Amplitude Distributions of Telephone
Channel Noise and a Model for
Impulse Noise

By J. H. FENNICK
(Manuscript received June 30, 1969)

The noise waveforms found on voice bandwidth telephone channels are
generally recognized to be nmon-gaussian in their amplitude distribution.
This paper presents data which suggests that a simple exponential is a
good function to describe amplitude densities in the extreme lails.

A comprehenisve model of impulse noise as viewed on trunk groups s
then presented. The model relales the distributions of impulse noise levels
and impulse noise counts.

I. INTRODUCTION

Noise on telephone channels has been measured for years with in-
struments which are constructed to enable reasonably good correlations
between the reading obtained and the annoyance of the noise during a
telephone conversation." Fluctuations of the meter pointer during a
measurement are either ignored or mentally averaged by the observer,
depending upon their frequency of occurrence and their magnitude.
With the introduction of data transmission on the telephone network, the
relatively frequent high amplitude excursions of the noise waveform
were viewed as a ‘new’” kind of noise, primarily because they were
generally not annoying in voice communication and it was recognized
that no meaningful measure of them could be obtained with the stand-
ard noise measuring sets. The term ‘“impulse noise” was applied to
these high excursions and new instruments were designed to measure
them.?

The significance of impulse noise in data transmission has given rise
to a great deal of effort devoted to its measurement, characterization,
and evaluation as a transmission impairment.’”® (For an extensive
bibliography, see Ref. 3.) Several models have been suggested to de-
seribe the erratic behavior and clustering phenomena associated with
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this type of noise. The Pareto model of Berger and Mendelbrot and the
generalized hyperbolic model proposed by Mertz appear to be the best
presented to date.®” A more mathematically tractible (than the hyper-
bolie) model has recently been applied to error rate data by Fritchman.
He proposed a partitioned Markov chain model which would seem to
show promise in this area although it does not seem to have been ap-
plied to impulse noise data as yet.® The model presented here does not
deal specifically with the intervals between occurrences of noise pulses
but is concerned directly with the number of occurrences per unit
time above any threshold (in decibel) of observation. Extrapolation of
occurrences of noise pulses to errors created in data transmission is a
function of many parameters besides the occurrence of noise and will
not be discussed here although good prediction techniques exist.®

In order to set the background for the discussion of impulse noise as a
separate phenomenon, as opposed to the background noise or as a part
of the composite noise waveform on a channel, data are first presented
on the amplitude probability density function of the noise as observed
and comparisons made with gaussian noise. The data reflect only the
range of variables encountered and should not be considered as statis-
tically describing the amplitude distributions of noise on telephone
channels.

II. IMPULSE NOISE AS A DISTINCT PROCESS

Typical oscillograph noise waveforms from a random noise generator
and from a telephone channel are shown in Fig. 1. Each trace is 200 ms
long and both have the same rms value. The upper one is from the noise
generator, the lower one from a telephone channel. The occurrence of
two ‘“‘impulses” are shown near the left end of the lower trace. It is
primarily the occurrence of such “pulses” that make real channel noise
decidedly different from band-limited white gaussian distributed noise
(the upper trace).

Figures 2a and b show two such impulses extracted from a noise
recording, sampled at a 15 kHz rate and analyzed to determine their
amplitude and phase characteristics in the frequency domain. In both
cases, the phase characteristic is shown to be relatively smooth, but the
frequency content highly variable. Similar analyses on about 2000 noise
pulses verified these observations. However, if a large sample of pulses,
on the order of 200, is taken from a given channel, the average spectrum
appears to be approximately the shape of the channel gain-frequency
characteristic—not a very surprising result. Such an averaging is shown
in Fig, 3.
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Fig. 1—200 ms samples of random noise and telephone channel noise with
equal rms levels.

/\ﬂ-‘ﬁ\ﬂ.\ n I\

NORMALIZED VOLTAGE

1
°

no o
T
T

—]

-

4

o

©c o o o
LN

n

o

RELATIVE SPECTRAL
DENSITY(S) AND PHASE (P)

) 0.6 1,2 1.8 2.4 30 0 0.6 1.2 1.8 2.4 30
FREQUENCY IN KHZ
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Fig. 3 — Average spectral content of about 200 impulses from a single tele-
phone channel.

