An Extended Correlation Function of
Two Random Variables Applied to
Mobile Radio Transmission

By W. C.-Y. LEE
(Manuscript received June 16, 1969)

The definition, properties, and application of an extended correlation
function of two random variables involving two common paramelers are
described and applied to mobile radio systems. The correlation functions of
a predelection diversity combined signal (using a scheme of phase equalizing
by multiple helerodyning) and of a directional antenna array signal are
dertved with the help of the extended correlation function.

These correlation functions can be used to determine parameler values
giving minimum correlation belween two signals desirable for diversity
systems. One can also obtain the power spectra by taking the Fourier trans-
form of these correlation functions. Thus extended correlation funclions
promise to be useful.

1. INTRODUCTION

If two random variables depend on only one common parameter,
such as time or distance, conventional correlation formula ean be ap-
plied to the two variables. However, if both of these variables involve
not one but two common variable parameters, then the correlation
formula found in the current literature is limited.* Since such cases occur
in some of our mobile radio problems, as we discuss later, we need to
define an extended correlation function and outline its properties and
applieations,

[[, DERIVATION OF AN EXTENDED CORRELATION FUNCTION OF TWO
RANDOM VARIABLES INVOLVING TWO COMMON PARAMETERS

A conventional normalized correlation function of two random
variables r, and r,, both of which are functions of one parameter

* Prior to acceptance of this paper for publication, the author was advised that
a similar concept was discovered independently by A. Papoulis in his recently
published book.t
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d[that is, r,(d,) and r,(d,)] can be expressed as’
Rl2(d1 s dz) — Mm,Ms

— (rl(dl)'rz(dz))u\: - (r:(dl»uv('r?(d?))m- . (1)
(@) — ri(d))e)? - [(r2(de))ue — (ra(da))is]’

where m’s are the mean values, ¢*’s are the covariances, p;2(d; , dz) is
in the range 0 = [ P12(d1 , ) [ = 1, and Ry;y(d,, d3) = (1"1(d1)7'2(d2) Yav
is the correlation function.?

Supposing a random variable r, (D, ; d,) is a function of two parameters
D, and d, , and another variable r,(D, ; d,) is a function of two param-
eters D, and d;; the normalized correlation functions of these two
variables can be deduced from equation (1):

pia(Dy , Dy i d, , dy)
_ RIQ(DI , Dy dy, dy) — mym,

0102

— <Tl(Dl ) dl)"‘?(DE rd2))u\' - (TI(DI ) d]))a\-<r9(D2 :d2))ﬂv § .
[(T?(DI ;dl))uv - <T1(D] bl dl))is]%[(rg(D:e :d2)>u\' - <T2(D2 1d'_’)>;)\'}§

2)

If the problem we are dealing with is a stationary random process for
both of the parameters D and d, then

RIZ(DI ¥ D2 ;dl ,dg) = R]2(D1 - D2 ;dl —_ dZ),
(ro(Dy , d))ee = (10, 0)),, = My,
@i Dy, d))ee — mi = (30, )y — mi = oi,

where k = 1, 2. Now m, and ¢, are constants and we may let D = D, —
D, and d = d, — d,. Then equation (2) becomes

Ruu(D; d) — mym,

0,03

pield, | ds) =

piz(D; d) = (3)

We call p,5(D; d) a normalized extended correlation function of the first
kind. Also we note that p,»(D; d) in equation (3) is always smaller than
p12(0; 0) which is equal to one:

Plz(D; d) = Plz(O; 0) = 1.

t+ The terms “correlation funetion Ri:(d:, d») and normalized correlation func-
tion pus(ds, da)” are adopted from Ref. 3, p. 59.
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When the difference D is equal to zero, then
p12(0; d) = pio(d).

