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In an earlier paper I described a perturbation theory of the radiation
losses of a dielectric slab waveguide. The statistical treatment of the radiation
losses was based on the correlation function of the wall distortion. This
paper discusses the results of the radiation loss theory in terms of the power
spectrum of the function describing the thickness of the slab. We found that
only those mechanical frequencies @ of the power spectrum contribute to the
radiation loss that fall into the range B, — k < 68 < B, + k. (8o = prop-
agation constant of guided mode, k = free space propagation constant.)
The mechanical frequencies near both end points of this mechanical fre-
quency range contribule more to the radiation loss than the region well
inside of this range.

We also discuss the far-field radiation pattern caused by a stricily
stnusotdal wall distortion.

I. INTRODUCTION

In an earlier paper I developed a perturbation theory of the mode
conversion effects between guided modes and of the radiation losses of
a given guided mode caused by deviations from perfect straightness of
the waveguide wall." For simplicity, the discussion had been limited to
a waveguide in the form of an infinitely extended dielectric slab.

The statistical discussion had been based on the desecription of the
wall distortion by means of a correlation function. In Ref. 1 an exponen-
tial correlation funection had been assumed. However, it has been estab-
lished that the shape of the correlation function has little influence on
the radiation losses.

It is possible to base the discussion of radiation losses not on correla-
tion functions, but on the mechanical power spectrum of the wall dis-
tortion function. This study provides information as to how the various
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mechanical frequencies of the wall distortion function eontribute to the
radiation losses.

The analysis of Ref. 1 was based on the use of radiation modes of the
dielectric slab which represent standing waves in directions transverse
to the propagation direction of the guided modes. The question naturally
arises how a superposition of these standing waves can result in radiation
flowing away from the rod. This question is answered by examining
the far field radiation pattern caused by a sinusoidal distortion of one
wall of the dielectric waveguide. This paper gives the relation between
the length of the mechanical period, the wavelength of the guided mode,
and the direction of the main lobe of the radiation.

II. RADIATION LOSS AND POWER SPECTRUM

The amplitudes of the modes of the continuous spectrum were derived
in Ref. 1, equations (65) and (69). We have
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are the Fourier transforms of the wall distortion functions f(z) — d and
h(z) + d. [x = f(2) is the boundary of the dielectric-air interface, z = d
describes the wall of the perfect guide, and x = h(z) is the distorted
boundary near x = —d.]
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The meaning of the constants appearing in equations (1) to (5) is:

B, = propagation constant of guided mode (propagating in z-direc-

tion),

B = component of the propagation constant of the continuum mode
in z-direction,

Lk = propagation constant in free space,

L = length of guide section with wall distortions,
n, = dieleetric constant of slab,

p = (k" — Y (6)
o = (k" — B, @)
ke = (nik* — BY)", (8)
v = 6 — k) @

The y-component of the electric radiation field caused by the wall
distortions is given by

£, = [ 0.0, Do, ) + glo, Dulp, A dp. (10)

<o

The functions &, and &, are the even and odd radiation modes. The ratio
of scattered power to incident guided mode power is obtained from

AP * 2
L8 [ oo Iy + Lanto, 1) 1) 2 d. (11)
-k P
For simplicity we assume that one wall of the slab is perfect
h(z) = —d, (12)
go that
‘l’(B) =0, (13)
the relative scattering loss, follows from equations (1), (2), and (10)
k
1
= [ BLle® 16 ds (142)
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Since ¢(6) is the Fourier component of the wall distortion function its
absolute square value

| «(8) |° (15)

is the ““power spectrum’ of f(z) — d. It is apparent from equation (14)
that AP/P depends on the power spectrum of the wall distortion func-
tion. Incidentally, equation (14) is not a statistical expression, but holds
for a specific dielectric slab waveguide. We entered the power spectrum
in the combination L | ¢ |* in equation (14) since this combination is
independent of L for a randomly varying function f(z) — d.

Equation (14) allows us immediately to determine the range of
mechanical frequencies § which contribute to the radiation loss. The
integral in equation (14) is extended from —% to k, the 8 range of
continuous radiation modes. The range of mechanical frequencies con-
tributing to the scattering loss is therefore given by

Bo — k<8 <B+ k. (16)

This is an important result since it states that those parts of the power
spectrum which lie outside of the range, equation (16), do not contrib-
ute to radiation loss.

