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The theory of cylindrical magnetic domains provides conditions governing
the size and stability of circular cylindrical magnetic domains in plates of
uniazial magnelic materials together with an estimate of the range of
applicability of these conditions. The results of the theory are directly
applicable to the design of cylindrical domain devices. Computation to first
and second order of the energy variation resulling from general small
deviation in the domain shape from an nitially circular shape yields the
conditions governing domain size and stability. The physical origin of
the various terms in the energy expansion 1s evamined in detail. A graph
from which many domain size and stability properties may be oblained
summarizes the results of the energy variation calculation. The minimum
theoretically attainable domain diameler is approximately o, /w3 | where
o, is the wall energy density and M, is the saturation magnetization.
For domains to exist, the effective anisotropy field must be greater than
4 M, .

I. INTRODUCTION

The recent development of a technique for the propagation of isolated
magnetic domains in an arbitrary direction in anisotropic ferromagnetic
thin films by P. C. Michaelis created a renewed interest in the use of
domain propagation for device purposes.' The technique used by
Michaelis for propagating domains along the easy axis is quite different
from that used for propagation along the hard axis. During discussions
on the possible application of these techniques, A. H. Bobeck, U. F.
Gianola, R. C. Sherwood, and W. Shockley suggested that for general
symmetrical domain propagation the direction of magnetization must
lie normal to the plane of the film®. The recognition that rare earth
orthoferrites have the required properties came in response to this
suggestion.’ Experimental work on the application of this type of
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domain motion device was then begun. Although at the present time
this work has been largely concentrated on the orthoferrites, there exist
other materials, such as the hexagonal ferrites and manganese bismuth,
having the required properties.

The present work directs attention to structures in which the prop-
erties of the material used require the magnetization to lie normal to
the surface of the plate. The modes of operation of devices constructed
from such structures are classified according to the effect of wall motion
coercivity. In the case of very high wall motion coercivity, the applica-
tion of shaped applied fields determines the initial domain configuration
which is then maintained by coercivity. For very low wall coercivity,
on the other hand, the saturation magnetization, wall energy, plate
thickness and bias field determine the domain size and shape. Between
these two extremes, there is a continuum of intermediate modes. In
either extremal mode, a complete set of operations (logie, memory, and
transmission) may be performed.* The present work concerns only the
low coercivity mode and specifically, right circular cylindrical domains
in plates of uniform thickness and small variations therefrom. When
observed by means of the Faraday effect, e¢ylindrical domains have the
appearance (particularly when in motion) of bubbles and therefore are
colloquially referred to as ““bubbles’.

The present work largely treats the theory of eylindrical domains with
experiments and applications being considered only briefly. Section I1
presents the domain model and mode of description. Section IIT contains
the calculation of the energy derivatives used in the investigation of
domain size and stability. Section IV contains an interpertation of the
energy derivatives in terms of fields and potentials. Section V discusses
the solution of the domain size and stability equations. Section VI
discusses the range of validity of the domain model used in the previous
sections. It is found that several assumptions implicit in the model are
related, and a requirement on materials suitable for the production of
circular domains is obtained. Appendix A contains a derivation the
properties of certain elliptic integrals appearing in the theory of circular
domains, Appendix B is a listing of the standard forms and series
expansions of the magnetostatic force and stability functions, and Ap-
pendix C is a list of mathematical symbols.

II. THE DOMAIN MODEL AND MODE OF DESCRIPTION

Figure 1 shows the magnetic domain structure to be considered
here.” The isolated magnetic domain is magnetized downward while
the remainder of the plate is saturated upward. The domain will be
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Fig. 1 — Magnetic domain configuration.

considered to be near circular. Examination of the variation of domain
energy under a variation of domain shape from the assumed unper-
turbed shape yields domain stability. Once created, a eylindrical domain
continues to exist if the magnetic configuration meets the conditions
for stable equilibrium. The stability of a given configuration, however,
does not guarantee that it can be produced. The generation of cylin-
drical domains is a separate problem which is not treated here.

2.1 Description of the Domain

A cylindrical (r, 8, 2) coordinate system is placed at the center of the
domain with its z-axis perpendicular to the plane of the plate. The
plate is taken to have planar surfaces and a uniform thickness A. Only
the case of a plate of infinite extent, r, = o, is considered here. It is
assumed that the material constraints allow the magnetization to lie
only along the z-axis and the magnitude of the magnetization is inde-
pendent of the local magnetic field. The boundary between the two
regions of magnetization, the domain wall, is assumed to be independ-
ent of z (no wall bulging) and to have a width which is negligible in
comparison to the domain radius. It is assumed that a wall energy
density per unit area o, may be assigned independently of either the
orientation or curvature of the wall. The assumptions about the de-
tailed magnetic configuration (the magnetization magnitude and orien-
tation and the wall energy and shape) are coupled by the material
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properties. Section VI contains a detailed discussion of the validity of
these assumptions and the eylindrical wall assumption. Even though
the foregoing assumptions appear quite drastic and restrictive, experi-
mentally there does exist a region in which the results obtained under
these assumptions are both accurate and useful.

The expansion

r(0) = 2 1. cos [n(6 — 6,)] 1)
n=0
of 7,(6) in terms of the Fourier coefficients, r, and 6, , describes the
domain shape in the plane. The n value is called the “rotational per-
iodieity.” The condition

|rn]>>Z}nlr,,| (2)
assures that the domain is near circular and that the function 7,(6)
is single valued and smooth.

It is convenient to introduce the finite variations of the r, and 0, ,
Ar. and A8, , respectively, in order to describe small variations in
domain size and shape from the strictly circular domain of radius
7o [15(8) = 7). In terms of these variations, a small variation of the wall
shape from r,(6) = r, may be written as

1(0) = 1o + Ary + 2 Ar, cos (8 — 6, — A6)] (3a)
where, by assumption,
[70 | | Ao |+ 2Zn | A . (3b)
n=1

Subject to the restrictions stated, equation (3) describes an arbitrary
variation because of the completeness of the Fourier expansion.

The externally applied magnetic field, H, is taken to be spatially
uniform and to lie in the positive z direction. (The presence of a compo-
nent of the applied field in the plane of the plate has no effect to the
approximation that the magnetization lies only along the z-axis.)

The assumed simple forms of the applied field and magnetic con-
figurations permit the use of simple formal expressions for these quan-
tities. The expression for the externally applied field is

H = Hi, (4)

where H is a constant and i, is the unit vector in the z-direction. The
magnetization may be written in terms of the unit step function,
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as
M = iM,[1 — 2ulr,(8) — rl}u(z + h)u(—z + Fh). (6)
2.2 The Energy Variation

The investigation of domain size and stability proceeds by computing
the first and second variations of the total system energy with respect
to the r, and 8, . The total energy of the domain is

ET =E1!’+EH+E}W7 (7)

where Iy, is the total wall energy, Iy is the interaction energy with the
externally applied field, and ¥ 5 is the internal magnetostatic energy.
The total wall energy, under the previously stated assumptions, is the
product of the wall energy density ¢, and the wall area a:

By = f oo da = ho f { 2(0) + [‘9”“(")}} 6. 8)

The interaction energy of the magnetization with the externally applied
field is

B, = —f M.-HdV = —f f f M _Hr dr d6 dz, ©)
Vv —oo 0 i}

and the internal magnetostatic energy is

H,u = lf [ Mv M dV7 ¢

all. aM!
- f f f f f _/ 6, o v dr d8 dz dr’ d8’ dr’
(10a)
where
="+ — 20 cos (0 — 0) + (z — 2)°. (10b)

In expressions (9) and (10), V indicates volume and primes indicate
quantities in the second coordinate system used in deseribing the in-
ternal magnetostatic interaction.
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The variation in the total energy when the r, and 6, are varied is

“ oF
AE, = 3 [(ZET) Ar, + (#) AH,.]
n’0 n 0

n=0
13 a‘*ET) _ Q(SEET)
+ 2 Z% mg; [(arn 61",,, GA?IIATM + - 67‘,, aem DA?‘,.AH...
3°E . ) ]
+ (aeﬂ 20, D000, | + 0 (11)

where the subscript O refers to evaluation of the partial derivatives at
the circular domain state, r,(#) = r,, and O; refers to terms of order
three and higher in the combination of Ar, and A8, . The first partial
derivatives of the energy, (E1/dr,), and (0E/88,), , are the generalized
forces of the system, while the second derivatives of the total energy
form the elements of the stiffness matrix.

Knowledge of the generalized forces and the stiffness matrix com-
pletely characterizes domain size and stability. It is shown in Section
III that only the energy derivatives, (dEr/dr,), and the (9°Er/dr),,
are non-zero when 7,(8) = r,. The equation obtained by setting the
only nonzero generalized force equal to zero is called the “force equa-
tion.” The expansion (1) is a quasi-normal mode expansion since cir-
cular domains are completely metastable with respect to the 6, and the
stiffness matrix is diagonal with respect to the 7. .