Figures 1 and 2 serve as partial justification for treating impulse noise
as a separate phenomenon. The pulses shown in Fig. 1 do not rise to
strikingly high amplitudes compared to the rest of the noise waveform.
Those in Fig. 2, however, are so large that the scale prohibits viewing the
background noise waveform which continues beyond that shown. This
extreme peaking will become more apparent in Section III.

III. PERCENT OF TIME WAVEFORM IS WITHIN AN TNTERVAL

The percentage of time that the noise is within a given interval
(£0.5 dB in this case) is a useful means of deseribing a random wave-
form. Data in the form of histograms were obtained by sampling, at a
10 kHz rate, 30 minute tape recordings of telephone channel noise.
Equipment limitations imposed a usable dynamic range of 30 dB, so
the apparatus was adjusted to examine only the extreme peaks of the
noise. In practice this usually required that the noise be examined at
levels corresponding to percentages of 107 or less. This approach was
also consistent with the nature of the problem—the relatively high noise
amplitudes were of greatest interest. Logarithmic compression and
decibel scaling were used and resulted in a unique presentation of the
data. Instead of the usual sealing in voltage, the abscissa is scaled in
decibels removed from the rms value of the noise. A negative sign pre-
ceding an abscissa value refers simply to one polarity of noise waveform,
a positive sign refers simply to the opposite polarity. Zero on the ab-
scissa corresponds to the rms value of the noise waveform. For con-
venient comparison, the equivalent data for a gaussian distribution
are also shown in each of the figures presented. The ordinate, proportion
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of time the waveform is within 4% dB of the indicated level, is presented
in powers of 10 from 107* to 107"

Figures 4 and 5 show the histograms as measured on two different
channels. Figure 4 was taken from data recorded on a coaxial cable sys-
tem and Fig. 5 from a microwave radio system. The striking departure
from a stationary gaussian process is obvious. The sampling rate of
10 kHz over a 30 minute period resulted in 18 X 10° samples. Values
on Fig. 4 of 5.5 X 107° represent one sample in 18 million and can
hardly be considered significant. The values of 10~ shown on TFig. 4
represent voids in the data. Figure 6 shows a histogram constructed by
combining seven 30 minute recordings, and so represents an ‘“‘average”
histogram over 3.5 hours of real time. The result is surprisingly linear
for values below about 5 X 107> and suggests that the tails of the am-
plitude distribution of real channel noise are approximated quite well
by a simple exponential.

A total of 37 half hour recordings were analyzed in this fashion.
Seventeen of these were taken from microwave radio channels and 20
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from various types of cable or coaxial carrier systems. The variability
observed on the microwave systems is much greater than that on cable
systems so the two sets of data are treated separately.

Since no data are available on the amplitude histograms at values in
excess of 107*, it is assumed here that the histogram for such values is
represented by a truncated normal function. The observed data suggest
that, if the noise is stationary, its amplitude density function then may
be written:

0; z < —b
ce”; b=z =< —a
p@) = 19; —a<z<a ey
ce™"" as<zx=bh
0; x>0

where

+b = realistic bounds on the voltage waveform (channel saturation),
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over 3% hours. Constructed as in Iig. 4.

+a = points of departure of the density function from an assumed
underlying Gaussian,
& = gaussian density truncated at +a.
¢, k = parameters deseribing the exponential density function.

The value of b ranges from about 30 to 50 dB*, the value of a ranges
from about 10 to 15 dB*, and &k may be negative as illustrated in Fig. 5.
The variable ¢ ranges over 14 orders of magnitude from 1077 to 10",
No significant correlations were found between any of the variables
in the data analyzed. The point of departure from the assumed under-
lying truncated gaussian distribution a is given by the positive solution
of the quadratic
a=Fk=+ {k—2[c2niL

Some values of k and ¢ are given below.

3.1 Histograms on Cable and Coaxial Carrier Systems

As stated earlier, the histograms on cable and coaxial carrier systems
showed less variability than those on microwave radio systems. In fact,

* That is, above the rms value.
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two of the 20 observations tracked the assumed gaussian distribution
to within less than 1 dB over the entire range from 107° to 107". These
two observations lend credence to the assumption of an underlying gaus-
sian process and also show that at least two channels had no impulse
noise in the sense of the term as defined in Section I.

