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Insight into the large-signal operating characteristics of IM PATT oscil-
lators has been oblained [rom detailed nwmerical caleulations of D. L.
Scharfetter and H. K. Gummel. However, their calculations are relatively
expensive in compuler time. Small-signal analyses of IMPATT diodes
are much less expensive, but give liltle reliable information about oscillator
performance.

This paper presenis a model for large-signal analysis of IMPATT
diodes which requires less than 1 percent of the computer time used by
Scharfetter and Gummel’s method, but still provides a realistic description
of IMPATT oscillators in modes of operation which maintain carrier
velocity saturalion. We show graphical resulls, based on mumerical com-
putations, which provide information about phase relalionships n
IMPATT oscillators and improve understanding of the two-frequency
mode of operation.

I. INTRODUCTION

Considerable insight into the large-signal operating characteristics
of IMPATT oscillators has recently been obtained by D. L. Schar-
fetter and H. K. Gummel through numerical caleulations involving
a complete modeling of the physical processes taking place in the
diode.* They solve the one-dimensional partial differential equations
for the generation, diffusion, and drift of holes and electrons, as well
as Poisson’s equation and the differential equations for the cireuit
in which the diode is embedded. Their analysis, which has led to
improved understanding of IMPATT diodes and insight into new
modes of oscillation, includes most of the important physical effects.
Since their model is so detailed and accurate, their analysis is a
large-scale computer project. Even after the computer programs are
debugged, analysis of IMPATT diodes is relatively expensive.
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Another possible method is small-signal analysis, which is tractable
numerically and more economical.>* However, small-signal analysis
gives only a limited amount of information about large-signal oscilla-
tion.

An intermediate model has been presented by W. J. Evans.® How-
ever, his simplified large-signal model requires short transit-time in
the drift region. He obtained a single first-order differential equation
for the diode current, and was able to solve analytically for the
(large-signal) diode current and voltage as a funetion of time. Unfor-
tunately, the restriction to short transit time and his use of other
approximations severely limit the applicability of his results.

This paper presents a model for large-signal analysis of IMPATT
diodes which incorporates most of the important physical processes
in the diodes, but which is more tractable numerically than that of
Scharfetter and Gummel. Because the new model requires far fewer
computer hours than Scharfetter and Gummel’s model, parameter
studies are feasible; because the new model contains more physies
than Evans’ model or the small-signal models, the results are more
reliable and more effects can be studied.

II. LARGE-SIGNAL IMPATT MODEL

We consider a one-dimensional diode, neglect diffusion, and assume
that the electric field is large enough so that holes and electrons move
at scatter-limited velocities. The latter assumption is essential for
simplifying the calculations, but means that our model is not appli-
cable to some important oscillator modes, such as analyzed by Schar-
fetter, Bartelink, and Johnston.?

The other important simplification is that in Poisson’s equation
we neglect the space charge of the ac component of the particle
current in the avalanche region. The detailed calculations of Schar-
fetter and Gummel show that this is a good approximation for the
classical Read mode of operation and other modes where the width
of the avalanche region remains fairly constant during the oscillation
cycle.” We include the space charge of the de component of the par-
ticle current in the avalanche region, and both ac and de components
of the particle current in the drift region. This says that the shape of
the electric field profile in the avalanche region does not change in
time, although the magnitude of the field does; that is,

Ewu(z, 1) = j(z) + E). 1
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This is equivalent to the commonly-made assumption that the particle
current is constant in the avalanche region.> * 7 Given a bias current
and the doping in the diode, we can calculate f(z) by solving a second-
order differential equation by standard methods.® *

We can treat diodes in which holes and electrons have unequal
seatter-limited velocities and unequal ionization coefficients, although
the model we have chosen for computation assumes the same values
for electrons as for holes. The ionization coefficients may be any
given function of the electric field, such as A exp(—b/E).

