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This paper presents the theory of mode conversion and radiation losses
of the lowest order circular electric mode in a dielectric rod (fiber) wave-
guide and its confirmation by a microwave experiment. The theoretical re-
sults were obtained from a theory whose detailed development has been
presented in an earlier paper.

The microwave expertment was carried out at approximately 50 GHz.
The optical fiber with imperfect walls was simulated by a teflon rod of 1 cm
diameter and 1 m length with a periodically corrugated wall.

Mode conversion was observed in excellent agreement with theory. The
observed radialion losses are somewhatl less than the prediction of the
perturbation theory, but the agreement is quite good. The direction and
width of the far-field radiation patfern was observed in agreement with
theory.

I. INTRODUCTION

A theory of mode conversion and radiation losses of a guided mode in
a dielectric slab was deseribed in Ref. 1. The power conversion to spuri-
ous guided modes as well as to the continuum of unguided radiation
modes was assumed to be caused by deviations from perfect straightness
of the air-dielectric interface of the slab. The model of the dielectric
slab waveguide was chosen for its simplicity.

Even though the dielectric slab exhibits all the relevant features of
mode conversion caused by surface roughness and allows one to draw
conclusions as to the order of magnitude of the losses suffered by guided
modes in dielectric waveguides of other geometries, it is desirable to
report the caleulations for a round dielectric rod. The results of cal-
culations for the dielectric rod are directly applicable to light trans-
mission along optical fibers. Furthermore, we wanted to test the pre-
dictions of the theory at microwave frequencies where a controlled
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experiment, to check the effect of surface imperfections on mode guid-
ance, is feasible. We present in this paper the theoretical treatment of
the round dielectric waveguide with wall imperfections and its con-
firmation by a microwave experiment.

The mode conversion theory of round dielectric waveguides is only
sketched in this paper since the basic method of calculation has already
been described elsewhere.! The theory is simplified by limiting the
discussion to circular electric modes. In order to avoid coupling between
the circular symmetric and other modes, we assume that the symmetry
of the rod is such that all derivatives with respect to the angle ¢ of a
cylindrical polar coordinate system (r, ¢, z) vanish (8/d¢ = 0).

We conclude again (as in Ref. 1) that the radiation and mode con-
version losses caused by deviation of the waveguide walls from perfect
straightness are extremely severe, imposing strict tolerance require-
ments on the fabrication of low loss optical fiber transmission lines.

To confirm the basic aspects of our theory we conducted a microwave
experiment. Because of the ready availability of equipment, the fre-
quency range of 50 GHz was chosen. Two teflon rods were used to simu-
late optical fibers. Both rods had 1 em diameters and a length of 1 m.
One rod was smooth and was used for calibration and reference purposes,
while the other rod was machined with periodic grooves to simulate an
optical fiber with wall imperfections (Fig. 1).

The periodic wall perturbations cause two guided modes to be coupled
together. In fact, it is possible to obtain complete power conversion
between these two coupled modes. We have observed complete power
conversion in agreement with our theory.

In a certain frequency interval, the periodic grooves cause coupling
to the continuous spectrum of radiation modes of the dielectric rod.
The measured results are somewhat lower than the theoretical pre-
diction. The reason for this discrepancy can be partly explained by a
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Fig. 1 — The smooth and corrugated teflon rods used for the microwave ex-
periment (n,2 = 2.05).
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certain ambiguity in the value of the effective radius of the corrugated
rod. If we make the assumption that the effective radius is either the
largest or smallest radius of our rod, we obtain two curves which bracket
our experimental results. However, our experimental values are consis-
tently lower than the theoretical predictions based on an average diam-
eter which is the arithmetic mean of the largest and smallest rod
diameter. It is more likely, therefore, that the loss prediction of the
perturbation theory is slightly too large for losses which are as high as
those which oceurred in our experiment.

Our theory also predicts the far-field radiation pattern caused by a
strictly periodic wall perturbation.” We have observed the peak of the
far-field radiation lobe and its width in agreement with theory.