The data are summarized in two ways. First, the values of the vari-
ables k and ¢ were examined, and then the intercepts (abscissa values)
for various values of proportion were studied.

For ecable and coaxial carrier systems (20 samples)* the mean of &
was 0.45 and the estimated standard deviation s was 0.46. Because of
the extreme range of ¢, as mentioned in Section III, only the median
appears to be of interest; it was found to be 0.0028. A probability density
function using the mean value of k and the median of ¢ is shown in Fig.
7. The resultant exponential departs from the guassian distribution at
about 4.5 X 107" on the ordinate.

The second method of examining the data is considered to be more
meaningful in terms of a representative average. The intercepts at
proportion values of 10™* to 107" were studied. The mean (z),, (in dB),
estimated standard deviation s, median, and 90 percent confidence
intervals (CI) about the mean, are shown in Table I. The average and
median funections so derived are also shown in Fig. 7. The distributions
of intercepts were found to be very nearly log-normal for all four pro-
portion values (10™* through 1077). This explains the differences between
the means and medians as in Table I and Fig. 7. A skew distribution of
the intercepts is of the form to be expected. A lower bound on the inter-
cept is imposed by the gaussian assumption and a gradual tailing off of
the values at the high range might be expected.

Taking the median value of the exponential distribution as being a
representative value of conditions on cable carrier systems, it is of
interest to compare tail values of the resultant cumulative distribution
function (CDF) with the gaussian distribution. The median exponential
intercepts the gaussian at an z value 12.6 dB above the rms. This cor-
responds to the log™' (12.6/20) = 4.26¢ point. If the noise amplitude
were truly gaussian, only 0.004 percent of the waveform would lie beyond
the +4.26¢ points. However, 0.0134 percent of the area lies below the
exponential portion of the density function, nearly a full order of magni-
tude difference. This sheds some light on the predicted performance of
data systems, for instance, in the presence of gaussian noise, a typical
analysis situation, and that actually observed in a working version of
the system over real channels.

* Bach “sample” is 30 minutes of time.
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3.2 Histograms on Microwave Radio Systems

The data for the microwave systems were analyzed in the same way
as the second method for the cable systems. The individual values of
& and ¢ were not computed because of the dubious value of such an
effort. Averaging over the intereepts for constant values of density
(method 2) illustrates the greater variability in the microwave systems.
The results, presented in Table II, show this by the larger estimated
standard deviations and wider 90 percent confidence intervals about the

TaBLE [—EsTiMATED PrROBABILITY DENSITIES FOR CABLE
AND Coaxian CARRIER SYSTEMS

Probability (2) 0y ' 3 Median | 909 CI
Density (dB) (dB) (dB) (dB)
10— 19.3 4.4 15 1.5
10-¢ 24.6 4.9 23 1.8
107 30.2 5.5 28 2.0
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TABLE IT—ESTIMATED PROBABILITY DENSITIES FOR
MicrowaAvE Rapio SYSTEMS

Probability ‘ %z v I 3 ‘ Median 909, CI
Density dE) (dB) (dB) (dB)
104 17.7 10.7 12.6 5.5
10-5 23.2 12.8 18.5 5.2
10—s 24.7 9.7 22 4.1
10-7 29.6 9.4 27 4.1

estimated means (compare with Table I). The median function so
derived is shown in Fig. 8. The distributions of intercepts were again
found to be closely approximated by the log-normal distribution and
the median curve examined as for the cable carrier systems. The median
exponential intercepts the gaussian distribution at 11.6 dB above the
rms value. This eorresponds to log ™ (11.6/20) = 3.8, or 0.0165 percent
of the noise waveform that would lie beyond +3.8¢ of a gaussian dis-
tribution. The values of & and ¢ for the median curve on Fig. 8 are 0.48
and 0.042, Integration of the resultant exponential function over the
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Fig. 8— Amplitude probability density functions. Estimated median taken over
constant density values from 8% hours of noise from microwave radio systems.
— gaussian, — - — average, — — — median.
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appropriate intervals yields 0.068 percent of the median waveform in
excess of the 3.8c points of an assumed gaussian. In this case, the median
difference is about a factor of four.

