|

sin® [0 — (8 — O]
0= G BF 8)

The integration can be performed easily if one realizes that for large
values of L only a very narrow region in the g range near 8 — 8o — @
contributes to the integral. We consider all functions in the integrand
as constant in this very narrow range and take them out of the integral

with the exception of
Jsin (6 — (8o — B)] %l
06— B — B |

This remaining integral can easily be performed if we use equation (16)
to obtain

8

dp = ——
p

dag.

Following this procedure yields

(AP) La’k* o — 1)° cos” kyd

R = T a5 Ul
! 2 Bud + 2
Yo

23 . . o
[ p cos” od cos” g p sin® od sin’® 5

=

(79)

o’ cos’ od + o sin’ od + o’ sin® od + o cos’ od)
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The parameters ¢ and p follow from equations (15) and (16) with
B =B — 0. (80)

Equation (79) holds only for 8 < k; we get AP/P = 0 for 8 > k. The
most interesting aspect of equation (79) is its linear dependence on L.
The scattering loss due to the modes of the continuous spectrum acts
like a true loss process. By contrast, the corresponding equation (69)
for the loss to guided modes is proportional to L* because coupling to a
guided mode does not result in loss of energy but results in energy ex-
change between the two coupled modes. Energy loss to one of the guided
modes is followed by energy gain when the energy exchange has reversed
itself.

VI. NUMERICAL EXAMPLES FOR SINUSOIDAL IMPERFECTIONS

A few numerical examples resulting from equations (74) and (77)
are listed in Table I. Two different values of the index of refraction n,
have been assumed, and for each value of the index three different
values of kd = 2w(d/\,) have been chosen so that one, two, or three
guided modes can exist simultaneously. The mode with 8, is the lowest

TABLE I —NUMERICAL EXAMPLES FOR SINUSOIDAL IMPERFECTIONS

aD
ny kd Bod B Bad d? Remarks
1.3 1.729 — — — Single mode
operation
1.8 2.495 1.916 — 6.98 0 — 1 coupling
ax = T

6.17 0 — 1 coupling

a =T

3.0 4.336 3.831 3.051

5.52 0 — 2 coupling

a =

8.0 8.041 — — — Single mode
operation

15.0 15.113 15.022 o 42 .54 0 — 1 coupling
a =T

1.01
36.28 0 — 1 coupling
a =m

23.0 23.199 23.112 23.002

43.69 0 — 2 coupling

a =10
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order even guided mode which is assumed to be incident on the wave-
guide with sinusoidal wall imperfections. This mode couples to the first
odd mode with 8; or the next even mode with 8, . The values for the
normalized, dimensionless quantitity (aD)/d* [¢ = amplitude of the
sinusoidal wall deviation according to equation (62) and (63), d = half
width of the guide, and D = energy exchange length] have been ob-
tained with the assumption that equation (66) is satisfied for the two
modes which are coupled together. Coupling from mode 0 to mode 1 is
considered only for the case of sinusoidal straightness deviations of the
waveguide (@ = =) while coupling between even modes 0 to 2 is con-
sidered only for sinusoidal changes of the thickness of the waveguide
(e = 0). It is immediately apparent from Table I that the energy ex-
change length D is shorter for a guide with larger values of the refractive
index.

To obtain a feeling for the numbers involved in this mode coupling
phenomenon, let us assume that n, = 1.5 and that the free space wave-
length is A\, = 1u. The value of kd = 1.8 corresponds to d = 0.286p.
To achieve total exchange of energy between modes 0 and 1in D = 1em
requires the extremely small amplitude a = 5.72 10™°u or a = 0.572 Art
The length of the mechanical period in this example is A = 3.1p.

Next, let us assume that the index of refraction is n, = 1.01. Using
again, A, = lu, we obtain from kd = 15.0 the value d = 2.39u for the
half width of the waveguide. Requiring again, D = 1 cm, we find @ =
243 A

We can look at this problem in a different way. It is unlikely that any
optical waveguide has a strictly sinusoidal deviation from perfect
straightness. In fact, the numbers just presented show that it would
be impossible to produce such a waveguide intentionally. However, we
have seen [equation (53)] that the mode conversion between two guided
modes is produced by a Fourier component of the actual deviation func-
tion. It is therefore not necessary to have a strictly sinusoidal straight-
ness deviation. Any arbitrary deviation from straightness ean be de-
composed into a Fourier series and the Fourier component at the
mechanical frequency which satisfies equation (66) is responsible for
the coupling. In the more general case of arbitrary straightness devia-
tions, there can be no complete exchange of energy between any two
modes since power loss to other guided modes and the continuous

+ A mechanical period of a fraction of an Angstrom is somewhat unphysical due
to the granular nature of matter. However, this result can be restated to say that

complete power conversion occurs in 0.1 mm if the amplitude is a = 57.2 A,
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spectrum of modes compete with each other since all of them are coupled
simultaneously.