II. TE MODES OF THE DIELECTRIC rROD’

Imposing the condition

d
90 0, (1)
the transverse electrie field is composed of the components

£, H ,H,. (2)

The guided modes have the following form (normal modes of the perfect
waveguide are indicated by script letters)

g, = A,,Jl(x,,r)e“”'f‘?"” for r<a (3a)

&, = A, ?'{ﬁ((';’f“)a) H{"@@yne ™ for r > a. (3b)

The two magnetic field components are obtained from the £, component
x = -4 (4)

w, = L1268, (4b)

The various symbols used in these equations have the meanings:

a = radius of the dielectric rod,

B, = propagation constant of mode n,

ke = (2K° — B4, (5)
Yn = (ﬁi - k2)l1 (6)
k = 2r/\, = free space propagation constant,
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index of refraction of the waveguide (rod),

n, =
« = radian frequency,
J, = Bessel function of order 1, and

H{" = Hankel function of first kind and order 1.

The boundary conditions, requiring that the field components &, and
Jc, are continuous at r = a, lead to the eigenvalue equation for g

Ya J1(ka@) _ 1 (Fyaa)
kn Jo(kn) YH (ivaa) M

The subscript 0 designates the Bessel and Hankel functions of zero
order. It is convenient to express the mode amplitude A4, by the actual
power carried by each mode:

P——Zf drf dwasc*—w'a"j; le, Pdr.

The modes will be normalized to the same amount of power (1 watt, for
example) so that we write

P,=P. (9)
The mode amplitude can now be expressed as

Az = 2on £ : (10)
wa B, P
(1 + T—;) | Jo(ka@) 2(xn) |

The modes of the continuous spectrum are given by the expressions
&, = BJ,(ar)e’ 7 r<a (11a)
&, = [CJ.(or) + DN, (pr)]e’ ' ?* r> a. (11b)

The two magnetic components are again obtained from equations (4a)
and (4b). N, is the Neumann function of order 1 and the parameters
o and p are defined:

= mk -8, e = -8 (12)

The normalization of the continuous modes involves the Dirac §-
funetion

Psp—p) == 2 [ " 1B () EX() dr. (13)
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The boundary conditions at r = a determine the relations between the
constants C, D, and B

5 pa(Jl(aa)N.,(pa) — -j; J.,(m)N.(pa)) (14a)

Y wia

T pa( w0 Tu(o) — % T (o)) (14b)
p

and these coefficients can be expressed in terms of the power carried
by the mode

P =+ D?. (15)
pup

The actual field of a dielectric rod with imperfect walls can be expanded
in terms of the normal modes of the perfect rod:

Eo= 3 Ctt [ o@e) do. (16)
The remaining caluclation of the power loss to radiation and guided
modes, as well as the energy exchange phenomena between different
guided modes, are exactly analogous to those developed in Ref. 1 so
that their derivation need not be repeated here. In Section III we simply
quote the results of the corresponding caleulations.

III. SINUSOIDAL WALL PERTURBATION

It was pointed out in Ref. 1 that a sinusoidal wall perturbation can
couple only those two modes whose beat wavelength

2
= 17
A“ BG - .Bn ( )

coincides with the mechanical period & of the wall perturbation. It is
therefore possible to consider the eoupling phenomenon between only
two modes with the result that the coefficient C, of the incident mode
and the coefficient C, of one of the spurious modes obey the relations

Co(2) = cos |k | 2 (18a)

C\@) = ("ﬁ)!sin | kou | 2 (18b)

Ko1

with
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(n; — 1) %ﬂ (ka)®
2’1(.3051)&

Ky =
. (ko) 1 (:0) . 19
(14 5)(1 + D) sarssart o | "

73 ’)‘? olKp ol\K1 2\ko 2\

Here, A, is the amplitude of the sinusoidal wall deflection
r(z) = a — Aysin 62}_ (20)
0= ﬁu — B

The microwave experiment was conducted with a teflon rod with
meandering grooves cut into it. The depth of the grooves is given by
2h as shown in Fig. 1. The amplitude of the fundamental Fourier com-
ponent of the periodic wall deflection of Fig. 1 is given by

=4,

A, (21)
o
The two modes exchange their power completely over a distance
D =T (22)

=2|"<01|'

The radiation loss of the dielectric waveguide of Fig. 1 can be calculated
by the methods of Ref. 1 resulting in the following equation.