Besides the simplifications resulting from our diode model, we
obtain important simplifications by solving directly for a periodic
solution, rather than solving for a transient solution which eventually
becomes periodic. We save computation time both because we elim-
inate solving for the unneeded transient solution, and because we
are able to use more advantageous numerical methods.

Notice that the essential approximations are constant carrier veloci-
ties and equation (1); many combinations of additional approxima-
tions may be made, so that we are deseribing a whole hierarchy of
IMPATT models. The aproximation of equation (1) can be over-
come by a recursive method of solution, the first step of which is
the subject of this paper. However, for most purposes equation (1)
is sufficiently accurate.

III. IDEALIZED DIODE

In the rest of this paper, we consider a fairly simple model of an
IMPATT diode; we are able to emphasize the essential features of
the method without becoming lost in algebra. (We plan to treat the
most general case in a subsequent article.)

We consider a diode with a uniform electric field [f(x) = 1] in the
avalanche region (of length d,), and one drift region (of length dy).
We assume equal hole and electron velocities and ionization coef-
ficients, so that the continuity equations for holes and electrons in
the avalanche region are

valE()][p(r, §) + nlz, )] — v op(z, 1)/dx
valE()][p(x, 1) + nlz, )] + v dnlz, 1)/0z.

The importance of the approximations discussed in Section II is
that they enable us to avoid dealing with the hole and electron den-
sities as functions of both space and time. We proceed much as did

ap(x, t)/at
anlx, t)/at
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Read” and Evans,® adding the two continuity equations to obtain
an equation involving the particle current density

oI, (x, t)/dt = 2val, — qv* d(p — n)/dx. 2
The total current, particle plus displacement, is
I(t) = Lz, t) + e 0E(x, t)/at. 3

Iy is independent of x; since E in the avalanche region is independ-
ent of z, I,(z, t) is also independent of x. Using this fact, we integrate
equation (2) over the avalanche region. Neglecting reverse saturation
current, we obtain

20l
da

If we use «(E) = A exp(—b/E), and define E, as the “critical” field
(that field necessary to maintain the de current under static condi-
tions) then «(E.) = 1/d,. We obtain

al,/at =

{dal E()] — 1}.

1,
d.

(Evans linearized the electric field, and used

2v E(t
oL /ot = 2 I,,m[ E(c) _ 1]-
We retain the more nonlinear version.)

We treat the case in which there is an applied voltage* V() in ex-
cess of that required to maintain the de reverse bias current density
I,. The avalanche electric field is reduced by the space charge of the
particle current in the drift region; as in Read, we have

al,/at =

[(Ada)l—E,/E(H _ 1] (4)

¢ !
B) =B+ vo/da+d)— [ (-t e
€ Je-7q T,

where Ty = dg/v is the time for particles to pass through the drift
region after leaving the avalanche region. In equation (5) and the
remainder of this paper we specialize to the case d, < dg, as Read and
Evans did.

Equations (4) and (5), together with suitable initial conditions,
may be solved for E(t) and I,(¢). The total current, which is equal

* We could equally well treat the case where there is an applied terminal
current Ir(¢). It is only slightly more difficult to embed the diode in a circuit;
then we use Kirchoff’s laws to write V(¢) in terms of Ir(¢) and the circuit
parameters, generally as an integral over Ir.
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to the terminal current, may be obtained from equation (3):

€

1) = 5= av(o/at + '11‘7 f L. ©)

The first term is the displacement current and the second is the par-
ticle-induced terminal current, I'r,.

Instead of solving the initial-value equations for the transient solu-
tion, and extending the solution far enough in time for the limiting
periodic solution to be obtained, it is preferable to solve directly for
only the periodic solution. We assume V (£) to be periodic (not neces-
sarily sinusoidal) with period =, and find solutions E(f) and I,(t)
which also have period . Now we need solve only for ¢ in the inter-
val (0, r). It is more convenient to rewrite equation (4) as an integral
equation; integrating equation (4) from 0 to £, we obtain (T, = d,/v)

I(t) = I,(0) exp {% fu' [(Ad)' ™77 — 1] dt’}- Q)

We substitute equation (5) for E(I’), and have a single integral
equation for I,(f), which we shall not write explicitly; since
L(t 4+ v) = I,(t), we solve only for 0 = ¢ = r. Because of its complexity,
it will be solved numerically; for our method to be useful, we must be
able to find numerical solutions quickly and reliably. We solve this non-
linear integral equation by a standard iterative method, which converges
quickly and stably.