III. CALCULATION OF THE ENERGY DERIVATIVES

3.1 Derivatives of the Wall Energy

The derivatives of the total wall energy are computed by substituting
the wall shape expression (1) into the wall energy expression (8),
noting that

% = — g;m‘n sin [n(8 — 6,)] (12)

and differentiating under the integral sign. There results

oK
or,

ar,

= he, fh {r,, cos [»(8 — 8,)] — 30" sin [n(8 — B,,)]}

-[r: + (%)]“ ) (13a)

and
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PE

o ar. ha,, j; ” ({cos [n(8 — 8,)] cos [m(8 — 6,)]

2]
+ nmsin [n(6 — 6,)] sin [m(6 — B.,,)]}[ri + (%%’) ]
— {r,, cos [n(80 — 6,)] — %n sin [n(68 — 8,,)]}

-{r,, cos [m(6 — 8,)] — % m sin [m(6 — B,,,)]}

.[r;", + (%”;)2}_;) a6 (13b)
with analogous expressions for
ol /98, , 9°E /38, 96,,, and 8°Eyw/dr, 80, .
Evaluating equations (13) for a circular domain,
r(0) = r, and [dr,(6)/86] = O,

the eircular domain derivatives are

aEu') _ 9

(761‘0 o= 2rho . (14a)
32E|;-) . E 2 >

( a?: 0 B Ta ]ng7l ' "= ! (14h)

and all of the first and second derivatives of the total wall energy not
explicitly stated are zero.

3.2 Derivatives of the Applied Field Interaction Energy

The applied field interaction energy is evaluated by substituting the
formal expressions for the applied field (4) and the magnetic configura-
tion (6) into the applied field interaction expression (9), changing the
order of integration, and integrating.

EH

Il

A [ f: [i (1 — 2ufr(6) — 7]}

X wlz + thyu(—z + h)r dz dr d (15a)

I

h.u,H[ f ) ;-ﬁ(a)da] — constant. (15b)

The infinite constant is independent of the r, and 6, and does not
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contribute to the derivatives. Differentiating yields

IE s
O — onar it [, cos [n(o — 6,16 (16a)
n Jo
and
98 _ 2hM H f cos [n(# — 8,)] cos [m(6 — 6,)] db (16b)
ar, ar,, o

with analogous expressions for
ak, /a8, °Ey/or, 86, , and 0°E,/ae, 8é,, .

Evaluation of equation (16) for r,(8) = r, yields

@ﬂ) — A

(67}, = 4mrrhM H, (17a)
aQEH) -

(67“,2, L= 4rhM H, (17b)

2717
(%%ﬁ) o0hMH, n =1, (17¢)
and all the other first and second derivatives of the applied field inter-
action energy are zero.

3.3 Derivatives of the Internal Magnetostatic Energy

The formal expression for the internal magnetostatic energy is ob-
tained by substituting the expression for the magnetic configuration
(6) into expression (10). In dealing with the self-interaction energy,
it is necessary to use two coordinate systems: an unprimed system and
a primed system. Throughout the following calculation functions of
the spatial coordinates (r, 8, and z) are written with primes whenever
they are of the primed coordinates. Thus M, when considered as a
function of the primed coordinates, is written M’. The subseripted r,
and 6, are independent parameters and are never primed.

The calculation begins with the evaluation of dM./dz by differentiat-
ing expression (6) and noting that

d

&;’H(l) = &(2) (18)
where 6(z) is the Dirac delta function. Then

M. _ 3 kg (190)

0z
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where
Elr, 7,(8)] = 1 — 2ulr,(8) — 7] (19b)

and
gz) = 6(2 + }—_;) — 6(*3 + g) (19¢)

After changing the order of integration, the expression for the internal
magnetostatic energy becomes

0 o0 2x 2r L] E- N [
Ey = %1113 f f f f f f "'k—iﬂdzdz'dede'drdr'. (20)
~ 0 0 0 0 —o -

The factor g(z)g(z') /s contains the z and z’ dependence of this integral.
From expression (19¢) it can be seen that this factor consists of four
terms. Application of the transformation (z, ') — (—z, —2') to two of
the terms under the integral sign combines these four terms into two
terms. Making the transformation (z, 2') — (2, z), where

z=z—7, (21)

on the remaining terms and carrying out the integration over z yields
the expression for the internal magnetostatic energy in terms of an
integral over surface magnetic charges. This expression is

27 7
= M* zf f f K" 16 a6 dr dv (22)

where Z is an operator defined by
i )= [ ddoe) — s — Wl | (23)

= 4+ — 2 cos (6 — ) + 2" (24)

The factor kk’ contains the r, and 6, dependence of the integral so
that the derivatives of E, may be calculated by replacing this factor
by its derivatives under the integral. Evaluating the first derivatives
yields

oKk _ ok an(®) ok _on(o)

6?‘" o 6?',.,(9') aru ' arh(e) aTn
J— ak’ L ! QE — D 1=
- ar, [ﬂ,(ﬂ Bn)] + k ar, cos [’]’L(G Bn)] (2'33-')
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6kk’= ak’ 67‘,,(9’)+k, ok ar,(8)
a0, ar,(8") a8, or.(6) 08,

e kO sin (e = 6] — & oy, sin [n(6 — 6,)]. (25b)
ar, or,

Substituting these derivatives into the integral and exchanging the
primed and unprimed 7 and 8. The first term becomes identical to the
second. The derivatives of the internal magnetic interaction energy are

then

6_1‘_74{ _ zﬂjfzfuo fh fm f?ﬂr lk,a_k
or, o Yo o Jo 8 ar,

-cos [n(8 — 6,)]r'r d@’ dr’ db dr (26a)

a2EM 2 fm fzr j-cx: f2f l
— = 2M =
ary, Oy -z o Yo o Jo 8§
ok’ ok

, Ok _ _
-{k FX: cos [n(8 — 6,)] cos [m(6 — 6,)] + ar, 31,

-cos [n(8 — 8,)] cos [m(8" — B,,,)]}r’r d@’ dr’ dé dr (26b)

with analogous expressions for
0E /80, , 0*E /07, 00, , and 9°KE, /a6, a0, .

For circular domains (r, = 7o) the factors k, &', dk/dr, , and ok’/dr,
are independent of  and ¢ so that the integrands are periodic in ¢ with
periodicity 2. The range of integration of ¢’ may therefore be changed
from [0, 27] to [6, 2r + 6] so that after making the transformation

(6, 6") — (6, §) where

=6 -8, (27)
the range of integration of both # and ¢ is again [0, 27]. Note that now
S =1+ — 2 cos{+ 7 (28)

depends only on {.
Using trigonometric identities, the integrands of the integrals for

the various derivatives are written as a sum of terms each of which is
the product of a factor depending only on 8 and a factor depending on
t. Carrying out the integration over 8 yields, for r,(8) = o,

%)_ Ve fwfwfhlra_kf ’
(ar., . = d4rM.Z A sk arhr*rdg' dr’ dr, (29a)
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a*Eﬁ) _ f 2 ( ak' ak)
( ), = 4xlM’Z [ f k an N d¢ dv’ dr, (29b)

%4#;]1?2_[ f [ l
2 Jo s

ak | Ok ok )
(h o ; + ar, or, cosn{ Jr'rdedr’ dr, n > 0, (29¢)

—

AN

o
=

~—
|

while all the remaining first and second derivatives are zero. Note that
by inspection of these integrals and the definitions of %, &', and », that

aEEM) _ 9 (3E,u)
(arf, o B \Narg /s (30a)
and

(aE) _ 11((913.,,) R S [“ f‘" 7 gk’ ak (1 — cos nf)
af’"ﬁ 0 B 2ar, \dry /y 2 s Jo 0 0 ar, or, 8

' dE dr’ dr, n > 0. (30b)
Noting that from expressions (18) and (19b)

ak

o = —28(r — 1) (31)
and using the definition of the Z operator given in expression (24),
expression (29a) may be integrated with respect to r and z, and the
second term of expression (30b) may be integrated with respect to r, +/,
and z. The result after some rearrangement is

(%)o = (2nh) M 2o /), (32a)
(ifni)o = — Gy S (32b)
Yo oy ayzy O (2re/h)
(TT‘E’.-)., = —(2rh) (4= A1) a(QTu/h)

+ (h)(axDI?) “’“[ ((r_,’ﬁi)) — Ln(O)] (32¢)

where renaming 7’ to r and using expression (19b)

F(?%) 2;3"3 [2B(ry . , h) — 2B(ro , 10 , 0)

- B(TIJ ’ w! h) + B(rﬂ ’ CO, 0)]: (333)
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Blro .7, . 2) = f ) f (& + O dr de, (33h)

a

o =12+ — 2ryrcos {, (33¢)

and where
MW%ﬂELTW%Y+w—mMWm—mmnw@®

The L, functions are reduced to standard elliptic integral form, and
power series expansions are obtained for both large and small values of
the argument in Appendix A. The B function is integrated once after
displacing the origin of the cylindrical coordinate system from 0 to
0’ as is shown in Fig. 2. The transformation connecting the (r, {) and
(p, ¢) coordinate systems is

psin g = rsin ¢ (35a)
peOSe =T cos{ — 7Ty . (35b)

After the transformation

U.f Jﬁww“<“ (36a)
Blry ,r;,2) =
[T

Equations (36a) and (36b) are integrated to obtain, in either case,
f=u f==

Boo,r, 9 = [ G+ @hde— [ lzlde @D
=0 {=0

where p, is the value of p along the boundary r = r,. Forr, = 7o, p, =
— 27, €08 ¢ so that

A

Tig. 2— The (¢, r) and (p, @) coordinate systems.
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Biru,ro ) = [ I+ @) o e de =5 [h | (380)

v ox/2
and

B(ry, ry,0) = 2r. (38b)
The remaining two terms of equation (33a) must be evaluated as a limit
lim [B(rﬂ yTry 0) - B(rﬂ y sy h)]

r =

lim [ — (s + 1% — plde + 7 | ]|
rp=w v 0 (39)
= |h]|

since p, approaches infinity when r, approaches infinity. Combining
these results vields

F(2ro/h) = %(21’0/11)2{ [ " h/2r? + sin® o]} do — 1} (40)
and

aF2ro/h) _ . o {0 ) - gf,/z or N 1 iz 1] }
@n) (h/2ro)2F (2ro/h) — ~ : [(h/2ry)* + sin® @] dgp-  (41)

Appendix B lists the standard elliptic integral form of the force
function F and power series expansions for large and small values of
the argument. In Fig. 3 the force function is plotted as a function of the
domain diameter measured in units of the plate thickness

d/h = 2ry/h. (42)

The stability funetions S, , also shown on this plot, are defined in Sec-
tion 5.1.