10— () oy

P a mB.a
L Tiea) > Jilo=0) :
(1 + 7—) | o) Taia) | ™ (2m + 1)2[(%:)2 + (%f)]

(23)

AP is the power lost to radiation modes on a section of the waveguide
of length I, and P is the power of the incident lowest order circular
electric mode. The meaning of a and b is explained in Fig. 1. The sum
in equation (23) takes account of the contributions of each component
of the Fourier expansion of the distorted wall profile. The Iourier
amplitudes of the function shown in Fig. 2 are

_ 4
"= a@m + 1)

[the zero component of this expansion appeared already in equation

(24)
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Fig. 2 — The wall distortion function with Fourier expansion:
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= @m F D= (@m + 1) 2]

r =

(21)]. The index m, which has been added to the coefficients B, C, and
D appearing in equations (14a and b) indicates that they must be
evaluated for the following values of

ﬁm = BD - (2m + 1) 2—1r ] (253')
om = (n2k* — B, (25b)
pm = (B° — B (25¢)

The physical reason for the occurence of these discrete values of the
propagation constant 8 in the continuous spectrum of modes is the
requirement (derived in Ref. 1) that only those values of 8 are ap-
preciably coupled to the incident guided mode which satisfy the relation

9
50_18:_ (26)

where A, is the period length of a Fourier component of the wall dis-
tortion function.

IV. THE STATISTICAL CASE

To first order of perturbation theory, the expansion coefficient g(p, z)
appearing in equation (16) is given by

R = 1)
9 2) = L0\ 5,8)!

eJ (ko) (ca)

{6+ @0 +2) s ]

(27)
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with
) :
e=1 [ 160 — ae @ . (28)
0

It was pointed out in Ref. 1 that the average power loss caused by scat-
tering into the radiation field is given by

A — [ e tas. (29)
<P>.v f_k P

The symbol { )., indicates an ensemble average. The ensemble average
of | ¢ |* is given by

(o Punt [ R cos 60— puudu (30)

with the correlation function
R(u) = ([f(z) — allf(z + w) — a])w . (31)

The relative power loss caused by radiation from the rod is obtained
from equations (27) and (29)

%(%)f ;(El :r 2) | Ju(x{g:}nf()xga) | KI(E)I:):’LL}(“E()‘T) dg. (32)
’ Yo B B

V. NUMERICAL RESULTS FOR THE STATISTICAL CASE

To be able to make numerical predictions, let us assume that the
correlation function is given by

R@) = A® exp (—-J—%—l) (33)
so that we obtain
L(] 14 Iz)" = 2; % (34)
B — B + 5

Figure 3 shows a plot of (a’/LA*)(AP/P) as a function of B/a for
n, = 1.01, ka = 23.0 and n, = 1.5, ka = 3.0. Both conditions are chosen
so that only the lowest order circular electric mode can propagate in
the dielectric rod.

To get a feeling for the magnitude of the losses to be expected from
random variations of the rod’s radius, we calculate the rms deviation
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Fig. 3— Normalized radiation loss caused by random wall perturbations with
exponential correlation function, @ = radius of fiber, A = rms value of wall
deviation, I = length of wuvegmde section, k¥ = free space propagation con-
stant. The dimensions shown in the figure were chosen to ensure single guided
mode operation.

A required to cause AP/P = 0.1 for a rod length of L = 1 em for

, = 1.01 and the worst possible value of B/a = 2. Assuming A = 1p
we get from ka = 23 the value a = 3.66u for the guide radius. With
(from Fig. 3)

;’:L% = 0.16
we find
% = 15X 107 = 1.59,
or

A = 550 A.

As discussed in Ref. 1, it may be permissible to apply the perturbation
calculation of the radiation loss repeatedly so that from

AP
P
P

) (36)
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can be obtained. We can then ask for the rms deviation A of the rod’s
radius which causes a loss of 10 dB/km. With the numerical values
used above we find

A =844,

Almost the same figure was obtained for the rms deviation of the half
width of the dielectrie slab which causes a 10 dB/km radiation loss of
the lowest order (even) guided mode. However, in the case of the slab,
one wall was assumed to be perfect.