We can now ask the question: What amplitude of the mechanical
straightness deviation is required to transfer 10 percent of power from
mode 0 to mode 11in a distance of L = 1 em? Again, we use the previous
examples. From equation (76) [or directly from equations (53) and (77)]
we obtain

2
%TP = |'='01 |2L2 —%%‘I’
For the first example we obtain with n, = 1.5, AP/P = 0.1,d = 0.286y,
and aD/d’ = 6.98 the value a = 0.115 A.1 This result shows that if
the Fourler component of the mechdmcal straightness deviation with a
period length of 3.1pisa = 0.12 A (measured over a distance of 1 cm)
the power loss caused by mode conversion to the first odd mode is
10 percent.

Tor the second example, we use again n, = 1.01, AP/P =01,d=
2.39u, and aD/d* = 42.54 and obtain a = 48.8 A. The important
Fourier component in this case has a period of A = 1354. The power
loss to the modes of the continuous spectrum caused by a sinusoidal
change in thickness of the waveguide (which is very similar to its effect
as a straightness deviation) can be caleulated from equation (79) with
a=0.

Let us consider only one case, n, = 1.01, kd = 15, A/d = 25. For
these values we obtain from equation (79)

d° AP

a’l, P
Assuming again AP/P = 0.1 for a guide length L = 1 ¢m, we obtain
with d = 2.39u

= 4.6 X 1072,

a = 546 X 107°u = 546 A.

This number can be compared to the value @ = 48.8 A which gave
10 percent loss by conversion to one guided mode. However, for a
meaningful comparison, we must remember that all the Fourier com-
ponents of u Fourier expansion of the guide imperfections scatter power
into the modes of the continuous spectrum. The total loss would have
to be obtained by integrating the scattering loss over the spectral dis-

t Again it is more reasonable to restate this example to say that 10 percent loss
occurs over a distance of L = 0.1l mm if ¢ = 12
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tribution of the Fourier components of the mechanical Fourier spectrum.
Instead of doing this integration we use a different approach in Section

VIL

VII. STATISTICAL TREATMENT OF WALL IMPERFECTIONS'

Equation (48) gives the relative loss of a guided mode caused by
a definite (deterministic) distortion of the boundary of a dielectric
waveguide. A quantity that may be even more interesting is the average
of equation (48) taken over an ensemble of statistically identical sys-

tems.
Tor simplicity, let us assume that one wall of the waveguide is perfect

while the other is randomly distorted. If both walls are randomly dis-
torted, with no correlation between the distortions on opposite walls
the loss value doubles compared to the case of only one wall being dis-
torted. If the distortions on opposite sides of the waveguide are per-
fectly correlated the amount of loss is at most increased four times.
So to simplify the discussion we assume

h(z) +d = 0. (81)
In order to be able to calculate (AP/P),, , we must evaluate

1 [" £ ) '
(| en ‘2>nv = Ia‘/; dz]; dZ’R(z — zr)e—ﬂﬂu—ﬂmm—g; (82)

We assumed that the correlation function
Rz — 2") = {[f(z) — dllf(z") — d]w (83)

depends only on the difference between the coordinates z and 2’ but not
on their individual values.
A change of integration variables allows us to write

U on [P = Ll f (I — WR) cos (8o — Bu)u du. (84)

To obtain equation (84) we made use of the fact that E(u) is an even
function.

The particular form of R(u) depends on the statistics of the wall
imperfections. However, all correlation functions have two features in
common. They all have their maximum value at ¥ = 0 and decrease to
zero as w — . If B(u) would not become 0 as © — o there would be a

t An excellent statistical treatment of random coupling effects in metallic wave-
guides can be found in Ref. 7.
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systematic distortion of the waveguide boundary instead of the assumed
random behavior. To get an idea of what one might expect, we assume
the following form for the correlation function

R(u) = A® exp (—%) (85)

A is the rms deviation of the wall from perfect straightness and B is
the correlation length. Using equation (S5) we obtain from equation (84)

24 1 1, BB
PNLEIEES A
g Y6, 5+ )

., 1B
()60 - ﬁm)- + ?l
where we neglected terms with exp (—L/B) assuming that L/B is
sufficiently large. In fact if

2)I" =

(| em

L> B, (87)
equation (86) can be simplified further:

2.4° 1

(| Pm 12>uv = 77 ——_1_ (88)
BL (ﬁﬂ - lSm)2 + EE

Using equation (88) we obtain, from equation (53) for the ensemble
average of the square magnitudes of the even guided modes,

o AL .
(o o = AL 2
. cos; Kol €0S° kel ' )
(0 = . + o)t + 2) (5. + =)
Yo Ym

The corresponding expression for the odd modes is very similar except
that cos® k.d is replaced by sin® x,.d and .., . , and v,, are the param-
eters of the odd modes.