IV. THE ENERGY VARIATION—ORIGIN OF TERMS

Summing the results of the last section according to expression (7),
the total energy variation expression (11) is

AE = [2rhe., + 4mrehM H — (2xh®)(dxD2)F (2r,/h)] Aty

L H — " M] e

+3 [hrhﬂ,H () (%) T | ()

+ % 2 {:’ houn® + 20h M H — (2nk)(drdr?) L Cro/h)
= n=1 0

a(2r,/h)

2ro

+ (h)(4rM?) N [L((h/2r)") — LH(O)]}(/_\rnf + 0, (43)
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Fig. 3——-The magnetostatic radial force function F and stability functions,
8y — S, 8 = 0, as functions of domain diameter to thickness ratio, d/h.

where F is defined by expression (33) and plotted in Fig. 3, the L, are
defined by expression (34), and all terms not explicitly stated are equal
to zero. The remainder of this section treats the physical origin of the
terms in the energy variation expression (43).

4.1 The Generalized Forces

The coefficients of the linear variation terms are the negatives of the
generalized forces. All forces except the r, force are identically zero,
which for a circular domain is a consequence of the rotational symmetry
of the system. The first term in the coefficient of Ar, is the product of
the wall energy density o, and the rate of change of wall area with re-
spect to r,, 2rh. The second term is the product of the external field
interaction energy density 2M,H and the rate of change of domain
volume with respect to 7o, 2whr, . The third term is the rate of change
of the internal magnetostatic energy with respect to 7, .

The internal magnetostatic force may be identified in expression (43)
and using expressions (32), (33), and (39) may be written in the form

—(3—6‘&%‘1) = 2k (Ar M) 2ro/h) (44a)

= (2wroh)(2M .){41rM .

U f(prdrd; f frdrdg’]} (44b)
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where p° is given in expression (33c). In expression (44b) the first factor
in parentheses is the domain wall area, the second is the change in
magnetization at the wall as the wall moves, and the quantity in braces
has the form of an H field whose origin will now be interpreted by super-
position of sources. The internally produced field arises from the super-
position of the internal field of a plate uniformly magnetized normal
to its surface with magnetization magnitude 3/, and two disks of mag-
netic charge of uniform magnetic surface charge density =2M, and
radius 7, . The first term within the braces is thus the demagnetizing field
of the infinite plate of uniform magnetization. The second term is the
difference in magnetostatic potential between a point on the edge of a
disk of magnetic surface charge of uniform density 4M, and a point
removed a distance /& from this point in a direction normal to the plane
of the charge disk divided by the distance . This is just the z-averaged
z-component of the field produced along the wall by the two charge
disks since

(I{‘>“E%j;thz:%.[u‘_%d'?":_w (45)

where Q denotes the magnetostatic scalar potential and z is measured
from the edge of the disk. Comparing expressions (44a) and (44b), the
total internally produced z-averaged z-component of the magnetie field
along the domain wall is

(Hu oo = — (4w .)(h/2r0)F (2r0/h) (46)

so that the total force per unit wall area (averaged over z) is

1 ol T,
“Smrih (aro )D = 2M ,(H 4 (H y )us). (47)
The first term is the product of the wall energy density and the wall
curvature and always corresponds to an inward directed force. The
second term is the change of magnetization at the moving domain wall
times the z-averaged z-component of the total field at the wall. [The
problem may initially be set up using this fact (Ref. 2, pp. 1922-1925).]
The properties of the force function will now be examined in some detail.
From expressions (43) or (44a) the first order variation in internal
magnetostatic energy, when 7, is varied, is

DBy = —2(xh)AxMYF Cro/h) Aty . (48)

The plot of F in Fig. 3, and the expansions for large and small values
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of the argument show that the force function is everywhere positive,
is monotonic increasing, and has a negative second derivative. Since
the force function is everywhere positive, the internal magnetic inter-
action energy at all times acts in such a way as to expand the domain.
Section 4.2 treats the effect of the slope and curvature properties of the
force curve on domain size and stability. Substituting the expansion of
the foree function for small values of the argument (138d) into expres-
sion (48) produces the energy variation for small values for ro/A,

AEy = {20hr2M (—4xM,) + (4xM3)16r5
— (R @M D21 C@ro/B)’ — 5@ro/R)" + -1} Are . (49)

(In the remainder of this section frequent reference will be made to the
properties of F and the L, given in Appendices A and B.) The inter-
action of the magnetization with the existing field from the infinite
dipole sheet produces the first term in expression (49). This may be seen
by comparison with expression (47) and observing that the field in-
ternally generated in the infinite dipole sheet with no reversals is
—4xM, . In Fig. 3 a dashed line through the origin with numerical
slope one represents this term and forms the small r,/h asymptotic of F.

The second term in expression (49) is the only thickness independent
term in the expansion and therefore must be identical to the variation
of self-energy of the two disks of magnetie charge which form the ends
of the reversal when r, is varied. Since the interaction with the infinite
charge sheet and the self-energy of the disk have been taken into ac-
count, the remaining terms are the mutual interaction of the magnetic
charge disks.

For large r,/h, an energy expansion in terms of k/r, is appropriate.
Substituting the expansion of the force function for large values of the
argument (138¢) into expression (48) yields

ABy = ~h2(4vrﬂff){[1 + £50/2r) + 04)

2ro

5

+[2 — 1(h/2r))" + 0,] In

}Aru . (50)

This expansion obscures the identity of both the infinite sheet magnetic
field term and the charge plate self-energy term so that a local (to the
wall) magnetic energy lowering per unit line length deseription appears
appropriate. However, the energy reduction per unit line length to
lowest order in 2r,/h is
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E ,; (domain) — I, (uniform magnetization)

2w,

= e ii1 1)
T *h

a)

so that the energy lowering per unit line length for the domain of in-
finite diameter is infinite. [Equation (51) is obtained by integrating
equation (50) to lowest order. The integration constant is determined
to be zero by term by term integration of the expansions of I for large
and small values of the argument and comparing at 2r,/h = 1.] The
conclusion that the energy lowering per unit line length for an isolated
straight line reversal may also be obtained by considering the energy
lowering in a strip reversal when the strip width approaches infinity.
The author’s intention at the outset of this entire calculation was to
calculate the numerical value of this magnetic energy reduction per
unit wall length. The internal magnetic interaction, however, retains
just enough of its global character when the domain is very large so that
no finite limiting value for this energy reduction exists.

The internally generated magnetic field at the wall of the domain,
for large r,/h is obtained from expression (46). To lowest order it is

(@xdl) b

s 2?'0

\ 27,
(Hu)aw = In ‘ 4e* % (52)

which approaches zero as the diameter approaches infinity as it must,
gince for an infinite straight line magnetization reversal, symmetry
requires that the z-component of the field be zero along the reversal.

4.2 The Stiffness Malrix

The second variation of the energy with respect to the Fourier coefli-
cients describing the domain determines the stability of the domain.
Since the stiffness of the domain with respect to externally applied
forces is proportional to the coefficient of the bilinear form which is the
second variation of the energy, the matrix formed by these coefficients
is called the stiffness matrix. The stiffness matrix is composed of three
independent submatrices. The second derivatives of the energy with
respect to the Fourier amplitudes form the radial stiffness matrix;
the second derivatives of the energy with respect to the Fourier phases
form the angular stiffness matrix; and the derivatives of the energy with
respect to one Fourier amplitude and one Fourier phase form the mixed
stiffness matrix. The derivative of the energy with respect to r, and 7.,
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are called the (n, m) radial stifiness matrix element, with similar nota-
tion for the other submatrices.

All derivatives not explicitly exhibited in expression (43) are zero.
Thus, the angular stiffness matrix and the mixed stiffness matrix are
zero and the radial stiffness matrix is diagonal so that the system is
completely metastable with respeet to angle and the amplitudes are
normal modes of the system for small amplitudes.

The (0, 0) radial stiffness matrix element is simply the derivative of
the negative of the radial generalized force so that no further discussion
of it is necessary. It should be noted that the derivative of the internal
magnetostatic term with respeet to wall position is not directly related
to the radial field or potential at the wall since the derivative used in
computing the radial field at the wall must be taken with the wall posi-
tion held fixed.

4.2.1 The Radial Stiffness Matrixz Elements for n = 1

The diagonal radial stiffness matrix elements, for n = 1, are the sum
of four terms in expression (43). The first term, which always has a
stabilizing effect, is the increase in total wall energy due to the lengthen-
ing of the wall caused by the deviation from a strictly circular shape.
Imposing a sinusoidal variation of amplitude As onto a straight line
produces a relative increase in length of

s+ As zé_f_n)g

- =1+()\n + - (53)

The corresponding wavelength in expression (43) is

_ 2o
M= (54)

The wall energy term in expression (43),

2
AE,, = a,Uth(”f’”“) : (55)
is thus the product of the wall energy density, the wall area, and the
variation in wall area per unit area. Notice that the relative variation
in wall length or area is independent of the wall eurvature, 1/ry, to
lowest order in the amplitude of the variation.