Now we should illustrate and extend equation (3). We are going to
find an extended correlation function of the first kind from a funection
eD;d,,dy,dy, -+ ,d,) where all the d’s are function of D and another
parameter « [that is, d;(D, ) for ¢ = 1, m], then

R.(D;d, ,dy,ds, - ,dyn)
= (e[0; d,(0, 0), d,(0, 0), d,(0, 0), --+)
e(D; dy(D, o), d(D, @), -+, d.(D, a)])nvr

and the normalized correlation function can be derived from equation
(2) as

. .- .. —_— 2
pDidy o, o dy) = BB s d) = me
where
m. = (EEO; dl(OJ 0)’ d’?(nl 0)’ dﬂ(or O)J Ty drn(o: 0)1>uv
O'f = (eg[o; dl(O! O)t d2(0) 0)! d3(0! 0): Tty dm(O’ 0)]).‘? - mz. .
If we consider the case d;(D, «) is a constant for all D and « itself is
a constant, then we may assign a new symbol R, (D |d,, d,, -+ , d,)
which can be expressed as
R(D|d,dy, -, dn)
= (E(Oﬂdl y oy oot :dM)f(D;dl:dzvdHJ :d!n)>nv-
RMD|d,,ds,ds, ---,d,) is a correlation function under a condition
thatalld, ,d,, ds, --- , d,, are constants. The normalized correlation is
.. — 2
oD |dy o, o) = BR LDy d) mme g

where m, and o, have been defined previously. We call equation (4)
the normalized correlation function of the second kind. As we will show
in the Section I11I, the extended correlation function of first kind p,,(D; d)
and the extended correlation function of second kind p,2(D | d) can be
used to obtain the correlation of signals from two diversity scheme re-
ceivers easily,

In order to give physical meaning to these functions, let us consider
the following two cases. Suppose that two base-station multibranch
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diversity receiver arrays are separated by a distance D. The antenna
spacing between branch-antenna elements for the first array is d, and
for the second array is d.. Both receivers simultaneously receive the
signal from a distant mobile radio unit. We would like to determine
the values of d,, d;, and D to obtain the least cross-correlation de-
sirable for the best diversity reception of these two received signals.
The extended correlation of first kind p,2(D; d,, d») may be used in
this case.

The second case assumes that a mobile radio multi-branch diversity
receiver array, with given uniform antenna element spacing d, moves
along the street with a constant speed V. The autocorrelation of a
signal ¢, received by the mobile receiver, can be obtained from the ex-
tended correlation function of the second kind p.(D | d). Alternatively,
we can also consider a multielement directive antenna instead of the
diversity scheme. In this paper, we only treat the latter case. The
former case can be solved following the same technique.

11I. APPLICATION TO MOBILE RADIO PROBLEMS

3.1 Derivation of the Correlation Function of a Signal Received from a
Predetection Diversily Combining Recewer

A multichannel predetection diversity combining system is a scheme
for bringing a number of RF carriers to a common phase by means of
multiple heterodyning. Then a linear combiner at the IF frequency is
used to sum the individual channels.*'® A signal received from this system
is called a predetection diversity combined signal.

Suppose that a signal consisting of multipath vertically polarized
waves is received by an M-branch predetection combining mobile re-
ceiver with a J/-antenna space diversity array. The M-antennas are
spaced by d, , d, , - - - d, respectively from an arbitrary common point.
After the array has moved a distance D, the received signal ¢, which is
the sum of the M individual signal amplitudes received from A/ indi-
vidual antennas, can be expressed as’"’

eDid,  dy,dy,dy, - dy) =1(D;d) + r(D; do) + ra(D; dy)
+ o+ (D dy)

= 4]‘2 ru(D; dn), (5)

where all 7,, are functions of distance D and antenna spacing d.. (see
Appendix A). For a mobile radio signal,” or a long range fading signal,’
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the r, are usually Rayleigh distributed. Suppose that all d’s are con-
stants, then the autocorrelation function of the signal given in equation
(5) as a function of the separation distance D is an extended autocorre-
lation function of second kind which can be expressed as

Re(DJdl ,dz )dl‘]Jd'l) ...)
= <E(Oydl ;ﬂT2 ) d:{ _vd-i s Ut ')E(D;dl ld2 ’d:‘ ! d"))""