The total loss caused by coupling to all guided modes supported by
the dielectric waveguide is the sum over all {| C.. |*)., for even as well
as odd modes traveling in positive (8,, = +| 8. |) as well as negative

m = —|Bn|) z-direction. It is noteworthy that equation (89) is pro-
portional to L and not to L°. The conversion to spurious guided modes
by random imperfections appears as a true loss to the incident mode.

The losses due to the modes of the continuous spectrum are obtained
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from equations (48), (57), (61), (81) and (88) (with 8, = B):

<AP> 2J’c“L nt — 1) k {: p COS® Kod
((ﬁu — 8 + 4—)(&@ + bo )

cos’ od sin® od )
.(ﬂ2 cos® od + osin d + pz sin® od T % cos® od ] ds. (90)

The relation between B, ¢, and p is given by equations (15) and (16)
while B, , xo, and v, are related by equations (9) and (10) and their
value is obtained by solving equation (11). The integral in equation (90)
is extended over 8 from —k to k, the range of real values of the propaga-
tion constant (in z-direction) of the modes of the continuous spectrum.
Equation (90) thus includes the losses due to forward as well as back-
ward scattered radiation. The radiation modes with imaginary values
of 8 can carry power away from the waveguide only strictly perpendicu-
lar to its axis. This power loss, if any, is not included in equation (90).

VIII. NUMERICAL RESULTS FOR THE STATISTICAL CASE

Figures 4 through 9 show numerical evaluations of equations (89)
and (90). These figures can be grouped into two classes. Figures 4
through 6 are drawn for a dielectric waveguide whose index of refraction
is n, = 1.01. Figures 7 through 9 apply to a waveguide with n, = 1.5.
Within each of these two classes, the kd value was chosen to allow for
three different cases. Figures 4 and 7 apply to waveguides which can
support only the lowest order guided mode. In this case there is power
lost only to the modes of the continuous spectrum. Figures 5 and 8
apply to waveguides supporting two guided modes and Figs. 6 and 9
apply to waveguides supporting three guided modes. Each figure shows
the normalized loss caused by scattering into modes of the continuous
spectrum as solid lines and the loss to the possible guided modes as
dotted lines. Also shown are the ratios of backward to forward scattered
power as solid lines for the modes of the continuum and as dotted lined
for the guided modes. The total power lost to the lowest order guided
modes is the sum of the losses to the continuum and the spurious guided
modes.

Several remarkable features of these loss curves are worthy of a com-
ment. The losses caused by the modes of the continuum as well as by
the guided modes peak at certain values of the correlation length B.
The location of these peaks are different, however, for the continuum
and guided modes.
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Fig. 4 — Normalized radiation loss (d3/42L) (AP/P) and ratio of backward to
forward scattered power AP-/AP* as functions of the normalized correlation
length B/d for n, = 101 and kd = 80. Single guided mode operation (d = half
width of waveguide, A = rms deviation of one waveguide wall, L = Length of
waveguide section, n, = index of refraction of waveguide, k¥ = free space
propagation constant).

The losses to the guided modes increase with inereasing number of
guided modes supported by the waveguide. However, the losses caused
by the continuum of modes also increase as an increasing number of
guided modes can be supported. This increase is less rapid, however,
as one might expect because of the dependence of equation (90) on the
fourth power of k. The fourth power dependence on frequency (or inverse
wavelength) is typical for Rayleigh scattering by small particles, and
it is not surprising that we encounter it here.

Finally, it is apparent from the curves showing the ratio of back-
seattered to forward scattered power that forward scattering is pre-
dominant for large values of the correlation length. The ratio of
AP~ /AP"* levels off for large values of B. In some of the curves the
leveling of the AP™/AP" curves occurs out of the diagram but it is a
common feature of all the curves. For small values of the correlation
length there is as much secattering in the forward as in the backward
direction.