VI. THE MICROWAVE EXPERIMENT

The experimental setup is shown in Fig. 4. The microwave signal is
generated by a reflex klystron whose rectangular waveguide output is
fed into a round waveguide by means of a rectangular-to-round wave-
guide transducer. The round waveguide is connected to a section of
round helix waveguide which serves as a mode filter suppressing all
but the circular electric TE{” mode. Transition between the TE{"
mode of the round waveguide and the corresponding TE,, mode of the
dielectric rod waveguide is achieved by inserting the rod into the wave-
guide. This mode launcher is not perfect since a small amount of TE,,
mode of the dielectric waveguide is excited. The TE;” mode of the
round waveguide cannot excite the pure TE,; mode of the dielectric rod
since the field configurations of the two modes are slightly different.
In addition to some residual TEy, mode, small amounts of asymmetric
modes of the dielectric rod are also excited because of imperfect center-
ing of the rod inside the round waveguide.

To probe the field outside of the dielectric rod and detect the con-
version of power from the TE,, to the TE,; mode, we used a probe which

RECTANGULAR HELICAL

KLYSTRON GUIDE SECTIO
N DIELECTRIC ROD

> .

ATTENUATOR TRANSDUCER

DETECTCR

/W \

SQUARE WAVE

MODULATION
STANDING WAVE
RATIO METER

Fig. 4 —Block diagram of the microwave experiment.
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Fig. 5— Buildup of the TE. mode along the corrugated rod. Groove depth
=76 X 1073 em.

consisted simply of an L-shaped piece of RG 98U waveguide which was
mounted on an optical rail, which made it possible to move the detector
parallel to the dielectric rod. The receiver attached to the L-shaped
probe consisted of a single diode detector followed by an amplifier which
was tuned to 250 Hz. The klystron was amplitude modulated at that
same frequency. The periodicity of the grooves of the corrugated
dielectrie rod (Fig. 1) was chosen equal to the beat wavelength between
the TE,, and TE,, modes of the dielectric rod as given by equation (17).

Mode conversion from TIE,, to the TE,, mode can easily be observed
with our detector arrangement because the TE,, mode extends much
farther away from the rod than the more tightly confined TE,, mode.
Moving the detector to approximately 4 mm from the surface of the
rod made it impossible to observe any trace of the TE,, mode, while
the TE,, mode could easily be detected.

That the corrugation does indeed serve to transfer power from the
TE,; to the TE,, mode is shown in Fig. 3. The measured values of
TE,; power are shown as dots on this figure. Also shown is a plot of the
sin® z function which gives the theoretical law of the power increase
according to equation (18b). The slight scatter of the measured points
is caused by interference between the TE;, mode and some other residual
mode which is unintentionally generated by the mode launcher. From
equation (22) we calculate D = 80em for our particular experiment.
From TFig. 5 we see that the experimental value of the total energy ex-
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change length is approximately 75 em. The remaining discrepancy be-
tween the theoretical and experimental values can easily be attributed
to the machining accuracy of the rod which was no better than 2.5 X
107 em. Striking proof of the identity of the mode whose buildup is
shown in Fig. 5 is provided by Fig. 6.

Figure 6 was obtained by moving the I-shaped detector transversely
at the end of either the smooth or the corrugated rod. The detector is
thus probing the near field radiation pattern which results as the guided
mode leaves the end of the rod and radiates into space. This near field
radiation pattern is a faithful reproduction of the shape of the guided
mode inside of the waveguide. The solid curve shown in Fig. 6 was
obtained by probing the transverse field pattern of the smooth rod.
This field pattern shows clearly the TE,, mode. There is a slight dis-
tortion in the wings of this mode which is caused by interference between
the TEy, mode and a small amount of TE,, power launched by the trans-
ducer. The dotted curve in Fig. 6 was obtained by placing the detector
at the end of the corrugated rod. We took care to insert the corrugated
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Fig. 6 — The near-field radiation patterns of the guided modes (transverse
field distribution). Solid line = TEx mode at end of smooth rod; dotted line =
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Flig. 7 — Buildup of TEn mode along the corrugated rod. Groove depth = 23
% 1072 ¢m.