IV. FORMAL DEFINITION OF AN IMPULSE AND SOME PULSE LENGTH DATA

In the process of impulse noise analysis a formal definition is required.
The definition is illustrated in Fig. 9 and was first proposed by Kaenel,
and others.” The waveform illustrated in Fig. 9 represents an ideally
rectified noise waveform being sampled by an A/D converter. All
portions of the noise waveform that remain below a variable slicing
level, designated level 2, are considered as part of the underlying band-
limited white gaussian or background noise until level 2 is exceeded.
Once level 2 is exceeded, the noise pulse, or impulse, is measured starting
at the point where level 1 was exceeded as indicated in the figure until
it returns below level 1 and remains for a specified amount of time
referred to as a guard interval. The function of the guard interval is
to distinguish between nodes of a single impulse and two impulses which
oceur close together in time. Various guard intervals have been used in
the analysis of voiceband impulse noise, from 0.3 ms to 0.8 ms. The
choice is somewhat arbitrary, but on the basis of the author’s unpub-
lished interpulse time distributions, his choice is 0.6 ms as an optimum
value. This is preferred because interpulse gap length histograms com-
monly exhibit a null at about 0.6 ms. The adjustment of levels 1 and 2
vary, but level 1 is typically 10 dB above the rms value, and level 2
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Tig. 9 — Ideally rectified noise waveform illustrating definition of pulse length.
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from 13 to 16 dB above rms. In the context of this formal definition,
the impulse has been referred to as a burst.’

Under the rules of the definition, just given, frequency functions were
constructed for the lengths of several thousand impulses. A set of these
are shown in Fig. 10; the set is shown as “‘envelopes of all the observed
frequency functions.” Only two points appear to be significant. The
modes of the functions occur at about 1.2 ms, and lengths in excess of
10 ms are almost never observed. The remainder of this paper discusses
an impulse noise model.

V. A MODEL FOR IMPULSE NOISE ON TELEPHONE CHANNELS

This section deseribes impulse noise as viewed on a trunk group as
it is used by a switched network subscriber. The distributions of the
peak amplitudes of individual impulses have been of interest for some
time, and extensive data concerning them have been collected.” "
Methods of relating such distributions to data system performance have
also been derived.”

The data are most frequently collected by means of simple threshold
detectors. Excursions of the noise waveform above the threshold are
recorded on electromechanical counters.” Such measuring devices have
finite counting rates which may be exceeded at times by the rate of
occurrence of impulses in clusters. For this reason, from this point on,
“counts’’ referring to values reeorded by the instruments will be used
instead of the word “impulse.” The count process necessarily differs
in some respects from the impulse noise process for the reasons just
cited.

5.1 Terminology and Definitions

Some jargon has accumulated in the area of impulse noise studies;
it is sometimes conflicting as well as confusing. The following termi-
nology is adopted here.

8
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Fig. 10— Envelopes of length density functions derived under definition of Fig. 9.
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(7) Count—Refers to a number registered on the counter of an im-
pulse noise threshold detecting type of measuring instrument, set at a
specified level, during a specified measurement interval. (The count
may be less than the actual number of impulses which exceeded the
measurement, threshold during the interval because of the finite maxi-
mum counting rate of the instrument.) Upper case C denotes the random
variable count.

(#7) Impulse Noise Level—A level, expressed in decibels, at which
the recorded count in a specified measurement interval is equal to
some specified count denoted C, .

(777) Level Distribution—A distribution of levels, expressed in decibels
(dBm, dBrn, and so on), taken across a number of channels, at which a
specified count C, is recorded in a specified measurement interval.
Script “¢” denotes the random variable level.

(iv) Count Distribution—A distribution of counts observed in
measurements on a number of channels taken at a specified level.

(v) Log-Count Distribution—A distribution of the logarithms of
counts, expressed in decibels. Upper case “D” denotes the random
variable log-count and is defined: D = —10 log,, (C/C,), where C, is an
arbitrarily “specified reference count’” greater than zero. C, is arbitrary,
but once picked it must be held constant for its associated level distribu-
tion.

(v¢) Amplitude Distribution—A cumulative distribution of the peak
amplitudes of individual impulses on a single channel. The average
complementary distribution is linear on semi-log paper for counts in
the range of interest; that is; ¢ < =300 in 30 minutes.