= <l: i 7m(0; dw)][i ra(D; d,,,}]> '

Ar M (6)
= (& S0 dnws )
m=1 n=1 av
M A
= Z Iamﬂ(D; dm - (ln)'
m=1 n=1
Using equation (3), this can also be written
Rt(D I dl e du) = P;(D ] d1 3 " d.u) (ﬂ'f) + ﬂT‘i ) (7)
where '
of = (&0;d,, -, dy)) — m?, (8)
M 2
<52(0; d] y T d.ll))nv = <( Z ?',,,(0; dm)) >
T
A M
= 20 2 ral0; du)r(0; du)r
M o
= 2 2 R.0;d. — d.). (9)

Substituting equation (8) into equation (7), and combining equations
(6) and (7), we obtain

M A
E E Rmn(D; dm - dﬂ) - ?ni
P.(]) I dl y T )d"uf) = IM 1}!{ . (10)

> 2 R.0;d, — d) — m
1 1
The terms R,,.(D; d,, — d,) can be found from equation (3):

R,.(D;d, —d,) = p..(D;d, — d)o,o, + m.m, (11)

and
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me = (E(O) dl ot dm))iv = <]Z 'rm(o; drﬂ)>jv
[IZ (’rm(o; drﬂ))n\r]
- 2 X mam,. (12

Hence the correlation funection of equation (10) becomes, assuming

Om = On,

Il

2 2 punlDsdn — do)
Pg(D | dl , e ,dﬂ) — m=1 n=1 . (13)

% Z Pmn( - dn)

=1 =1

3
x

If all spacings between two adjacent antennas are equal, then d,, —
= (m — n)d, where d, is the distance between two adjacent antennas.
We may let d = d, , and simplify the notation of equation (13) to

Z Z pun(D; d)

pD|d) =" — (14)

Z E pun(0; d)

m=1 n=1

Equation (14) shows that a normalized autocorrelation function of
an M-branch predetection combined signal is a normalized extended
autocorrelation function of second kind in terms of all individual nor-
malized correlation functions between branches. We notice that

p(D|d) = p.(0]d) = (15)
and as stated in Section II
Pun(0; d) = pna(d). (16)

‘We may also realize that
p12(D; d) = ps(D; d) = pau(D;d) = -+
and
p1a(D; d) = pou(D; d) = pas(D; d) = -+ . (17)
Hence, equation (14) can be further simplified as
p(D | d)
_ Mpu+WM—1)(prstpa) M —2)(piatpa)+ - -+ piurtpn

MP11'|"(M 1)(912+P21)+(M 2)(9:3+P31)+ +le+le11,
(18)
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where pus = pus(D; d) and p%.(0; d) used in equation (18) are for sim-
plicity (p.. and p), are derived in Appendix A). If we let the antenna
spacing d/A = 0, then p.(D|0) from equation (18) represents the
correlation function of two single-branch signals

p(D | 0) = J5(8D) (19)

which agrees with that in Ref. 6.

Several numerical calculations have been carried out for the following
example: Two four-branch diversity receivers, each of them with fixed
antenna spacing d/A = 0.5 or d/» = 1.0, are mounted on the roof of
the mobile unit, as shown in Flig. 1. These two receivers are separated by
a distance D/\ (D/\ varies from 0 to 4) for two cases, a = 0° and & =
90°. The calculations of the extended correlation function p.(D | d) of
these two signals, obtained from their respective receivers when the mo-
bile unit is moving, are shown in Figs. 2 and 3. Both figures indicate the
values of D/\ which give the least correlation between two signals. We
also note that the correlations at & = 0° are higher than that at « = 90°.
Figures 2 and 3 can also represent the auto correlation of a signal re-
ceived from a single four-branch diversity receiver which has its antenna
spacing d/A = 0.5 or 1.0 and moves on a street with a constant speed
V(D = Vt). The power spectrum of such a signal can be obtained by
taking the Fourier transform of its autocorrelation function.