rod so far into the launcher that the section protruding from the launcher
was equal to the total power exchange length shown in Fig. 5. It is
apparent that the TE,, mode (instead of the TE,, mode generated by
the launcher) is present at the output end of the corrugated rod. It is
also apparent that almost complete mode conversion has taken place.
Figures 5 and 6 were obtained from a corrugated rod whose grooves
had a depth of 7.6 X 107° em. In order to be able to observe radiation
losses, we deepened the grooves in this rod to a depth of 2.3 X 107° em.
The power buildup as a result of mode conversion from TE,, to TEq.
on the rod with deeper grooves is shown in Fig. 7. The TE,, mode is
shown to go through two complete power exchanges. The exchange
length is now 25 em in agreement with theory.

Finally, we observed the radiation of power from the corrugated rod
with the deeper grooves. Equation (26) indicates the relation between
the z-component of the propagation vector of those radiation modes
that couple to the TE,, mode and the period of the periodic corrugation
of the rod. It is clear that the basic Fourier component with length
A, of the corrugated wall distortion funetion will contribute predomi-
nantly to radiation loss. Furthermore, since 8 < k is required for all
radiation modes, we see that only very little power can be lost to radia-
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tion unless the relation

27

Bo—k =71 (37
is satisfied. It follows from equation (37) that above f = 51GHz very
little radiation loss is to be expected. Indeed we see in Fig. 7 that com-
plete energy exchange between two guided modes is taking place which
would be impossible if substantial amounts of power had been lost to
radiation. However, below 51 GHz, equation (23) predicts considerable
radiation loss.

The applicability of the radiation loss theory to our experiment is
somewhat questionable. We must not forget that equation (23) was
derived from a perturbation theory under the assumption that only
very little power is lost from the original guided mode. If the radiation
detaches itself from the rod over a distance for which the power loss
of the guided mode due to radiation is only slight, we may be justified
in making the transition to equation (36). However, this procedure
becomes more and more questionable as the radiation losses increase.
Furthermore, the transition to equation (36) is less likely to be ac-
curate if the radiation is directed forward along the rod. It is shown in
Ref. 2 that forward radiation results close to the region where the equal
sign of equation (37) applies.

Finally, there is some uncertainty what value “@” for the rod’s
radius should be used in equation (23). Since the radius of the cor-
rugated rod is variable, some suitable average value must be taken.
Figure 8 shows three theoretical curves. The two dotted curves were
calculated using the largest and smallest value of the radius in equation
(23). The solid curve was obtained by using the average value of the
radius. The crosses in Fig. 8 show the results of our loss measurements.
It is apparent that most of these points fall within the two dotted curves.
However, all points lie below the solid curve. These loss measurements
were obtained by comparing the output power at the end of the smooth
and corrugated rod. The accuracy of these measurements is no better
than approximately =% dB. In view of the discussion of the applica-
bility of the perturbation theory to high radiation losses, the agreement
between theory and experiment must be considered as good.

Figure 9 shows the angle of the far-field pattern of the radiation lobes
caused by power loss due to the corrugated wall. The dots are measured
values, while the curve is a result of the theory of Ref. 2. Again we see
good agreement between experiment and theory.
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VII. CONCLUSION

This paper contains a perturbation theory of mode conversion effects
and radiation losses of a round dielectric waveguide. This theory is
applicable to light transmission in optical fibers. The theory developed
here is limited to the cireular electric modes of round dielectric wave-
guides. However, the order of magnitude of the losses for other modes
is expected to be similar.

The theory has been checked by a scaled experiment at microwave
frequencies. The dielectric fiber with wall imperfections was simulated
by a teflon rod of 1 em diameter which was provided with periodic
grooves. Mode conversion from the TE,, mode of the dielectric rod to
the TE,, mode was observed in excellent agreement with experiment.
The observed radiation losses are in reasonable agreement with theory.
An existing disecrepancy can be attributed to the limitations of the
perturbation theory to predict correctly the high losses encountered
in this experiment.

The conclusion to be drawn from our theory for the operation of
optical fibers is a need for very strict tolerance requirements. For ex-
ample, the radiation losses caused by surface roughness of a fiber
designed for single mode operation at 1u wavelength can be as high as
10 dB/km for an rms variation of the fiber wall of as little as 8 A.
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