(vit) Slope—When spelled with “S”, Slope refers to the slope of the
peak amplitude distribution. Through common usage, the number
assigned to Slope is the negative reciprocal of the slope of the peak ampli-
tude distribution, designated “m”, and expressed in decibels per decade
of counts.

5.2 General Comments on Level and Count Distributions

Sample level distributions are constructed from data obtained through
the use of multilevel impulse counters which record the number of
counts at several levels, each separated by 2 to 6 dB, occurring during
a prescribed measurement period. Level distributions may be con-
structed from the data depending upon the specific number of counts
C, in which one is interested. Suitable interpolation between the levels
actually observed permits one to estimate the level at which some
specified number of counts C, actually occurred. Thus each level dis-
tribution has a number C, associated with it, as well as a specific meas-
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urement interval. The primary data used in this study consists of level
distributions of 15 counts in 15 minutes and 90 counts in 30 minutes.**®

The number of counts observed in a multilevel measurement tends
to decrease exponentially as the level, in decibels, increases. Some de-
partures from this rule are observed in individual measurements, but
the average amplitude distribution taken over a large number of mea-
surements in a single class of trunks appears to be exponential.’® The
number of counts C, at any level £, may be estimated from the number
of counts C’, at level ¢/, by the empirically derived relation

C = C exp [(¢ — £)/(Mm)]. 2)

where M = (log, 10)™". Because different types of transmission facilities
exhibit different impulse noise properties, the average noise level and
average Slope vary over an appreciable range as facilities change.
However, within a given type of facility or within a class of trunks,
greater homogeneity is observed.” The model is therefore directed at a
description of the noise as observed within populations of transmission
channels on a single type of facility which are common to some larger
grouping such as a trunk group.

5.3 Assumplions

The following two assumptions, supported by studies of available
noise data, are basic to the model which is presented in Section 5.4.

(7) Level distributions for a specified eount C, are normal with mean
£, and standard deviation ¢, .

(72) o, is independent of C, within a given trunk eclass. The first
assumption is the most reasonable in view of the data; there are con-
flicting data concerning the second and it appears to be more valid for
compandored facilities than for noncompandored facilities.*® Under
these assumptions, and one more stated below, it is shown below that
the count and level distributions are completely described by the
parameters associated with one level distribution: C,, ¢, , ¢,, and the
Slope m. The Slope is estimated by the straight line connecting the mean
of the level distributions for different choices of C, .°

5.4 The Model

Any number of level distributions may be obtained from the data by
choosing different values of C,. As C, increases, the corresponding
level £, will decrease and trace a path in the count-level plane given by
equation (2). A family of such level distributions form a probability
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density surface above the count-level plane with normal cross sections
parallel to the level axis. Such a surface is illustrated in Fig. 11. Under
assumption (7z), lines parallel to the mean Slope are projections of con-
stant probability density with the same functional form as equation (2).
One of two cross sections may be taken which will define a probability
density function. If the cross section is parallel to the count axis, a count
distribution results. To see this more clearly, consider an experiment
where impulse noise measurements are made on a group of similar
trunks. A value for C, is chosen and the associated level distribution
with mean ¢, is found. The distribution will be normal with standard
deviation ¢, . Another value of C, is chosen and a second level distribu-
tion is constructed. It will have the same standard deviation as the first.
The experiment may be repeated any number of times to construct the
family of distributions illustrated in Fig. 11.

In the experiment just deseribed, the noise level £ associated with C,
was the random variable. Now suppose one wishes to let the count, or
log-count, be the random variable while holding ¢ fixed. It is noted
that equation (2) is the relationship between the means £, and C, .
Assume for the moment that equation (2) holds completely and is indeed
a fixed relation between the two possible random variables, £ and C.
Equation (2) may be rewritten, with £ = £, = 0 and ' = C, as this
constitutes an arbitrary shift in the decibel scale to define ¢ = 0:

PROBABILITY _ COUNT LEVEL
DENSITY 7 DENSITY ~“DENSITY
-

A
I
I
|
|
I
|
I
I
I
I

|
CONSTANT DENSITY
T=~PROJECTION CONTOURS
ON THE COUNT-LEVEL
PLANE

Fig. 11 — Probability density surface for the impulse noise count process on
trunk groups.
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£ = —mlog, (C/C,). 3)