3.2 Derwation of the Correlation Function of a Signal Envelope Received
from a Directional Antenna Array

Signal reception from a directional antenna array with M antenna
elements has been also suggested as a means of overcoming multipath

“-WHIP ANTENNA ELEMENT

Fig. 1—Coordinate system of a M-branch diversity mobile radio receiver
(M = 4 branches).
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Fig. 2— Normalized autocorrelation function of a four-branch diversity re-
ceiver moving at e = 0°.

fading in mobile radio propagation.'®™"* The derivation of the correlation
function of this signal envelope is as follows.

Suppose that the same kind of signal which consists of multipath
vertical polarized waves as mentioned in Section 3.1 is received by a
directional M-antenna array. The M antennas are spaced by d,, d.,

1.0
Df @=90°
08
\
|
— 0.6—H
= |
e \d=o5a
< |
0.4—
II\\/ N\
WAN
\_1
0.2 7 0
d=10A \ // N _
A NN
o I . -~ N >\/:—\/
0 0.5 1.0 1.5 2.0 25 3.0 35 4.0

D/)\-DISTANCE WHICH A FOUR -BRANCH DIVERSITY RECEIVER MOVES

Tig. 3— Normalized autocorrelation function of a four-branch diversity re-
celver moving at @« = 90°.
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ds, -+, dy respectively from an arbitrary common point. After the
antenna array is moved by a distance D, (see Fig. 4) the received
signal envelope e which is the amplitude of the sum of M individual
signals ean be expressed as'’

E(D;dl |d2 ,da y T ,du)
= |51(D; dy) + so(D;do) + -+ + S}l((D; dir) |
M
= | 2 su(D;d.) 1
= | X(D;d, ,dy, -+ du) + §Y(D;dy ,dyy -+, dy) |, (20)

where s,, is a complex variable which represents the amplitude and the
phase of an individual signal. X and Y are the real and imaginary parts
of the total signal.

If the spacings between adjacent antennas are equal, then antenna m
and antenna n are separate dyb d,, — d, = (m — n)d. Therefore X and
Y of equation (20) are functions of D and d only. Suppose that all d’s
are constants, the autocorrelation funetion of signal envelope e can be
obtained by using the equation:"

L (XL0; )XL(D; )iy + (X,(0; ) Yo(D; d))ay
pD | d) = (X30; dp)i,

(21)

gy
I
50

= WHIP ANTENNA
I D e ELEMENT

Fig. 4 — Coordinate system of a broadside directional antenna array (M — 8
elements).
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provided X and Y are gaussian variables, all (X,.),, are zeros, and
(X2, and (Y ?2)., are equal, where m = 1 or 2. These facts are shown
in Appendix B. If the antenna spacing d/» = 0, then p.(D | 0) actually
represents the correlation between two single-branch signals, which
agrees with equation (19) and Ref. 6.

The normalized correlation function of a signal received from a
broadside directional antenna array is

1 {Z 2 [o(A) + Jo(B) + Jo(42) + J.:.(Bz)]}
(22)

m=1 n=1

p(D | d) = 4 K K 2
(S 5 vy + 2.8

m=1 n=1

where

K = for M is even

M
2
M

;—1 M for is odd,

and 4,, B,, A, and B, are shown in equation (48). 4, and B, are
shown in equation (49).

Several numerical calculations have been carried out for the following
example: Two eight-element broadside antenna arrays, each of them-
with fixed antenna spacing d/A = 0.5 or d/A = 1.0, are mounted on
the roof of the mobile unit. These two arrays are separated by a distance
D/\ (D/\ varies from 0 to 4) for two cases o = 0° and « = 90°. The
calculations of the extended correlation function p.(D | d) between two
signals received from their respective arrays when the mobile unit is
moving are shown in Figs. 5 and 6. Both figures indicate the values of
D/X which have the least correlation between two signals. The extended
correlation curve of d/A = 0.5 is quite different from that d/x = 1.0 in
both figures. The curve of d/A» = 0.5 in Fig. 5 shows that the high
correlation and low correlation are about 0.25M\ apart; however, this
phenomenon does not appear for d/x = 0.5, but rather for d/» = 1.0
in Fig. 6. It can be explained as follows. For the directional antenna
array with spacing d = A/2, most of the energy is contained in the two
major broadside lobes, while for the directional antenna array with
antenna spacing d = A, most of the energy is contained in the two major
end-fire lobes. As the vehicle moves, strong standing waves may occur
when the major antenna lobes lie in line with the motion of the vehicle,
such as for the case & = 0° and d = A/2; or the case @« = 90° and d = .
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Tig. 5— Normalized autocorrelation function of an eight-element directional
antenna array pointing at ¢ = 0°.