This last statement must not be misconstrued to mean that a wave-
guide with a sinusoidal wall distortion extending over length I

(z) = d + asin §'z 0<z=L (amn

with 6" lying outside the range of equation (16) does not lose power by
radiation. The power spectrum of equation (17) is

L[ sin (8" — a)% ’
| o(8) |* = I v = | (18)

A term with 6" 4 6 in the denominator has been neglected in equation
(18). The accuracy of this approximation improves with increasing
values of L.

It is apparent from equation (18) that | ¢(6) |* has non-vanishing
values for 8 # ¢ so that there is some small contribution to radiation
loss even if 6 lies outside of the range of equation (16).

However, if we consider the limit . — « we can approximate the
power spectrum, equation (18), by a é-function:

. . _md
lim | (0) | = 57 8(6 — 9. (19)
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In this special case the expression (14a) for the scattered power becomes

¥ -3 w0 @

The scattering from a dielectric waveguide with a wall distortion fune-
tion whose power spectrum is a é-function is proportional to I(8, — 6').

The function 7(3) is plotted in Fig. 1 for n, = 1.01, kd = 8.0, and
Bod = 8.041. The scattering caused by a wall distortion with a é-
function spectrum (a sinusoidal wall distortion of infinite length) is
nearly independent of the value of 8 = 8, — 6 over most of the S-range.
There are two sharp peaks at § &~ k and 8 & —Fk. The physical reasons
for the sharp increase in loss at these values is easy to understand if
we consider the direction of the radiation pattern as a function of ¢'.
We show in Section III [equation (35)] that the angle a between the
waveguide and the main radiation lobe is given by

Q Bo — 6’_
k k

I

cos a = (21)

The two peaks of the funetion I(8), or correspondingly of the radiation
loss, are associated with
ar~0 and a~ . (22)

This shows that the radiation loss is high when the radiation pattern is
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Fig. 1 — Graphical representation of the function 7(g) [eq. (14b)]. n, = 101,
kd = 80, B.d = 8.041.
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directed very nearly parallel to the surface of the waveguide. The
radiation modes gain more power if the guided mode can interact with
them over a longer distance. An observation of this loss peak is re-
ported in Ref. 2.

A power spectrum with sharp peaks much like that of equation (18)
or (19) is not likely to occur for dielectric waveguides with random
imperfections of the dielectric interface. It is much more reasonable to
expect that such waveguides may have spectral distributions which are
nearly independent of 8 over a certain range of 6 values. In the limit
of a “white” spectrum,

| «(8) |* = constant, (23)

the scattering loss is proportional to the integral over the function I(8)
shown in Fig. 1. The two peaks contribute very little to this integral.
Numerieal integration of I(8) of Fig. 1 including and excluding the peaks
resulted in the values:

f 1(8) d8 = 0.011, f " I(8) d8 = 0.0096,
—8 -7.8

7.5
and f_ 1(6) ds = 0.0081.

This result is reassuring for the use of the perturbation theory which
was used to derive equation (14). The perturbation theory is based
on the assumption that power is converted from the guided mode to
the radiation field but that no power is converted back from the radiation
field to the guided mode. This approximation is certain to yield better
results if the radiation pattern is directed away from the rod. In other
words, the perturbation theory will work poorest in the region of the
peaks of Fig. 1. However, for spectra that do not particularly favor the
regions of these peaks, the contribution of those regions (which at the
same time give the least reliable results) to the total radiation loss is

only slight.

III. THE FAR FIELD RADIATION PATTERN

The far field pattern of the radiation field (that is excited by the
lowest order even guided mode traveling in the dielectric slab with
sinusoidal perturbation of one wall) can easily be calculated from equa-
tion (10). The even and odd radiation modes were given in Ref. 1 (for

|z| > d)
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and with the help of equations (1) and (2) we get from equation (10)
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In the far field with £ — « and z — « (but L finite) we can obtain an
approximate solution of the integral in equation (27) by the method of
stationary phase.” The sine and cosine functions of argument p(z — d)
can be expressed as sums of exponential functions. The most important
terms of the integrand of equation (27) are, therefore, of the form

exp [—i(Bz % pz)]. (28)

This exponential term is an extremely rapidly varying function of p as
2 — o and z — . All other terms in the integrand vary slowly by com-
parison. According to the method of stationary phase the contribution
to the integral comes predominantly from a region that is determined by

;Wim:& (29)
p
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With the help of equation (6), equation (29) leads to the condition

L= =5 (30)
or
po = ksina (31a)
B=Fkcosa (31b)
with
cosa = (’ET_T_—ZE)—; = :'j (32)

For z > 0 and z > 0 only the + sign in equation (30) is possible. This
is an important point. It shows that even though the radiation modes,
equations (24) and (25), represent standing wave patterns in x-direction
only, the outward traveling part of the decomposition of the standing
wave into traveling waves makes a contribution to the radiation field,
equation (27).