The second order change in volume of the domain interacting with
the externally applied field produces the second term in the radial stiff-
ness matrix elements while the rate of change of the internal mag-
netostatic forces at the wall produces the third term. The sum of the
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second and third terms is one-half the (0, 0) radial stiffness matrix
element. This factor of one-half relates to the fact that a variation of
Ar., n = 1 produces only one-half the mean square variation r,(6)
as is produced by an equal variation in r,. This shape-independent,
second-order variation in energy arises from the variation in the gen-
eralized forces, or fields at the wall, when the domain radius is varied.
[See also the steps leading to expression (30b).]

4.2.2 Translation Invariance

The requirement of translation invariance in the infinite plate com-
pletely determines the (1, 1) radial stiffness matrix element. Consider
a cylindrical domain of radius r, with a eylindrical coordinate system
placed at its center. Under a displacement of the coordinate system of
magnitude s in the 8 = = direction, the description of the boundary
in the new coordinate system is

2

2
r,,(B)=ro—i§;+scosﬁ+i:—cos26+04. (h6a)

0

Thus, to second order in s, term by term comparison with definition
(3) yields

1y

—i Ar, =s, and Ar, = Ly, (A6b, ¢, d)

Ary = A7
0

The formal change in energy under this displacement (11) is
- (1) (=) 4 L(2E) ¢
Al = (Brn o\ T + 2\ ard 08 + 05 (57)

Obtaining (aE/dr,), and (8°E/ar?), from expression (43), and substitut-
ing expressions (84), (85), (86), (100), and (138a) verifies that

a2ET) 1 (aET)
( ary Jo o 2rg \are /o (58)
The coefficient of s* in expression (57) is thus zero as required by transla-

tion invariance, and further the (1, 1) stiffness matrix element is zero
whenever the total radial generalized foree is zero.

4.2.3 The Magnelostatic Stiffness Terms

The interpretation of the radial stiffness matrix elements for the
higher n values is now considered. As in the case of the generalized
forces, examination of the expansions for small 7, allows the self-inter-
action energy of the two charge disks which make up the ends of the
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domain to be separated from the mutual interaction of these charges.
The variation in the internal magnetostatic energy due to a variation
in some r, for a circular domain is in general from expression (43)

A, = 4r02{ e ST [ () 1 ey

n = 1. (59)

Separating the h independent and % dependent terms of the power
series representation in powers of 2r,/h uniquely separates the above
expression into two parts, one part representing the self-interaction of
the charge disks and the other representing the mutual interaction of
these disks. The h independent terms then represent the self-interaction
forces of the charge disks and the h dependent terms represent the
mutual interaction forces. In the expansion of L, for large (h/2r,)%,
expression (129a), all terms of L,[(h/2r,)°] are h dependent. Using the
large (h/2r,)* expansion of F, expression (138d), and the expressions
for L,(0), (115) and (116), the thickness independent part of expression
(59) is

1)(Ar..)“, n=1l  (60)

AB(Sell) = 4.”11137-0(

This energy variation contains a term which results from the variation
in the overall size of the disks of charge as well as the shape dependent
terms. The size variation term will now be identified and subtracted
out so that the shape dependent part of the self-interaction energy may
be seen explicitly. From expression (49) and the discussion following it,
the ratio of the variation in energy of two isolated disks to the variation
in disk area is (4mwdf2)(16r,/2r). The variation in disk area for a varia-
tion in 7, for n = 11is (x/2)(A7.)" so that the change in self-energy of
the two disks, other than that due to their mutual interaction or change
in overall size, is

AE . (Seli-Shape)
J(), n=1 (61a)
]—(mﬁ)%(z - )(Ar,.)”, n>1.  (61b)
=2 —1

It is not surprising that the variation of r, produces no shape related
energy change, since from expression (56) this variation is to lowest
order a displacement with a size change coming in second order. It is
seen that the terms which remain after cancellation all come from L, (0).
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In expression (59) the first term is independent of n and the
—4xM?r,L,(0)(Ar,)® term has been identified with the variation in the
self-energy of the charge disks. The term 4wM %, L,[(h/2r,)*](Ar,)* must
therefore contain all of the shape dependent part of the charge disk
mutual interaction energy. This term also contains a contribution due to
the variation in the total amount of charge and contribution due to the
shape independent, general smearing out of the charge distribution.
Since the second order change in the total amount of charge is inde-
pendent of n for n = 1, these two contributions may be removed from
the mutual interaction energy variation by replacing L, by L, — L, .
The remaining mutual interaction energy variation is specifically due to
the shape of the variation. This energy variation is

AE . (Mutual-Shape)

2 2
= (4‘11'][1'37'9[11“({:;2) - Lw(%_g)](ATn)2s n é 1

3 o | Qﬂ)in%l . (gr_u)znw N ]
= (-]:‘n'.ﬂf,) 1u[ﬂ[“lgn+1( A + :l]n"_’n’r(i h + ]
n=1 (62)

where the final form is obtained using the expansion for L, , equation
(131), and the M, ,, are the constants of the expansion. The interaction
energy of planar multipoles of order n and higher has the form of equa-
tion (62), as it must since the variation in the charge distribution for
each n may be expressed in terms of such multipoles.

The variation in internal magnetostatic energy due to a variation of
7. , in the infinite sheet, for large 2r,/h, to lowest order in h/2r, , is

ABy, = (417'111’ E) (g‘—)
0

— ' =24 (dn® — 1) sz i 1:\(/_\.?-,,)2,

i=1

-[—‘7 *In | 4%
Zn | h

n=1 (63)

using equation (59), the large 2ro/h expansion of F (138¢) and of
L,(h*/4r3) — L.(0), (105), (116) and (125).

The charge-disk self-interaction energy is not evident in this ex-
pansion because it is exactly cancelled by the leading term of the mutual
interaction energy. In contrast to the energy reduction per unit line
length for a straight line reversal in an infinite sheet (which has no
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finite value), it is possible in the case of this variation of the domain
structure to compute the energy variation per unit line length. In terms
of the wavelength of the variation ), defined in expressions (54) or
(127) and in the limit of r, — o, the total variation in energy when 7,
is varied is [using expressions (43) and (55) and the limit (128)]

e } %ﬁ + 04(’“;)}(‘&?")2. (64)

Th

Comparison of expression (64) with expression (53) shows that the
magnetostatic energy variation per unit line length for a circle of infinite
diameter is the product of the magnetostatic energy density constant,
the variation in line length, and the logarithm of a maximum effec-
tive interaction distance, 4ex/7. (The maximum effective interaction
distance for the magnetostatic energy lowering per unit line length is
proportional to 7,.) Hagedorn has computed the magnetostatic energy
variation per unit line length for the ease of a sinusoidal variation im-
posed on an infinite straight line reversal.” The calculation was carried
out by considering the energy variation produced by a sinusoidal applied
to a strip domain pattern in the limit of infinite strip width. The result
of this calculation is

AE y/(unit length) = —(dxM?)x In | N/(2.111k) | (h/N)%(Ar)?, (65)

which differs from the result for the infinite circle by the constant inside
the logarithm.

ALy _ {[r%w/h — @rMr In

21,

4.3 Summary

The physical origin of terms of the energy variation has thus been
traced in the limiting cases of both large and small ro/h. In either of
these limiting cases, it is thus possible to develop intuition with regard
to the behavior of the domains. Since, as has been shown, the inter-
pretation of the meaning of the energy terms in the limiting cases is
qualitatively different, the development of intuition in the transition
region is quite difficult. In many device applications this transition
region is the preferred region of operation, making the use of analytical
and numerical methods a necessity.

V. THE SIZE AND STABILITY OF CYLINDRICAL DOMAINS

The energy variation expansion (43) in principle contains all cylin-
drical domain size and stability information. This section treats briefly
the use of this expression in the determination of domain size and
stability. The only non-zero generalized force in expression (43) is the
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uniform radial force. When this force is set equal to zero (the force
equation), the system is in equilibrium. Thus the condition that the
system be in equilibrium provides, given a material and plate thick-
ness, an equation relating domain size and the applied field. The loca-
tion of the zeros in expression (43) (all terms not explicitly exhibited
are zero) shows that the system is completely metastable with respect
to angle and that the radial stiffness matrix is diagonal. The radial
amplitudes are thus quasi-normal modes, and the study of stability
reduces to the study of the stability of the individual radial amplitudes.