We divide the interval (0, r) into M intervals, let ¢, = ne/M, and
solve equation (7) approximately for the M values I,(¢,), n = 1, 2,
..., M. The integrals are evaluated by, for example, the trapezoidal
rule, with integrands evaluated only at times #,. We obtain a system
of M nonlinear equations for the values I, (¢,), which are easily solved
by, for example, the matrix analog of the Newton-Raphson method.
More accurate integration rules than the trapezoidal rule may be
used. They are more complicated to program, but save execution time
because, for a given accuracy, fewer points need be used.

After the I, (f,) are found, then the I (¢,) may be found from equa-
tion (6). Then we Fourier-analyze Ir and V; the ratio of their funda-
mental components is the large-signal admittance at the frequency
v = 1/7. The ac power delivered by the diode also is easily calculated.

The small-signal admittance can be calculated analytically. It is

_ € 1 — /el
Yo =g T arn [z@ T z'w/wzrrd]
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where

_exp (—iwTy) — 1 + 2Ty
E(w) - (—?:wT,;)z

and

2 2a'(E I,
W = T30,
€
This admittance agrees with that of Gilden and Hines, when their
“passive resistance of the inactive zone R,” is neglected.?

IV. RESULTS

We analyze a germanium IMPATT oscillator similar to the one
reported by Swan.® The results, which are presented graphically, are
meant more as an illustration of typical results obtainable than as a
comprehensive analysis of Swan’s oscillator. In particular, the uniform
avalanche region approximation is inadequate. However, even these
preliminary results can clarify some aspects of IMPATT oscillator
operation.

The diode we analyzed has an avalanche width d, = 1.5 X 10* cm,
a drift width d; = 3.5 X 10 cm, and a carrier velocity v = 5 X 10°
em per second. The jonization coefficient is «(E) = 5.9 X 10*® em™
exp[—1.2 X 10° (V/em)/E].

Figure 1 shows typical solutions for the ac components of V(£), I,(2),
and I, (¢). Two cycles are shown; we plot I, instead of I, because the
displacement current component of I, delivers no power. The frequency
is 5 GHz, and the ac voltage amplitude is 10 volts. The avalanche
region particle current is extremely nonsinusoidal, and becomes more so
with increasing ac voltage amplitude. The fundamental component of
I,(f) lags the ac voltage by about 49.5 degrees; this phase angle also
increases with increasing ac voltage, approaching 90 degrees. The phase
is closer to 90 degrees for higher frequencies; this may be attributed to
the lessened effect of drift region space charge on the avalanche region
field. (Read showed that the phase is 90 degrees when the space charge
can be neglected, so that the electric field in the avalanche region is in
phase with the terminal voltage.) The phase will be discussed further in
connection with Fig. 3.

Figure 2 is a complex-plane admittance plot; the de component of
Ir is fixed at 500 A/em?, and the ac component of V(£) is a pure sine
wave, as it would be if the diode were embedded in a high-Q parallel
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Fig. 1— AC components of V, I,, Ir, at frequency 5 GHz, current density
500 A/em? ac voltage amplitude 10 V. Two cycles shown.

resistance-impedance-capacitance (RLC) ecircuit with only one res-
onant frequency. The solid curves are curves of constant ac voltage
amplitude; the dashed lines are curves of constant frequency. For
frequencies about 6 GHz and above, the negative conductance de-
creases with increasing ac voltage amplitude. For lower frequencies,
the negative conductance first increases, then decreases with increas-
ing ac voltage amplitude. For some low frequencies, for example 4
GHz, the diode has positive small-signal conductance, but negative
large-signal conduetance for large enough ac voltage. This type of
behavior agrees with that found at low frequencies by the detailed
caleulations of Scharfetter and Gummel.?