The autocorrelations obtained from these standing waves, then, be-
come oscillatory in nature, as we would expect.

Figures 5 and 6 can also represent the autocorrelation of a signal re-
ceived from an eight-element broadside antenna array which has its
antenna spacing d/A = 0.5 or 1.0 and moves on a street with a constant
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Fig. 6 — Normalized autocorrelation function of an eight-element directional
antenna array pointing at « = 90
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speed V (D = V1). The power spectrum of such a signal can be obtained
by taking the Fourier transform of its autocorrelation function as we
mentioned in Section 3.1.

IV. CONCLUSION

The derivation of a general correlation function of two random
variables, each of them involving two parameters, has been obtained.
The terms “extended correlation function of first kind”’ and “extended
correlation function of second kind’’ have been defined. The application
of the extended correlation function is demonstrated. The correlation
funetion of a diversity signal and the correlation function of a directional
antenna array signal are derived with the help of the extended correlation
function in this paper. Several numerical calculations have also been
carried out. From these correlation functions we can obtain the least
correlations between two signals under certain circumstances. Also,
we can obtain the power spectra by taking the Fourier transform of
these correlation functions. Thus, it seems likely that these functions
will find general application.
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APPENDIX A

Finding Normalized Cross Correlation Functions F'rom Individual
Branch Signals of a Predetection Diversity Combining Receiver

It is easy to show that the signal from branch m in equation (5) is

N
rm = | 2, A, exp [+38D cos (6. — a) + j(m — 1)Bd cos 6,]

| X + 7Y |, (23)
where

A, =R, + jS.,

N
X,.= 2 R,cos¢, + S,sing,, (25)

u=1

> S.cos¢, — R,sing, , (26)

u=]

=~
E]
Il
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—¢, = BD cos (8, — «) + (m — 1) Bd cos 8, (27)

(R, and S, are independent gaussian amplitudes with zero mean and
unit variance). The diversity receiver is located at the point (D, «) in
polar coordinate. The distance D, the angle «, and the arrival of wth
wave at angle 8, are shown in TFig. 1. We assume the N waves are uni-
formly distributed in angle. Now we ean average the produet of two
components of two branches—branch m and branch n—as

(XW(D)X.(D, + D).
= (X.(0)X.(D))u
= NE{cos [BD cos (6, — a) — (m — n)Bd cos 6,]}
= N[Jo(a)Jo(b) — 2J.(a)J.(b) 4+ 2J,(a)J,(b)
— 2Jy(a)Jo(b) + -]

= NJ (@ + b, (28)
where'®
a = BD cos « — (m — n)Bd, (29)
b = BD sin q, (30)
a + b = (BD) 4+ (m — n)*(Bd)® — 2(m — n)8°Dd cos o, (31)
and
(XW(D) YW (D, + D))
= (X.(0)Yu(D))u
= NE/|sin [8D cos (6, — «) — (m — n)Bd cos 6,]}
= 0. (32)
Also
(X2(D))) = (Y2(D,)) = N. (33)

Substituting equations (28), (32), and (33) into the following equa-

tion®"

(D ) = X0 DX(D D% + (X, 03 D) VoDi e
pun( D d) = (X305 d)i.