5.1 Normal Form of the Energy Expansion

Before proceeding with the discussion, it is appropriate to introduce
some new notation and to rearrange the energy variation expansion
into what will be called normal form. Since the stiffness matrix is of
interest only when the domain is in equilibrium, the applied field H
is eliminated from it using the force equation. The geometrical de-
pendences of the various magnetostatic stability terms are then com-
bined and normalized to the wall stiffness term by defining the “‘stability

funetions” as
S,(d/h) = F/h) — d a% F(d/h) (664)
and

Sud/W) =~ {Suwh) + o @)L/ = Ln(O)]}.

n = 2. (66b)

The S, function is undefined or may be taken to be zero since transla-
tion invariance in the infinite plate requires that the (1, 1) stiffness
matrix element the identically zero whenever the generalized radial
force is zero, as is assumed to be the case here. The S, functions are
plotted in Fig. 3 up to S, ; they are given in standard elliptic integral
form together with power series expansions for large and small values
of the argument in Appendix B. The domain diameter, d = 2r, repre-
sents domain size in this section. The normal form of the energy expan-
sion is written as a function of the ratios of the three fundamental lengths
of the system: the plate thickness h, the domain diameter d, and the
“characteristic length” defined by

D'Il-'
e T Rl

ll
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The characteristic length depends only on the type of material used.
Dividing the energy variation expansion (43) by the normalizing

energy 2(4wM?)(x%*) and introducing the notation of the preceding

paragraph, the normal form of the energy expansion results:

AE, _ |1, d_H (4)} AT
24r M) (xh®) [h+h4vrM, P, h
1 IR d\ | Are\®

+ 5{—(2 ‘&)[E - S(a)]( 2 )

R PR 75

n=2

In expression (68) the coefficient — [I/h + (d/h)(H /4xM,) — F(d/h)]
is the normalized radial force. Setting this force equal to zero yields
the normalized force equation. The remaining bracketed quantities
[i/h — 8.(d/h)] are proportional to the diagonal elements of the stiff-
ness matrix, and are called “stability coefficients.” For uniform radial
variation, the stability coefficient has the opposite sign from the (0, 0)
element of the radial stiffness matrix; thus this stability coefficient
is negative whenever the domain is stable. For the other r, variations,
on the other hand, the stability coefficient has the same sign as the
corresponding element in the stiffness matrix, and these stability co-
efficients are positive whenever the domain is stable.

5.2 Graphical Solution of the Force Equation

A graphical solution to the force equation

Il d H d

YT (h) =0 69
may be obtained by constructing a straight line on Fig. 3 whose inter-
cept with the vertical axis is I/h and whose numerical slope is H/4xM, .
The intersections of this straight line with the F curve are then the solu-
tions to the force equation.

As was stated in Section 5.1, (Z) the force function has a positive first
derivative and negative second derivative for all nonzero values of its
argument, (ii) it is zero and has a first derivative of unity when its
argument is zero, and (777) it becomes logarithmic for large values of
its argument. From these properties and examination of Fig. 3, several
properties of the solutions to the force equation may be appreciated.
For negative values of the applied fields, there is only one solution to
the forece equation. Examination of the sign of the radial force which
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results when the diameter is varied about the solution diameter while
all other variables are held fixed shows that this solution is unstable.
For small positive applied fields, there are two solutions to the force
equation, the larger diameter solution being radially stable, the other
radially unstable. However, a radially stable solution does not guaran-
tee that the system is stable with respect to all possible deformations,
and this must be investigated separately. As the applied field is increased,
the two solutions move closer together until they coalesce. When the
applied field is increased beyond this point, there are no solutions.
Since the function F is asymptotic to a straight line through the origin
having unit slope, the solutions will always vanish for a value of the
apphed field which is greater than 4=/, . Stable isolated cylindrical do-
mains thus exist only in the presence of an applied field having magni-
tude between zero and 47M, and polarity tending to collapse the
domain.

5.3 Graphical Determination of Domain Slabilily

The stability coefficients are determined graphically by constructing
a horizontal line at height I/h on the force stability graph. Metasta-
bility for each normal mode of deformation occurs at the intersection
of this line with the corresponding stability funetion. Since the stability
functions are monotonic, the diameter of metastability of each normal
mode of deformation is uniquely defined and forms the boundary be-
tween the regions of stability and unstability. The circular domain will
be stable with respect to all variations when its diameter is greater than
the radial metastability diameter and less than the metastability diam-
eter for a variation with a rotational periodicity of two. The normal
variations with rotational periodicity two are referred to as “elliptical”
deformations. When the domain is stable with respect to elliptical
deformation, it is necessarily stable with respect to the variations
of higher spatial frequency since the stability functions of higher spatial
frequency lie progressively (with respect to 7) below the elliptical sta-
bility function. The radial stability function S, and the elliptical stability
function S, thus form the boundary of the region of total eylindrical
domain stability. Therefore, given the magnetic material type and
plate thickness, the range of stable domain diameters and the correspond-
ing applied fields may be determined with the aid of these functions.

5.4 Minimum Domain Diameter

For any given value of I/h, the minimum domain diameter is the
collapse diameter determined by S, . The domain diameter measured in
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units of the characteristic length is d/l = (d/h)/(l/h) which is the in-
verse of the numerical slope of a line drawn in Fig. 3 from the origin
to the operating point. The line of maximum slope, which both passes
through the origin and contacts the S, curve at at least one point, thus
determines the smallest domain diameter attainable in a given material.
The coordinates of this contact point are d/h = 1.2 and I/h =~ 0.3, so
that the minimum attainable domain diameter is

doin = 41, (70)

VI. RANGE OF VALIDITY OF THE MODEL AND THE QUALITY FACTOR

At the present time, no quantitative evaluation of the range of valid-
ity of the domain structure model used here has been carried out. The
qualitative discussion given here, it is hoped, will provide the reader
with an appreciation of the magnitude of the effects produced by the
relaxation of the various constraints artificially imposed by the model
and the dependence of these effects on the system parameters. It has
been assumed that domain walls are cylindrical, have zero width, and
have a definite energy per unit area which is independent of wall orienta-
tion or curvature, and that the magnetization lies perpendicular to the
surface of the plate. Section 6.1 treats the effect of the relaxation of
the cylindrical wall approximation only. In Section 6.2, the other
assumptions are all shown to be coupled using the simplest uniaxial
material model. A single dimensionless material parameter g, which
complements the characteristic length I in characterizing circular domain
materials, is used to express the results obtained from the simplest
material model.

6.1 The Cylindrical Wall Approximation

The discussion of the cylindrical wall approximation uses the coordi-
nate system and domain configuration of Fig. 1 except that the walls
are allowed to curve as shown in Fig. 4. The radius function, r,(8, 2), is
determined by the requirement that it minimize the total energy. The
Euler equation which results from this two dimensional field variational
problem is an integro-differential equation similar to those which appear
in Hartree self-consistent field caleulations. No solution of this equation,
numerical or otherwise, has been attempted or is contemplated at the
present time. The Euler equation consists of terms arising from: the
wall energy, the interaction of the magnetization with the applied field,
the self-interaction of the magnetostatic charges at the surface of the
plate, the self-interaction of the charges produced by the slope of the
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Fig. 4 — Cross section of a noncylindrical, near-circular, domain.

domain wall, and the mutual interaction of the plate surface charges
with the domain wall magnetic charges. Boundary conditions (obtained
from the appropriate transversality condition”) require that the wall
surface be perpendicular to the plate surface at all intersection points
(3 in Fig. 4). Physically (since in the model used here the crystal is
assumed to be strain free) the surface cannot interact with the domain
wall, and therefore the wall must intersect the surface at right angles.

Although it is not clear that domains having a roughly conical shape
are ruled out, it will be assumed that the domain has reflection symmetry
through the central plane of the plate and that the radius is a function
of z only, r,(z). In this case the wall must be vertical at the central
plane as indicated at @ in the figure so that the single parameter b
represents the magnitude of the wall bulging. Since the Euler equation
requires the curve to be smooth, there must be an inflection point, 4,
between € and 3. The wall area, and thus total wall energy, is a quadratic
increasing function of the wall curvature so that the concentration of the
curvature at the center and ends of the wall, produced by the trans-
versality and symmetry conditions, tends to reduce the wall bulging.

The radial field at the domain wall from the charges at the surface
of the plate is directed as shown in Fig. 4. The effect of the interaction
of the magnetostatic charges due to the slope of the wall with the radial
component of the field from the surface charges is destabilizing for
cither positive or negative bulging. This interaction produces a negative
quadratic term in the total energy. However, at the plate surface, where
the magnitude of the radial field is greatest, the transversality condition
requires that the charge density produced by the wall slope is zero so
that the magnitude of this negative term is small. The z component of
the field from the charges on the surface of the plate determines the
direction of bulging. (The applied field, being uniform by assumption,
need not be considered.) Along an initially eylindrical wall the internal



3314 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1969

field is everywhere directed, so as to make the domain expand, and
attains its greatest magnitude at the center plane of the plate. It there-
fore provides a linear term in the total energy which tends to bulge the
wall in the positive direction as shown in Fig. 4.

Thus, for near cylindrical walls, the bulging is determined by the
interaction of this force (tending to bulge the wall) with the wall energy
(acting to stabilize the wall) and the radial field (acting to destabilize
the wall). The self-interaction of the wall charges enters only as a
higher-order term. It should be noted that the transversality condition
acts both to strengthen the stabilizing term and weaken the destabilizing
term.

The relevant dimensionless wall energy for the wall bulging problem
isl/h = o,/ (hdxM?). Wall bulging is expected to deecrease with increas-
ing wall energy. A second independent effect related to I/h may be
appreciated by inspection of the S, and 8, curves in Fig. 3. It can be
seen from TFig. 3, equation (68), and the discussion following it that,
since the S, and S, curves bound the region in which stable circular
domains exist, d/h must increase with increasing I/h. By symmetry,
the z-component of the internally generated magnetic field at a cylindri-
cal wall is zero for a domain of infinite diameter and clearly increases
monotonically as the domain diameter to thickness ratio decreases.
Thus, as the plate is made thicker, the bulging force becomes stronger
and the stabilizing force becomes weaker. Since several independent
effects cooperate to increase bulging with increasing plate thickness,
the onset may be quite rapid when it does occur. Domain collapse data
taken at d/h =2 1is in good agreement with predictions made on the basis
of equation (68) and Fig. 3.° This then provides some indication that
the cylindrical wall approximation remains valid at this thickness.