Insight into this type of behavior may be obtained from Fig. 3, which
shows the amplitude and phase (with respect to the ac voltage) of the
fundamental component of I,(f). Curves of constant ac voltage ampli-
tude are solid and curves of constant frequency are dashed. To transform
any point on this plot to a complex admittance plot, one first multiplies
the complex number representing the point by

[exp (—i0T,) — 11/(—iwTy)

to give the fundamental component of I,,. (For small wT,, this is
approximately the same as rotating the phase plot point of I, clockwise
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Fig. 2 — Complex-plane plot of diode admittance as a function of frequency
and ac voltage amplitude. AC component of V() = A cos wt. Current density
500 A/cm?®

by 2wT, .) If the resulting point is in the second or third quadrant, then
the diode has negative conductance at that frequency and ac voltage
amplitude. Then the amplitude is divided by the magnitude of the
fundamental component of the ac voltage amplitude; finally the point
is moved directly upwards by ew/(d. + d;) to add in the displacement
current component.

At low frequencies, increased ac voltage amplitude improves the
avalanche current phase considerably; at 4 GHz, where the small-
signal conductance is positive, the improvement is sufficient so that
the approximately 3T, rotation puts the phase plot point into the
third quadrant, and negative conductance results for amplitudes
above about 12 volts.

Figure 4 shows output power in the fundamental, in watts per
square centimeter. Maximum output power is obtained near the fre-



IMPATT OSCILLATOR ANALYSIS 391

—180°-=

200

600

Fig. 3— Magnitude and phase plot of fundamental component of avalanche
particle current, I,(¢), as a function of frequency and ac voltage amplitude. Cur-
rent density 500 A/em?®.

5000
20V
~
£
U 4000 [
4
w
o
0 15V
3000
-
<
=
z
- 2000 10V
2
o
x
w
£ 1000
[e}
a 5V
0 1 ! ] ! 1
4 5 6 7 8 9 10

FREQUENCY IN GHZ

Fig. 4— Output power vs frequency for various ac voltage amplitudes. Cur-
rent density 500 A/em®.



392 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1969

quency with largest small-signal negative conductance. Efficiency
depends upon the de voltage across the diode, and therefore on the de
electric field in the drift region. The idealized model merely assumes
this field large enough to maintain scatter-limited velocity. A better
lower bound is obtained by ecalculating, at each point in the diode,
the reduction in field resulting from the space charge of the current
pulse drifting away from the avalanche region. Since I is independent
of x,

e dBE(x, £)/dt = I,(I) 4+ e dE,..\(z, t)/dt — I,({t — x/v).

Integrate from O to ¢ and subtract the de component to obtain

ABG, ) = ABwu(® + [ (L) = LW — z/o)]dt.
Y0
Requiring the de field at x to be as least as large as
max [—AE(z, t)]
t

gives the minimum field in the drift region allowable, and thus gives
the minimum drift voltage and maximum efficiency. The maximum
AE is also of interest, since in our model it is assumed that no ava-
lanching takes place in the drift region. If E, is the minimum electric
field for which appreciable avalanche ionization can take place, then
we must require that

max [AE(z, £)] + max [—AE(z, {)] < E,

for all z. This limits the allowable ac voltage amplitude. Numerical
results indicate that, for a given current density, the allowable ac
voltage amplitude depends only weakly on the frequency of oscillation
and the shape of the voltage waveform V(). For our sample diode, if
E, ~ 10° volt/cm, 20 volts ac amplitude is, approximately, the limiting
voltage for the simple diode model used. A more general model, with a
nonuniform avalanehe region, could partially include avalanche-
broadening, and thus be used to analyze diode modes of operation with
larger ac voltage amplitudes.