(34)

Then we obtain the final result

pun(D; d) = JABD) + (m — n)*(8D)* — 2(m — n)*Dd cos a)*
(85)
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and

pun(d) = pma(0; @) = Jil(m — n)Bd. (36)
We also can show the relations

Piz = P23 = Pas; P21 = Paz = Pas

Py = pza = P35 ; Pat = Paz = Pz,

Prn FE Pm  fOT M FE N,
pun(D; d) = pun(—D; d).

APPENDIX B

Finding a Normalized Correlation Function From a Real Part and an
Imaginary Part of a Signal Received From a Directional Antenna Array

It is easy to show that a signal consisting of N multipath vertical
polarized waves received from an equal-spaced directional antenna
array at a distance D from a reference position is™

E.(D;d) = X A1 + exp (j¥) + exp (i2¢)

u=1

+ exp (j3y) + -+ + exp [{(M — 1¢]}
-exp (jBD cos 0.), (37)
where A, was defined in equation (24),

¢ = Bdsin (¢ — 6,) + 5,

d is antenna spacing between two antennas,

M is the number of elements,

« is the normal direction of the array,

8 is the relative phase between antennas,

D is the distance measured from the coordinate origin to the center
position of antenna array. (The cenfer position of the antenna
array is assumed always on the axis, that is, at the position
(D, 0).), and

6, is the angle of arrival of the uth wave and is assumed to be uni-
formly distributed.

The coordinate system of a directional antenna array is shown in
Tig. 6. Since the spacings between antennas are equal, we can let the
phase refer to the center point of the array. Then equation (37) can be
simplified by combining the first term and the Mth term, the second
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term and the (M — 1)th term and so forth.'® The result becomes

N
E.(D;d) = Y A, exp (j8D cos 6,)

-[ZCOS(MQ_ 1¢)+2cu~3(ﬂ12_3:,0)+ +2Q],

(38)

where

Q=1 if M = odd

cos (3¢) if M = even.
Equation (38) can be separated into a real part and an imaginary part as
E(D;d) = X +jY
and
eD;d) = | E.(D;d) | = (X* + Y}, (39)

where
K N
X =22 > [R.cos (8D cos 0,) — S,sin (8D cos 6,)]
me=] um=]

o (M + 1 —2m w)

2
K
=2 Z Lo (40)
m=1
K N
Y =2 > > [R.sin (8D cos 8,) + S, cos (3D cos 6,))
m=1 u=]
< cos (M +1—2m ¢)
2
K
=2 Z} Ym (41)
where
K = M if M is even
2
Y FL % M oisodd. (42)

2
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Since R, and S, are independent gaussian variables, it is easy to
realize that all z,, and 7. are independent gaussian variables. Hence
X and Y are also gaussian variables. The mean values of X and Y are
zeros, and the mean squares of X and Y are the same. Therefore equa-
tion (21) can be applied. The following term in equation (21) can be
replaced by

X,0; X3 Dy = 4 3 2.0 0| & o 0]

m=1 m=]1

4 E Z (2,(0; d)x.(D; d))uy - (43)

m=1 mn=1

The term (X,(0; d)Y,(D; d)) also can be obtained, and is equal to equa-
tion (43), by replacing «, by ¥. . Then equation (20) becomes

p(D/d) =

(S 5 0w NEEb»> (503 (D3 ). |

m=1 n=1

[Z 3 (2.,(0; ), 0; a’-»w]z

m=1 n=1

3

where K is shown in equation (42), and
(2,,(0; d)x,(D; ). = N (cos (8D cos 8,)-{eos [(M + 1 — m — n){]

s [(m — n)¢]})a

|2

(tn(0; )y D; d))uy = % (sin (BD cos ,)-{cos [(M + 1 — m —n)y]

+ cos [(m — n)¢]})w , (45
and
Y = Bd sin (e — 8,) + 6.

Now we may consider only a broadside directional antenna array,
that is, 8 = 0. Then the following terms can be derived:'

(cos (a cos 8,)-cos [bsin (@ — 6.)])av
= 3{cos [(a + bsina)cos 6, — b cosasin 6]
+ cos [(a — bsina) cos 6, + b cos asin 6,]).