6.2 The Quality Factor

The discussion of the approximations other than the cylindrical wall
approximation uses a polar (M,, 7, ») coordinate system where 7 is the
polar angle and » is the aximuthal angle to specify the orientation of
M, (See Fig. 5). The polar axis is taken to be the z-axis of the preceding
sections, The domain wall is taken to be planar with its position and
orientation specified by a plane at its center. The axis through the origin
in the direction of the wall normal is denoted by £. The position of the
central wall plane is denoted by &, . The orientation angles of the wall
normal are denoted by », and %, (see Fig. 5).

In the simplest uniaxial material whose easy axis is the z-axis the
magnetic energy density for a planar wall is (Ref. 9, pp. 189-192)
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Fig. 5 — Coordinate system for specification of domain walls.
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where A is the exchange energy density coefficient, K, is the anisotropy
energy density coefficient, H is the externally applied field, and the last
term is obtained by integrating VB = 0. For a uniformly magnetized
material in the absence of applied or internal fields, this expression
reduces to pz = K, sin® n which has absolute minima at » = 0 and
n = . The z-axis is thus the easy axis as is required for econsistency
with the preceding sections.

The anisotropy energy density coefficient is sometimes expressed in
terms of the effective anisotropy field H, = 2k,/M,. The quality factor
is now defined as the dimensionless anisotropy energy coefficient or
dimensionless anisotropy field

K., _ H,

(72)
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6.2.1 The Nucleation Field

When a bias field H is applied in the positive z-direction and demag-
netizing fields are neglected the energy density is

pz = K,sin® 9y — HM, cos n (73)

which, for H < H,, has a local minimum at magnetization orientation
n = = and an absolute minimum for » = 0. When H > H,, only the
minimum at n = 0 remains. In a perfect crystal the effective anisotropy
field is thus the field at which the magnetization becomes unstable
with respect to reorientation (assuming it is initially oriented in the
negative z-direction). If a reorienting field is applied locally (local but
over a region whose dimensions are much greater than a wall width so
that the effect of exchange forces can be neglected), then H, is the total
local field required for the nucleation of a domain at that locality. If
the nucleation field Hy is understood in this sense, then in a perfect
crystal ¢ is the nucleation field measured in units of 4w} ,:

Hy
4701,

= q. (74)

In an imperfect erystal H y/4mM, may be either larger or smaller than g.
If it is larger, the material may be expected to have a high wall motion
coercivity.

6.2.2 Susceptibility

When a transverse bias field H,(y = =/2) is applied and demagnetizing
fields are neglected, the energy density becomes

pr = K,sin® y — H, M, sin 5 (75)
which has stable magnetization orientations

sin™! (g) — sin™ (4Hﬂ} 1) . H, < H,;
n = . i (76)

=
v
=

’

(SR ]

The transverse susceptibility is therefore

o, f_ (H, < H.,)
Xt BH, Wq

0 (H, z H,)

(77)
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where M, = M, sin 5 is the component of the magnetization in the
direction of H,. Thus, the susceptibility to tipping of the magnetization
by a transverse field is inversely proportional to gq.

6.2.3 Well Energy and Wall Width

Consider now a planar Bloch wall, £ M = 0, between two regions
whose magnetization at points far from the wall lies along the two easy
directions, » = 0 and =, and again assume that there are no applied
fields or fields produced by boundary surfaces. Under these conditions,
the magnetic configuration is determined by minimization of the wall
energy per unit surface area which in this case is (Ref. 9, pp. 189-192)

o= [ [A (%’é) + K, sin® n} dt. (78)
Carrying out the minimization results in
7. = 4(AK )} (79)
for
£E—E = 1 [, log tan (ﬂ) (80)
T 2
where
_(Ay

is the wall width. The definition of wall width is somewhat arbitrary
since the wall extends over all space. In this case, following page 191 of
Ref. 9, it is chosen so that the magnetization would complete its entire
rotation of 7 radians in a length [, if the entire rotation took place at
its maximum rate, the rate at the center of the wall.

The ratio of the characteristic length, equation (67), to the wall
width is

l 2

L= o0 (82a)
so that the ratio of the minimum domain diameter, equation (70), to
the wall width is

=2 =2 (82b)

The approximation of zero wall width thus improves as ¢ becomes
larger.
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The approximation that the wall energy is independent of wall curva-
ture is clearly related to the wall width. At large distances from the
planar wall equation (80) becomes

7 — 0| = 2exp(—7[& — & | /L) (83)

where 1, is the appropriate equilibrium orientation of the magnetization
at a distance far removed from the wall. Such an exponential relation
will hold for the approach to any stable equilibrium orientation in the
presence of isotropic exchange. The change in energy of the wall due to
overlapping of the tails of the wall as the wall is curved is clearly related
to g, becoming larger as ¢ becomes smaller. In order to solve for the
dependence of the wall energy on curvature it is necessary to solve the
entire (including magnetostatics) micromagnetics problems. '’

6.2.4 Summary

The preceding results may be summarized by noting that the higher
the g value, the more closely the simple uniaxial model obeys the con-
straints of the domain model used in the previous sections. It is clear
that, for domains of the type considered to exist at all, ¢ must be greater
than one. For device operation, g should probably have a value greater
than two.

VII. CONCLUSIONS

The theory of cylindrical magnetic domains yields conditions which
predict the size and stability of these domains and provides an estimate
of the range of applicability of the model used. The results of theory
appear to be aceurate in a range useful in the construction of circular
domain devices.

The domains considered are isolated right circular cylinders in plates
of uniaxial magnetic material of uniform thickness cut so that the plate
normal is parallel to the easy axis. The first and second order energy
variations which result from a general small deviation from the strictly
circular shape determine domain size and stability. The energy method
was chosen in preference to the magnetostatic field method because of the
uniformity it provides in accounting for the forces in both the equi-
librium and stability problems. The integrals arising from the energy
method are interpreted physically in terms of fields and interacting
charges. The physical interpretation of the integrals is quite different
in the limiting cases of very large or very small domains. The integrals
are related to special cases of the fields of uniformly charged disks
computed by C. Snow and tabulated by N. B. Alexander and A. C.
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Downing.""'** The present work obtains the needed properties of the
integrals (expansions, recursion relations, and others) directly from the
definitions.

When the energy variation is described in terms of a Fourier decom-
position of the domain radius function, only the generalized force cor-
responding to a change in domain size is non-zero and the stifiness
matrix is completely metastable with respect to angle (phase) and
diagonal with respect to the Fourier amplitudes. Since the Fourier
amplitude stiffness matrix elements are all found to be distinet, the
description is unique and may be described as a quasi-normal mode
description.

The normal mode deseription is summarized by a single graph from
which many domain properties may be determined by construction.
Cylindrical domains exist only in the presence of a bias field directed
so as to tend to collapse the domains and having a magnitude between
0 and 4xM, . The uniform radial collapse of the domain and the run-
out of the domain into an initially elliptical shape bound in the region
of stability. The minimum attainable domain diameter in a given
material is du;, & 41 occurring a plate thickness of ~ 41. It is estimated
that the eylindrical wall approximation begins to become doubtful at a
plate thickness greater than 4l. In order for eylindrical domains to
exist, H, ~ 4xM, and in general approximations such as the approxi-
mation of zero wall width become more aceurate for H, >> 47M , (dpin/l, =
8H,/4x*M, where 1, is the wall width).

It is interesting to note that since stable cylindrical domains of a
definite size exist in the total absence of wall motion coercivity and may
be freely moved, they form a relative, easily observable, classical model
for illustrating several particle-field concepts. They may be considered
a two-dimensional particle which is produced as a singularity of finite
extent in an underlying three-dimensional field (the magnetization).
Cylindrical domains are particularly useful for demonstrating the eon-
cept of identical particles since, while it is possible to put identifying
marks on domain locations, it is not possible to mark individual do-
mains. (Cylindrical domains do exist in two species which may be
distinguished by the direction of rotation of the spins in the domain
wall."® All attempts to observe this difference up to the present time
have been unsuccessful.)
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APPENDIX A

Integrals of Cylindrical Domain Theory

This appendix contains the reduction to standard form of the elliptic
integrals which arise in the theory of eylindrical domains in plates of
infinite extent and power series expansions of these integrals. All the
properties of the functions obtained here are used in either the physical
interpretation of the energy variation expansion or in generating the
numerical values of the force and stability functions.

It is convenient to define functions U and V which appear repeatedly
in cylindrical domain theory. The elliptic integrals which appear in the
final results of the theory appear only in the forms U and V, U being a
function of only the complete elliptic integral of the second kind and V
being only a function of the complete elliptic integral of the first kind.
Because of the form of the U and V functions, it has proven easier to
obtain the needed properties, (such as the series expansions) directly
from the integral definitions rather than deducing them from the tabu-
lated properties of elliptic integrals.

The latter half of this appendix treats the properties of the L, func-
tions. A recursion relation is obtained and used to reduce the L, to
functions of U and V. Power series expansions of the L, are obtained
directly from the definition (34).

A.1 Definition of the U and V Functions

The functions are defined in the alternate forms

x

Ulx) = f [z + 3(1 — cos @))! da (84a)

(]

/2
=2 fu (@ + sin® B)} dB (84b)
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T/2 A

—9 f @+ 1 — sin® )} dy (84¢)

gL
=20 + 1) B(l - x) (84d)
and
Vi) = f' [ + (1 — cos )]} da (85a)

/2 .

— 9 f (¢ + sin® B)~ dB (85b)
/2

- 2[ (x + 1 —sin®y) ¥ dy (85¢)

_ -3 1

= 2% + 1) K(l - _T) (85d)

where the dummy variables are related by 8 = @/2 and v = 7/2 — /2
and where K and E are the complete elliptic integrals of the first and
second kind respectively. The argument of the elliptic integrals is the
parameter m of Abramowitz and Stegun.'* The parameter m is equal
to the parameter k* of Jahnke and Emde or Groebner and Hofreiter."""