Swan, Lee, and Standley recently reported marked improvement
in the performance of an IMPATT oscillator embedded in a micro-
wave circuit resonant at two frequencies, the fundamental and its
second harmonie.® 2 As an aid in understanding their results, in the
rest of this section we present calculations in which V(f) has the
form V,eos wt 4+ 14V,sin 2wt. (This particular waveform is not the
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optimum form, but is illustrative.) “Best” values of the magnitude
and phase of the second harmonic depend on the frequency and mag-
nitude of the fundamental, the bias current, the particular diode
used, and the standards of performance to be applied to the diode.

Figures 5 to 8 correspond to Figs. 1 to 4; V, is now chosen so that
half the peak-to-peak value of ¥ (t) is 5, 10, 15, or 20 volts. In com-
paring the oscillations resulting from a two-frequency V(t) with a
one-frequency V(t), we have chosen to compare voltage waveforms
with equal ac peak-to-peak amplitudes, not with equal amplitudes
in the fundamental, because of the ac amplitude limitation discussed
earlier.

Figure 5 shows solutions for the ac components of V(¢), I,(f), and
I,(t); the frequency of the fundamental is 5 GHz, and the maximum ac
voltage is 10 volts. The fundamental component of I,(¢) lags the funda-
mental component of the ac voltage by about 60 degrees instead of
49.5 degrees.

Figure 6 is a complex-plane admittance plot; for clarity, the lines
of constant ac voltage are omitted, and dots are placed at 0, 5, 10, 15,
and 20 volts. For nonsinusoidal ac voltages, the admittance at the
fundamental can move to the left of the small-signal admittance
line, resulting in a better negative conductance-to-susceptance ratio.
This is especially apparent at 4 GHz; comparison of the 4 GHz, 20
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Fig. 5—AC components of V, I, Ir, at frequency 5 GHz, current density 500
A/em?, ac voltage amplitude 10 V. Two cycles shown.
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Fig. 6 — Complex-plane plot of diode admittance at fundamental frequency
as a function of frequency and maximum ac voltage. AC component of V(i) =
Vocos wt + 3V .sin 2wt. Current density 500 A/cm®.

V points in Figs. 2 and 6 indicates that the addition of a second
harmonic component has improved the diode negative conductance
by a factor of three, and the negative conductance-to-susceptance
ratio by a factor of four.

Figure 7, corresponding to Fig. 3, shows in more detail the phase
improvement obtained with addition of the harmonic component to
the ac voltage.

Figure 8 shows output power in the fundamental. At higher fre-
quencies, maximum output power is less than that shown in TFig. 4.
At 5 GHz, maximum output power is about the same as in Fig. 4,
but occurs at an improved negative conductance-to-susceptance ratio.
This ratio is important when the diode’s parasitic resistance E,, which
we have neglected, is included, since the power is proportional to
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particle current, /,(¢), as a function of frequency and ac voltage amplitude.
Current density 500 A/em?.

— G/(G* + B?) — R,. At 4 GHz, maximum output power is sub-
stantially better than that shown in Fig. 4. The nonsinusoidal form
of V(t) improves the phase of Ir(t) sufficiently so that, even though
V(t) contains less of the fundamental, the output power in the fun-
damental remains about the same.
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ac voltages. Current density 500 A/cm®.
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V. CONCLUSIONS

We have presented a numerically tractable method for analyzing
large-signal IMPATT oscillators. It requires less than 1/100 of the
computer time used by Scharfetter and Gummel’s method, but still
provides a realistic description of IMPATT oscillators in modes of
operation which maintain carrier velocity saturation. (One solution
takes about one second of computation time on the GE 645 computer,
if we use 15 time steps per period.) Numerical calculations based on
a simplified version of the model have provided information about
the phase relationships in an IMPATT oscillator and improved un-
derstanding of the two-frequency mode of operation.
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