Tor many practical applications, a waveguide supporting only one
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Fig. 5— Normalized power loss and ratio of foreward to backward scattered
power for radiation (solid curves) and spurious guided modes (dashed curves).
Two guided modes (n, = 101, kd = 15).
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Fig. 6 — Similar to Fig, 5. Three guided modes (n, = 101, kd = 23).
— — — — two guided mode loss; ———— continuum loss.
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Fig. 7 — Similar to Fig. 4. One guided mode (n, = 15, kd = 1.3).
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Fig. 8 — Similar to Fig. 5. Two guided modes (n, = 1.5, kd = 18).
— — — — one guided mode loss; ———— continuum loss.
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Tig. 9— Similar to Fig. 5. Three guided modes (n, = 1.5, kd = 3).
— — — — two guided mode loss; continuum loss.

guided mode may be of most interest. Let us assume A\, = 1u. Figure 4,
holding for kd = 8.0 and n, = 1.01, applies to a waveguide whose half
width is d = 1.27u. Taking the worst possible case of B/d = 9 or B =
11.4p, we find from Fig. 4

@ 4P

A’L P
If we want to know how much rms deviation A of one wall of the guide
would be required to cause a 10 percent loss (AP/P = 0.1) in one centi-
meter of waveguide (L = 1 em) we find A = 5.85 X 10 °x = 585 A.
The ratio of A over d gives an idea of the relative tolerance require-
ments:

=6 X 107%

% = 4.6 X 107% = 4.69%,.
If the waveguide were to conform to the conditions of Fig. 6, we would
have for A, = 1y a half width d = 3.66u. The losses caused by the two
spurious modes are of the same order of magnitude as the radiation losses
caused by the continuous spectrum. For B/d = 10 or B = 36.6px we get

a total loss of
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3
sz % =34 X 107

To cause AP/P = 0.1 for L = 1 em requires that

A=12X10" or % = 3.289,.
The relative tolerance requirements are, therefore, approximately the
same in both examples.

As a last example let us use Fig. 9 corresponding (A, = 1u) to a wave-
guide with n, = 1.5 and a half width d = 0.477u. For B/d = 1.3 or
B = 6.2u we find for the total loss

d® AP

TLP - 23 X 107",

We get AP/P = 0.1 with L = 1 em for

4=218X107% =218% o 2 =0457%.

The perturbation theory, strictly speaking, holds only for small values
of AP/P. However, it is reasonable to expect that the power scattered
into the radiation modes eseapes sufficiently rapidly so that no appreci-
able amount of power reconversion from the radiation field to the guided
mode occurs. The incremental power loss, AP/P = —alL, is therefore
the same for any section of the guide so that we obtain the total scatter-
ing loss into the continuum of radiation modes P = P **. We may
now ask how muech rms deviation is required to cause a radiation loss
of 10 dB/km or « = 2.3 km™ = 2.3 X 107° em™". Using B/d = 10,
corresponding to the top of the loss curve of Fig. 4, we obtain the
equation

3

?xz.sx 107 =6 X 1073

so that (\ = 1g,n, = 1.01, kd = 8.0, d = 1.27 X 107* em)

% =6.98 X 10™* or A =886 X 10" cm = 8.86 A.

This figure dramatizes the stringent tolerance requirements of dielectric
waveguides for long distance optical communications. In fact, such
tolerances seem impossible to obtain. One can only hope that the cor-

relation length can be kept far from the worst possible value of B/d = 10
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(in this example) so that these extremely stringent tolerance require-
ments might be eased.

IX. CONCLUSION

We have analyzed the losses suffered by the lowest order symmetric
mode propagating on a dielectric slab waveguide caused by imperfec-
tions of the waveguide boundaries. The analysis was simplified by assum-
ing that there is no change in either the dielectric slab or the guided and
unguided fields in one direction parallel to the slab. This assumption
causes all our conclusions to be optimistic since variation of the slab
in this direction can only cause additional losses. However, we expect
that the results of this analysis give at least the correct order of magni-
tude of the actual scattering losses.

The statistical analysis was limited to a study of the effects which
an exponential eorrelation function might have on the waveguide losses.
The actual form of the correlation function may be quite different from
this assumed exponential shape. Conelusions regarding loss predictions
are further hampered by a lack of knowledge of the expected correlation
length.

However, our analysis does lead one to conclude that scattering losses
suffered by optical fibers or other dielectric waveguide structures may
be very serious. Deviations of the waveguide wall in the order of a few
percent can cause a power loss of 10 percent or 0.46 dB/cm if the wall
imperfection can be described by an exponential correlation function
with a correlation length to guide half width ratio of approximately
B/d = 10. An rms deviation of 4 = 9 A causes a radiation loss of 10
dB/km if the free space wavelength is A, = lp and the guide has an
index of refraction of », = 1.01 (with vacuum on the outside). The
width of the slab in this last example is 2d = 2.54p.

The mode coupling and radiation loss theory has been experimentally
confirmed at microwave frequencies. A report on these measurements
is given in Ref. 8.

t Several other correlation functions have been tried and it was found that the
results are insensitive to the particular choice of the function for values of B/d
less than the value corresponding to the loss peak. In particular, the maximum
loss value and the position of this loss peak were the same for different correla-
tion functions. However, the loss values for B/d larger than the value correspond-
ing to the maximum of the curve are very strongly dependent on the choice of
the correlation function.
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