All terms of the integrand with the exception of equation (28) can be
taken out of the integral. The remaining integration can be carried out
using the expansion

z
2k cos’ &

Bz + px = k(zsina + z cosa) — (b — po) + -+~

_j; e—i(,ﬂz+pz] dp = (1 + 7:)( )* (k)(rg?sae—liciz sin a+z cos a) (33)
The far field is therefore obtained in the form

E, = 1 exp (’i ’1) ak (wuP)in? — 1) —205%d
™) * (B d + &)i

. L
_ Py Sin 2a0d — 1pya, €08 200d sin (¢ 6) 2
(ps + o) sin 20,d — 2ipocy COs 200d 6 — 0
srar é ipod 1 |[ml—k(3 sin a+z cos a)]
exp ‘:z(e 6) 2] (r)* . (34)

The index zero was added to ¢ to indicate that it must be evaluated from
equations (7) and (8) using p, of equation (31a).
Equation (34) reveals several important features of the far field of
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radiation. This field is essentially a plane wave traveling in the direction
of a (tan @ = z/z, and z and z are the coordinates of the point of ob-
servation).

The field intensity is inversely proportional to the square root of the
distance r from (the sinusoidally distorted) waveguide section. The
dependence on distance is inversely proportional to (r)! rather than r
because the waveguide is infinitely extended in y-direction (see Ref. 1).

The main radiation lobe occurs at the maximum value of [sin (6’ —
0)L/2]/(¢' — 6) that is at § = ¢ or from equations (5) and (31b) at

50_ 6’

; (35)

cos a,, =
(8, = propagation constant of guided mode).

The width of the main lobe depends on the length L of the sinusoidally
distorted waveguide section. The difference in angle between the peak
of the lobe and the first null determines the half width of the main lobe

27
Aa = Thsma for « # 0. (36a)
The width of the main radiation lobe is inversely proportional to L.
The lobe is narrowest for « = =/2 and becomes wider as a decreases

toward zero. If the peak of the main lobe is at @ = 0, we obtain
\
Ax = (=] fora = 0. (36b)

The peak amplitude of the main radiation lobe is not strongly dependent
on a. The increase in radiated power in forward direction (e = 0) which
is apparent from Fig. 1 is caused by the broadening of the radiation
lobe with decreasing angle.

IV. CONCLUSION

The radiation loss of dielectric waveguides caused by deviations from
perfect straightness of the waveguide walls depends on the “power
spectrum” of the wall deviation function. A sinusoidal wall perturbation
gives rise to radiation into a particular direction in space. Each Fourier
component of the Fourier expansion of the wall distortion function is
responsible for radiation into a particular direction. The width of the
radiation lobes is wide for scattering directions parallel to the rod so that
those Fourier components responsible for forward and backward scat-
tering contribute more to the radiation loss than those causing scat-
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tering in other directions. However, this preferential loss behavior is not
very pronounced, so that the Fourier components responsible for forward
and backward scattering contribute only a small amount of the total
radiation loss caused by a broad power spectrum.

The coupling between two guided modes of the dielectric waveguide is
also governed by equation (5). Only one component of the power spec-
trum of the wall distortion function influences the coupling between two
guided modes, while the entire range of mechanical frequencies, equa-
tion (16), determines the radiation loss.

The general predictions of this theory have been experimentally veri-
fied. Microwave experiments on a periodically corrugated teflon rod have
shown that the radiation losses are negligibly small if the period of the
corrugation is such that 6 lies outside of the interval indicated by equa-
tion (16).* However, if @ falls inside of the interval, equation (16), con-
siderable radiation losses do occur. The peak of the radiation losses
shown in Fig. 1 and the direction and width of the radiation lobes have
also been observed in agreement with this theory.
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