A.2 Differential Equations and the Power Series Expansion of U and V
From the definitions (84) and (83)

au _
ar = V. (86)
The differential equations obeyed by U and V are
[( * + ) < l]L’(r) =0 (87a)
X ¥) oty 1) = a
and
[(-ﬁ’ S S A 1] V() = 0 (87b)
’ “dat - dr 4 ’ )

The U differential equation is verified by substituting in the defining
relation (84a) and then reducing the resulting equation to the indentity

Td sin a
0= j; da [z + 3(1 — cos )] dor (88a)
- "reosa+ eosa— 3 — Lcosta
- [ [x + 3(1 — cos )] der. (88b)
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The V equation is then easily obtained by differentiation of the U equa-
tion.

The roots of the indicial equations of these equations are separated
by 1 [they are 0 and 1 in equation (87a) and —1 and 0 in equation
(87b)] so that the series expansion of U is of the form

— S Ua' where U, = Ul+ U3 15 (89a, b)
1=0
and
V@) = > Va' where V, = Vi+ Vi —1;"-‘ (90a, b)
i=0 xr

The form of the logarithmic terms has been chosen with some foresight.
Substitution of the expansions into the differential equations and
comparing coefficients gives the recursion relations

= -, gz, (91a)
Ui = 355 [(j Sl =y U"] iz, (O)
Vi, = ( i)v j=o, (92a)
LA R P St AN

The starting values of V2, V/, U} and U}’ are determined directly
from the integral definitions of the functions (84) and (85) and the
differential equation (86) relating U and V. This is quite straightfor-
ward except for V which must be expanded

_ o [f__dB B 2z
Ve =2 [ a2 +o6 &% o8

sin 8

and evaluated as a limit

16

lim V(z) = - ‘ (93b)

z=0
The limiting value of V may also be obtained quite easily from equation
(85d) and the tabulated properties of the complete elliptic integral of
the first kind.'® The expansions of U and V are thus

_ 1 3 :_3 a 665 .4 )
U(x)_(2+21+32“’ o1t Tome® T
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o S 2D e ‘ ‘(94)

1 3
+(0+L—8 6_41 *10‘24.

and

()
v = (0+1e - By )

6 768 °
1 9 25 1 16
+(2—§.t'+3—2.1" 198 ° q—l—)gln!f . (95)

A3 Expansion of U and V in Terms of Inverse Powers

Making a Taylor series expansion of equations (84b) and (85b)
respectively and integrating yields the expansions of U and V in terms
of the inverse powers of the argument

n/2 .
U) = 22 [ (1 + x "sin® 3y dB
Jo

£ ___2 2 ' it T/2 ) ;
- ZT‘} 2j — 1(_;%1)1]")(}!7)E x Y _/; sin® 8 dB

oy —1 2))! }

e [m to e
1 -, S S -

= w.vil:l + A + 2.;()' 27+ ] (96h)

and

Vi) = 207 f (1 4 2" sin® B)7F dB

Jo
= g 2 (—_%- am l/;m sin*’ g dg

- X1 [((;)*)”']‘ (97)
- ”‘&[l - i‘ T % = = _)2—: 7+ ] (97h)

A.4 Definition of the L, Funclions

The L, functions are defined in expression (34) by

. T (1 — cosna) do i
L,(r) = fu = + —-———-2(1 = eon a)] r=z0,n=0 (98a)
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or with the change of variable 8 = /2

. "*  sin’ng
L) = 4 f s, a2 0m 20 (O8h)
It can be seen directly from equation (98b) that for a fixed value of n
) 9, L(w)=0, and L) =0. (%ab,0
From definitions (84b), (85b), and (98b)

Li(x) = 2[U(x) — zV(2)]. (100)
The higher L functions are determined by means of a recursion relation.
A.5 The L, Recursion Relation

The L, recursion relation is

Ly (2) = [4n2x + 1)L.(z) — (2n — DL,.,(a) — 8naV(2)],

n=1 (101

9+1

The recursion relation is verified by substituting in the definitions of
L. and V, equations (98a) and (85a), and reducing the resulting equation
to the identity

Td
0= f £ {sinnalz + b1 — cos @)]'} da (1020
j" n cosnafr + (1 — cosa)] + Lsinnasina
0

[z + 3(1 — cos )]’

The initial functions L,(z) and L,(z) are given by equations (99¢) and
(100). Note that for large values of z the recursion relation is unstable
for increasing n.

da. (102b)

A.6 Power Series Expansion of the L, Function

The function Lo(z) is identiecally zero, equation (99¢). The series
expansion for L,(z), obtained from equations (100), (94), and (95), is

13 -; 3255‘ A .
Ly(z) = (4 +z— —:c +16% " 12088% 1 )
+lo-2et3e- D 3+ff; )i B aos)

From the recursion relation (101) and the initial functions (99¢) and
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(100) the general form of L,(x) is
L,(x) = u,(x)U(x) + v.(2)V(x) (104)

where u,.(z) and v,(x) are polynominals of order n or less in x. Because
of the form of U(z) and V(x), expressions (89) and (90), an expansion
of the form

o

Lx) = > L, (105a)

i=0

where

L= 1Ly, + L, 31n

(105b)

16‘

clearly exists.

Expressions for either the coefficients in the polynominals w,(z) and
v.(z) or the L, ; may be determined in closed form by similar methods.
It has, however, proven more useful to use the recursion relation di-
rectly when the complete expression of the form of expression (104)
is desired and the expansion (105) when a power series is desired.

To obtain the L, ; the expansion (105) is substituted in the recursion
relation (101) and coefficients of x are compared to obtain a hierarchy,
in j, of recursion relations, each member of the hierarchy being factor-
able and depending only on the preceding member. These recursion
relations are then factored and successively summed.

The coefficient of 2’ is

Luers = g MLy = @0 = Dy + 80ll,y — Vo),
n=0 (106a)
where
Iy =0 and V_, =0. (106b, ¢)
With the definition
Qn;= (2n — 1)[L,; — Loy ] (107)

the second order recursion relation (106) factors into two first order
recursion relations

Q,.+|.,' = Q,..,' + SH(L,,.,',l —_ ]7,'_1), n g 0 (1083.)
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and
1 —
2n + 1

The recursion relations for j = 0 and j = 1 will now be summed.
From expressions (99¢) and (105a)
IJ()_J‘ = O (109)

Quvr.iy n = 1. (108b)

Lo = L.+

so that using expression (107)

Ql.i = Ll.:‘ . (110)
For j = 0 using expressions (106b) and (106¢), the recursion relation
(108b) becomes simply

Qn+1.ﬂ = Qn.D- (111)
By inspection of expression (103) the initial value of @, , is
Qio=1L,=4 (112)
so that from expression (111)
Qo=4 n=zl (113)
The recursion relation (108b) thus becomes
4
Loo= Ly 0o+ o — 1’ nz0 (114)
which with the initial value of expression (109) may be summed to yield
L 0, n =0, (115a)
]4 22] >0, (115b)
From the form of the expansion (105) it can be seen that
L.(0) = Lo, (116)
so that with (99a, b)
— — <0 n
4 Z;,j_ T = L) — L) = nzl. (117)

For evaluating the @,., and L, , sums, two relations are needed:

n i 1
E;Qk—lzzz‘?k 1

i=1 k= j=k <

_sn-k+1
_;Z: 2k — 1
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and similarly

L 1 1 1,
Z;E%_l=§(2n+1)~k:12k#1—§n. (119)

Evaluation of the sums of expressions (118) and (119) is analogous to
integrating " log x where n = 0 and 1. With sufficient patience the sums
can clearly be carried out for any finite n.

For j = 1, expression (108a) becomes [using expressions (95), (109),
and (115)]

c 1 16
Qn-rl,'l = Qn,l + 8)?:[:4: z ‘) - ln \ _‘

12— 1 A

. on=1  (120)
]

where the initial funetion is [using expressions (103), (105), and (110)]

16
~ (121)

]

%'4—4(%4—1)2 Z L -,

Ql.l = L1.1 =1—1In

Summing [using expression (119)] yields

1

n k
+ I;Skl:i ;23._1—111

16

T

Qi1 =1—1In

16
p

—@2n+ 1" In

4ok — 1
n=1l (122

The L,., recursion relation is then

16 - 1
20 — 92
s St o

n=1 (123

Looii = Loy + (n + 1)[—ln

which may be summed using the initial value of expression (121) and
the sums (118) and (119):

‘| n
1b|[1 + ;(21;+1)]

xr

Livi=1—1In

+ 3 aek+ ) ;2j11+ >(-2+D (20
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Jo, n = 0. (125a)

Ln 1 } )
\ n=1. (125b)

It is clear that the procedure leading to expressions (115) and (125)
may be carried onward to lead to an expansion of the form

L.(z) — L,(0) = E [E (Lm(], k)3 In | — ' + L2, k)
+ L3, k) “; Z—m — l)n"’":lx” (126)

where the L™ (j, k) are functions of j and & only. It is clear that in the
limit  — 0, » — o« an expansion in terms of

R) - (127)

h n
may be made where \/h is introduced as the finite expansion parameter.
Replacing the sum in expression (125) by its approximating integral
vields