Define D = —10 log (C/C,). Then { = Dm/10, and the log-count
distribution, the probability that D is < some value z, is by assumption
1,

_ 1 zm/10 " A
PID 5 2] = Pt < #m/10] = 5 [ e (/2o dt @
The density function f(z) is found to be
1@ = oo O [-m'2/20007]; - wSzS . ()

Thus D is approximated by a normal distribution with mean zero and
standard deviation ¢, = 100,/m.*

In the previous derivation, equation (2), a relationship between
expected values was assumed to hold as a mapping between the random
variables £ and C or { and D. To check the validity of this assumption
a second experiment can be performed on the data collected in the first.
The level £ can be held fixed at £,, and the count distribution at £,
obtained by interpolation as described earlier. The observed log-count
distribution may be compared with that derived in equation (5). This is
done in Section 5.5.

5.5 A Check on the Model Using Count Distribution Data

Figure 13 is an example of count distributions derived in three dif-
ferent ways from a set of data consisting of 127 measurements on non-
compandored carrier facility trunks 1,000 to 2,000 miles in length. The
level distribution for these data, with C, = 15, is slightly skew, the
mean is 6.129 dBrn and the median 61.8 dBrn. The count distribution
at 61.8 dBrn, obtained by interpolation between levels measured, is
shown by the circled points on the figure. A point-by-point mapping
from the level distribution by use of equation (2) is shown, as well as
the log-normal one predicted by equation (5). The coincidence of all
three sets of data is striking.

VI. THE TIME VARIABILITY OF IMPULSE NOISE

An additional check on the validity of this model is provided by its
implications in the time variability of the noise. To see this, one addi-
tional assumption is made, and predicted and observed results serve to

* As n matter of interest, values of ¢p calculated from the 1964 Intertoll Trunk
Survey (Ref. 6), are shown in Fig. 12.
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Tig. 12— Values of standard deviation of log-count distributions F(D) as
abserved on Bell System trunks.

validate both this additional assumption and the preceding model.

Consider making impulse noise measurements on a large number of
channels at a fixed level {, and recording the cumulative count on the
7th channel C,; at times 2T, n = 1, 2, - -- . Now assume that the ac-
crued count is a linear funetion of time so that each total count C;;
after time »T may be estimated by C,; = nC,;, where C;; is the count
in the first interval 7 on the 7th channel. If the same reference count
(', is retained in the definition of D) (log-counts), for all time intervals,
then the mean value of D will increase as log (n) but the variance of the
count distribution (as opposed to the log-count) behaves differently
however, as shown by the following.

Under the assumption that equation (2) holds as a mapping between
¢ and C, the distribution of €' (counts) may also be derived:

P[C =yl =Pt =z —m log (y/C.)]

- g,(é-,r)% f"’ exp (—¢°/2q7) df, (6)

—mlogu/Co

and the density of C is approximated by the log-normal:

f(.f} (r) )} IJ'_ exp I:*
0

M? m

12(/0)]

o0

IA
1A

()
In = log, .



3260 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1949
a8

a5 |- )

90

80 ) /

°r / —

60 =

50

ol ) / .

30 - y -

20 —— —

10 - — ;
5 L / dB COUNTS ]
P -6 -3 0 3 6
2 el | | Ll
8 [e]

o] 2 4 6 20 40 60 80 100
COUNTS IN 15 MINUTES

Fig. 13— Empirical verification of the distribution of counts as derived from
distribution of levels of constant counts. Distribution of counts in 15-minute
measured periods on one class of trunks, O as measured; A constructed from
level distribution ; — predicted from equation (5).

The rth moment of C is then found to be

2 2
Bl = Cop /0l o=, @

and the variance, o2 = C2(e'/* — ¢'*) = (?A. Now, as the measure-

ment interval is increased as above, C, is replaced by nC, and ¢3(nC,) =
n*C*A. The variance of the count distribution increases as the square
of time if the mean increases linearly.