= 3[Ju(4) + Jo(B)], (46)
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where
A = (a® + 2ab sin a + b%)},
B = (a® — 2absin a + 1)},
{sin (a cos 8,) cos [b sin (« — 8,)]) = 0. (47)
Inserting the general formulas equation (46) and equation (47) into
equation (45), it becomes

(a0 (D5 D)o =y LA + o(B) + To(As) + To(Ba)]

(2,05 d)yu(D; d))ue = 0 (48)

where

‘;‘} = B[D* = 2Dd(M +1 — m —n)sina + &*(M + 1 — m — n)*]}
1

A,y

B} = B|D* + 2Dd(m — n) sine + &’(m — n)*|*.

I'rom equation (48), we can deduce the results

(n(0; d)z,(0; d))uy
N{J[Bd(M + 1 — m — n)] + Jo[Bd(m — n)]}
N[J,(A) + Jo(Bo)] (49)

Il

and

@2(0; d)) = N{JJBd(M + 1 — 2m)] + 1}. (50)

Then substituting equations (48) and (49) into equation (44), we com-
plete the derivation of a normalized correlation funetion of a signal
received from a broadside directional antenna array.

REFERENCES

1. Papoulis, A., System and Transforms with Application in Optics, New York:
MecGraw-Hill, 1969, Chapter 8.

2. Schwartz, M., Bennett, W. R, and Stein, 8., Communication System and
Techniques, New York: MeGraw-Hill, 1966, p. 8.

3. Davenport, W. B., and Root, W. L., Random Signals and Noise, New York:
MeGraw-Hill, 1958, p. 30, and p. 59.

4. Black, D. M., Kopel, P. 8., and Novy, R. J,, “An Experimental UHF Dual
Diversity Receiver Using a Predetection Combining System,” IEEE Trans.
on Vehicular Communications, VO-15 (October 1966), pp. 41-47.



3440 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1969

5.

10.
11.

12.

13.
14.

15.
16.

Rustako, A. J.. Jr., “Evaluation of a Mobile Radio Multiple Channel Di-
versity Receiver Using Predetection Combining,” IEEE Trans. on Vehicular
Technology, VT-16 ((%clober 1967), pp. 46-57.

. Lee, W. C. Y., “Comparison of An Energy Density Antenna System with

Predetection Combining Systems for Mobile Radio,” unpublished work.

. Gans, M. J,, “Level Crossing Rates for Arbitrary Directional Antennas and

STAR Combining,” unpublished work.

. Lee, W. C.-Y., “Statistical Analysis of the Level Crossings and Duration of

Tades of the Signal from an Energy Density Mobile Radio Antenna,”
BS.T.J., 46, No. 2 (February 1967), pp. 417-448.

. Rice, 8. 0., “Distribution of the Duration of Fades in Radio Transmission,”

BS.TJ., 387, No.3 (May 1958), pp. 581-634.

Jakes, W. C., Jr., “Mobile Radio: Why not Microwaves?” unpublished work.

Lee, W. C. Y., “Preliminary Investigation of Mobile Radio Signal Fading
Using Directional Antennas on the Mobile Unit,” IEEE Trans. on Vehicu-
lar Communications, VC-15 (October 1966), pp. 8-15

Stidham, J. R., “Experimental Studv of UHF Mobile Radio Transmission
Using a Directive Antenna,” IEEE Trans. on Vehicular Communications,
V(C-156 (October 1966), pp. 16-24.

Kraus, J. D., Antennas, New York: McGraw-Hill Book Company, 1950, p. 77.

Booker, H. G., Ratcliff, J. A, and Shinn, D. H, “Diffraction from an Ir-
regular Screen with Applications to Ionosphere Problems,” Phil, Trans.
Royal Soc., London, 2424 (1950), pp. 579-607.

Watson, G. N., Theory of Bessel Functions, New York: The Macmillan Com-
pany, 1948, p. 359.

Lee, W. C-Y., “Theoretical and Experimental Study of the Level Crossings
of iignal Fades from Mobile Radio Directional Antennas,” unpublished
work.