2 h 46)\

lim [Lu(@) — L0)] = —2¢* % n + 0,,(") (128)

z=0

Il

where
n = wha 7 (128b)
A7 Ezpansions of L in Terms of Inverse Powers
The expansion of L in terms of inverse powers of the argument is
obtained by Taylor expansion of expression (98b) and integrating. This
yields

sin® n,ﬂ

i /2
Lu(x) = 4z j; (1 4 z7'sin’ g)* a8
! . /2 .
=4 Eﬂ 512)'1')( g g~ j; sin® ng sin®’ B dB,
n=1 (129a)
where for example

“ @+ 1 [, wen
nw =« SO oy (G
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By considering the Fourier decomposition of sin’ 8 it can be seen that

/2 . 1 n/2 X
f sin® nB sin* B dB = 5 [ sin® B8 dB, n>7j
0 0

29! .
- "'1' ((7)1)2, n>j  (130)
(independent of n) so that
Ly(x) = 0,
_ 1 (_21_)_:‘ —(i+§) —(n+§) ,

L) = Z iy [ e +0[z""P]), > 1 (131a)
or identifying with expression (97)

Lz) = V() + Olz~"*Y], 2> 1 (131b)

Evaluating expression (129a) directly in those cases in which expressions
(129b) or (131a) cannot be used yields

Lo(x) = 0, (132a)
L _ -1/2 3 —3/2 157 -5/2 -7/2

(2) = 7x -5 + e v + O™ ") (132b)
Lg('{f) — _n_x—lf‘z _ Ex—a/:' + 1378" —5/2 + O( -1/2) (1320)
L) = w2 = T2 g—z T 4+ 0. (132d)

A.8 The Gaussian Transformation

In the neighborhood of x = 1, the convergence of the power series
in x or z7" is rather slow. Either the gaussian or Landen transformations
may be used to transform the U, V, or L, functions into a region of rapid
convergence.'” In the present case, the gaussian transformation is pre-
ferred since it does not introduce incomplete elliptic integrals as does
the Landen transformation.

The result of the gaussian transformation is

= 42*(1 + 2)[(1 + =)} + 2], (133a)
or inversely

2
T,

41 + )1 + =)' + 17°

z = (133b)
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for the argument and

Viz) = 2TV (z), (134)
TU@) = Ul — 5 V), (135)
22,
TL() = Lies) + 77 e Vo, (136)
for the functions where
T=(1+a)=@1+a)}+ a2k (137)

APPENDIX B
The Force and Stability Functions

This appendix is a compilation of expressions for the force F and
stability S, functions. Each of the functions is written in terms of the
U and V or L, functions of Appendix A. Expressions in terms of the
complete elliptic integrals of the first and second kind (denoted by K
and I respectively) permit the use of tables'* or numerical computation
using the Landen transformation or the gaussian transformation.'®
The gaussian transformation is used in Section A.8. The power series
expansions provided are necessary in obtaining numerical values of the
functions for either very large or very small values of the argument and
also provide the asymptotic forms of the functions. The argument of
the functions is the domain diameter to thickness ratio, d/h = 2ro/h

B.1 The Force Function

The force function is written in terms of U by comparing the form
of F, expression (40), and the form of U, expression (84b),

L A

This expression is written in terms of the complete elliptic integral of
the second kind using expression (84d)

F(%) — % @[(1 + g;)*E[a + KAy — 1]- (138b)

It is expanded about h/d = 0 using expression (94)

dy _1[[1, 3 (B} _ 3 (kY 665(&)“ }
F(h)_w{[2+32(d) —64(0‘) tome ) T
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RO ) - Bl e
(138¢)

Additional terms may be generated using expressions (89) and (91).
It is expanded about d/h = 0 using expression (96b)

dy _d_2(d)  1(d) By 5 (d)
F (E)‘h w(h) +4(h) o4 (h) T 256 (h) + e (138d)

Additional terms may be generated using expression (96a).

B.2 The Radial Stability Function

The radial stability function is written in terms of U and V using the
definition of the radial stability function [equation (66a)], the expression
for F [equation (138a)], and comparing the derivative of F [equation
(41)] with the form of V [equation (85b)],

- L) () -]

S"(h) = (h) [U 2~ \a) \g) —2] (3%
or in terms of L, using the expression for L, [equation (100)] and the
expressions for L,(0) [equations (115) and (116)]

s - LT - 0]

Expression (139a) is written in terms of the complete elliptic integrals
of the first and second kind using expressions (84d) and (85d),

si(9) = -2 (j)[(l )t + e

B (g)(l + ?Tz)_% K[(1 + »*/d)"] — 1]. (139¢)

The expansion about 2/d = 0 is obtained using expressions (139b) and

(103).
ay _ 1) _1 EE)E_Q(&)‘ _5_'-’2(’1)“ :l
Su(h)—ﬂ'{[ 2+:2(d s2\a) Tame\a) T
g}.
h

3 57
3/ 15 (RN 175 (R)°
+[1 _E(&) +64(&) - 1024(3) + "']h‘
(139d)

[}
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Additional terms may be generated using expressions (139a) and (89)
through (92). The expansion about d/h = 0 is obtained using expressions
(139b), (132b), and (103) to obtain L, (0)

sG) =26 -5 + 56 -G+ aomo

Additional terms may be generated using expression (129b).

B.3 The Elliptical Stability Function

From the general definition of the S, of expression (66b) the elliptical
stability function is

) 3 + £ (L) - o).

Using expression (139b) for S, , the L, recursion relation (101) to reduce
L, to L, , and V and (103) to obtain L,(0), S, is written in terms of L,
and V:

() = s (s = [+ o)+ 56) (7)) aoom

The function L, is then eliminated using expression (100) to obtain the
expression in terms of U and V:

(0) = g (e [ s Joo) + [+ ]r(3)

which then is written in terms of the complete elliptic integrals of the
first and second kind using expression (84d) and (85d):

{0~ L 07 [o 10+ 5) s v

+ [10(2)2 + 16( ) }(1 + @f)_ K[+ K/dY™.  (140d)

The expansion about 4/d = 0 is obtained using expressions (140b), (95),
and (103):

d\ 1) 11 17 (m\* | 53 h‘_2929(]_z)“ 3
‘S‘?(h)“w{[ 6 96(d)+288() 24576 \a) T 1

5(h\* 35 (h\' , 105 (B\® 4d
+[1+§(&) _172((1) +1024(d) T ] In T}}

(140e)
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Additional terms may be generated using expressions (140c¢) and (89)
through (92). The expansion about d/h = 0 is obtained using expressions
(140b), (97b), and (132b):

d) _ 2 () L(d), 5 (d)

Sﬂ(h) " Or (h s\ taossln) T (1401)
Additional terms may be generated using expressions (140b), (97a), and
(129b).

B.4 The General Stability Functions

Using the definition (66b) and the expression for S, [equation (139b)],
the S, are written in terms of the I, as

)+ 2 ) - 15) - v+ 0],
n =2, (141a)

The leading term of the expansion about 2/d = 0 is obtained using ex-
pressions (103), (105), (115), (116), (125), and (126):

dy 1 dd|  4n* —1 K 2n2+1] (n_h)
S"(h)_r[ln s = 1) 225 — 1 am = 1) T O\g)

N =
The expansion about d/h = 0 is obtained using expressions (115),
(116), (129h), and (131a):
J

6(%)=n11{§(%)211 it ,§]+1( 16)’

[T ol

APPENDIX C

nz2  (l141b)

n—1 . 1

S| =

Symbol List

Numbers in parentheses are defining equations or figures.

A exchange constant (71)

a area

d mean domain diameter, 2r, (42)

E(z) complete elliptic integral of the second kind (z = m = k)
7y energy due to applied field (9)

I,  internal magnetostatic energy (10)
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Er  total energy (7)

Ey  total wall energy (8)

F(z) generalized radial force function (33, 138, Fig. 3)
H magnetic field vector

H uniform applied field

H, anisotropy field

Hy nucleation field (74)

(H.).. z-averaged z-component of magnetic field (45)
h plate thickness (Figs. 1, 4)

K(z) complete elliptic integral of the first kind (x = m = k%)
K. uniaxial anisotropy constant (71)

L.(z) integrally defined function (34, 98)

I characteristic length, o, /4rM? (67)

l, wall width (81)

M magnetization vector

M saturation magnetization

n rotational periodicity (1)

0. terms of order &

q quality factor, K,/2xM? = H,/4xM, (72)

r cylindrical coordinate (Figs. 1, 2)

ry plate radius (Fig. 3)

Ty nth radial Fourier amplitude (1)

7o mean domain radius (1)
S,(z) nth infinite plate stability function (66, 139, 140, 141)
8 distance between interacting magnetic charges (10b, 24, 28)

U(z) integrally defined function (84)
w(r) unit step function (5)

Vv volume

V(z) integrally defined function (85)

z cylindrical coordinate (Figs. 1, 4, 5)
z operator (23)

z z— 2 (21)

AE variation in energy (11, 43)

Ar, variation in 7, (3)

A6, variation in 6, (3)

5(z) dirac delta function

¢ ¢’ — 6 (27, Fig. 2)

n polar azimuthal angle (Fig. 5)

Nw polar angle of wall normal (Fig. 5)
] eylindrical coordinate (Fig. 1)

a, nth Fourier phase angle (1)
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An wavelength of nth variation (54)
v azimuthal angle (Fig. 5)
Vi azimuthal angle of wall normal (Fig. 5)
& wall displacement vector (Fig. 5)
p coordinate in displaced cylindrical coordinate system (35, Fig. 2)
O wall energy density
P coordinate in displaced eylindrical coordinate system (35, Fig. 2)
Xt transverse susceptibility
Q magnetostatic potential
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