Note from equation (7), that the mean of the count distribution is
not equal to the reference count C, which is associated with the level
distribution. The two are related as*

<C>av =C, exp [Ui/(2m2ﬂ12)]
~ (,(1.027)°2°, ()

Thus, the mean of the count distribution at level £, is always greater
than the reference count C, . Furthermore, from the definitions of the

* Note from Fig. 12 that oo may be as large as 13.5 so {C).v may be as large as
130 times C..
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level distribution and the quantity D, C, is equal to the median of the
count distribution. Solving equation (8) for ¢, yields

Tp ~ 8.7(10g (C)nv/CO)})

and an estimate of the variance of the log-count distribution may be
made from the mean and median of the count distribution. This rela-
tion should be very useful in practice.

Now consider measurements of length K,T taken on a number of
channels with the counts recorded after K,T' and K,T, K, > K, . Let =
be a random variable that takes the value of the count at K, T, and y
one that takes the value of the count at K,T. If it were true that the
count on each channel is a linear function of time, then for the sth
channel measurement, y; = (K,/K,)x; and the coefficient of correlation
p:y = 1. Such correlation coefficients were calculated for several sets
of data. The results are presented in Table III. T was equal to 5 minutes
in all cases. The notation p,; indicates the correlation between the counts
at the end of 7 5-minute intervals with that after j 5-minute intervals.
The mean ratio of the count after j intervals to the count after ¢ intervals
and the ratio of the variance after j and 7 intervals is also given. The
expected values, derived from the model, are given in each case (in
parentheses), as well as the observed values. While the correlation coef-
ficients are not all as close to unity as one might hope, especially for the
5-minute versus 30-minute measurements (i = 1, § = 6), the mean and
variance do appear to increase directly and as the square of time re-
spectively.

On the basis of the data shown in Table IIT and Fig. 13, the model
appears to be an adequate description of the observed behavior of the
impulse noise on transmission facilities as viewed through impulse noise
measuring sets.

TaBLE III—CoRRELATION COEFFICIENTS AND RATIOS
oF MEANS AND VARIANCES*

Sample
1,7 pij i/ wi 8% /8 Size
1,2 (1) 0.87 (2)2.04 (4)3.70 87
1,2 (1)0.92 (2)1.97 (4) 5.00 76
1,2 (1) 0.90 (2)1.98 (4) 3.98 216
1,3 (1)0.96 (3)3.10 (9) 9.90 161
1,3 (1)0.98 (3)2.90 (9) 8.50 168
2,4 (1) 0.97 (2) 2.06 (4) 3.60 93
1,6 (1) 0.58 (6) 6.76 (36) 46 161

* For counts observed after 7 and j 5-minute intervals. Predicted values in
parentheses are followed by observed values.
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VII. SUMMARY

The following relations and conclusions come from the model pre-
sented and the data upon which it is based.

(i) Level distributions are normal with mean ¢, and variance oy .

(1) Count distributions are log-normal with mean (C).. which is
linearly related to the length of the measurement interval, and variance,
s2, which is proportional to the square of the interval. Equivalently,
log-count distributions are normal with mean proportional to the
logarithm of the measurement interval and variance, o5 , independent
of interval.

(#ii) o, is dependent upon the class of trunk but is independent of
C, , an arbitrary reference count greater than zero.

(iv) o¢p = 100,/m, m is a measure of the slope of the distribution of
noise peak amplitudes.

() op = 8-7(10gm (C>nv/0ﬂ)!-

(1) (C)a = C,(1.027)7%

(vii) The mean of the count distribution, (C)., = C,e'“* and the
variance

2 2
V(C) - C:gu(zu) [ell(Ea) _ 1]; o= % ; ‘;_f = log, 10.

(viii) The median of a count distribution, taken at level £, , is equal
to €, and the mean (C),,, may be 100 times C,. Expected count by
itself is accordingly a very poor statistic for describing impulse noise.
However, the mean and the median completely describe the count or
log-count distributions.

The model helps to explain the apparent erratic behavior of impulse
noise measurements. Any measurement is a sample taken from the bi-
variate sample space illustrated in Fig. 11. The fact that the distribu-
tion of counts is log-normal also accounts for the great fluctuation in
the count observed on successive measurements on a given channel.
It is shown however that the average rate of occurrence is reasonably
constant with time for intervals from 5 to 30 minutes.
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