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We derive an expression for the power spectrum of a class of nonstationary
processes with periodicity in the two-dimensional aulocorrelation function
suchthat R(t, ,t;) = R(t, + T, t, + T). Such a class includes many of the
common digital signals. The method of derivation is based on the double
Fourier transform which relates the spectrum of any signal to its autocor-
relation function. This points to a very stmple method of finding digital
spectra.

The resulls are applied to derive the general expression for the power

spectrum of a wave phase modulated with a pulse stream > ag(t — nT).

The only restrictions on the pulse stream are that the a,’s are independent
and have identical probability distributions, and g(f) is integrable and of
finite length.

I. INTRODUCTION

The power spectrum of a signal x(f) can be defined in many ways.
Every definition, however, has to yield some measure of the expected
power at the output of a narrow bandpass filter, as a function of the
center frequency of the filter.

If z(t) is deterministic then the square of the magnitude of its
Fourier transform represents energy density as a function of fre-
quency. If the signal has finite length the energy is finite and we can
define the power density to be the energy density divided by the
length of the signal. If the signal has infinite length the energy may
be infinite, but for realizable signals we can still define the power
spectrum by operating on a finite time interval and finding the limit
as the interval approaches infinity, This limit may include a set of
3-functions,

If 2(t) is a random signal the direct way of defining the power spectrum
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is to find the Fourier transform of a sample function x,(f) on a finite time
interval T, , take the magnitude square, divide by T, , average over all
possible z,(¢), and finally take the limit as T, — o .

If z(t) is stationary, the power spectrum is proportional to the
Fourier transform of the autocorrelation function. This is a very
useful property which often simplifies the task of finding the power
spectrum.

The use of transform techniques can be extended to nonstationary
processes by means of a double Fourier transform.? There is a very
simple relationship between the double Fourier transform of the auto-
correlation function R (¢, ) of z(f) and the expected energy (or
power) as a function of frequency. Through the proper definitions
this technique includes both stationary and deterministic processes
as special cases.

One would not expect that the term power spectrum would have
much meaning in the general case of nonstationary processes. For
one thing it would require infinite observation time to measure the
spectrum. For some special classes of nonstationary processes we can
talk about power spectra. For instance if the autocorrelation func-
tion is a function of the time difference and only slowly varying with
time we can talk about locally stationary processes.

Another class of signals where power spectrum has a meaning is
where periodicity in R (¢, t.) exists. We will study signals for which

R, ,t) =Rt + T,t, + T). (1)
We will show that for this class of signals the transform technique
can be used to derive a simple expression, equation (26), for the power
spectrum. It is believed that this method of arriving at the power
spectrum is simpler than the direct way used by Anderson and Salz
in their treatment of digital FM spectra.?

Equation (26) is given in such a form that it can easily be used
for many of the common digital signals. It should be especially use-
ful when the digital pulses are overlapping. We apply it to digital
PM which was not included in Ref. 3.

II. GENERAL CONSIDERATIONS
A signal z(t) has the autocorrelationt

Rt ta) = Elz(h:)-2*(t)]- @)

1 The symbol* denotes complex conjugation.
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We definef

Doy , ws) = f f R(t , 1) exp (—jonts + juaks) dty dby . (3)

Papoulis has derived a number of properties for the transform pair
(see Chapter 12 of Ref. 2).

Define
o) = [ Rt+r pa @)
and
1 * —-fwT
W) = > | p(7)e dr. (5)
W (w) is the average energy spectrum and it can be shown that
1
W(w) = o T'w, w). (6)
If #(t) has infinite length we can define the average power spectrum as
S() = lim 2= 1)
To=ro0 T.,

where W,(w) is the energy spectrum of z(f) taken over an interval of
length T, .

Combining equations (2), (3), (6), and (7) we have

f_M f_ :2 Bla(t) -2*(t:)] exp [—ju(th — b)) dt dt,

1 To/2
S = Tl.:-rg 24T,

(©)
If we change the order of integration and expectation and observe
that the double integral is separable and that one integral is the con-

jugate of the other we get
| Ta/2 ) 2
f x(fe '“f di ]

E [ |
— . To/2
Sw) = lim 2T, ©)

which is the definition of power spectrum given by Rice.?
A large class of digital signals has the property

Papoulis has shown that in this case I'(w, , w,) consists of line masses
1 Notice the signs in the exponential.
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in the (w, , w,)-plane. The line mass on w, = w, gives the average power
spectrum S(w) such that

P(wx ’ wz) = P,(wl ’ wz) + (ZW)ES(WJ 5("’1 - Wz) (11)
where T',(w; , w,) has no line masses on w, = w, . From the definition of

T'(w, , ws), equation (3), we get

Tor , ws) =f_ f R(t . 1) exp (—jnts + jwsls) dby dls . (12)

Let
h=t+r (13)
th=1 (14)
then

T(w , @) = [: ‘/::R(t-l- b
-exp [—jrr — jlw — wi)t] dr di. (15)

We divide the ¢-axis in intervals of length T and get

I‘("’l ) Wg) = Z“: f

g=—c0 Y1=qT

{g+1)T

f:_w R(t+ 7, 0)

cexp [—ju,r — jlw; — wy)i] dr di. (16)

From equation (10) it follows that we have periodicity in £; in each
interval t e {q@T, (g + 1) T} welet

t—t+ qT

and equation (16) becomes

Tl , ws) = qiﬂ fT f,; R(t + 7, 1) exp (—joorT)

cexp [—jlwy, — w)(t + ¢T)] dr dt (17)

or

T , @) = f f:_w R(t + . 8) exp [—jonr — i — w)f] dr di

21 2
T OREE SEL

The set of 5-functions gives us the line masses mentioned earlier. S(w) is
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the mass on w; = w,, and from equations (18) and (11)

1 T L] .
S =57 f‘_o f .,:R(" + 7, e "7 dr dl. (19)

We return to the original variables ¢, and t, which are absolute times.
Using equations (13) and (14) we get,

8@ = 507 f f R 1) exp ol — W] dhdhy. (20)

We segment the ¢;-axis in intervals of length T'

sw=57 3 [ [ Rruw

g==o0 Vi1=qT

cexp [—j(ty — L) dhLdt, . (21)
The kth term of the sum is

(k+1)T
Sy(w) = f R(t , 1) exp [—jolts — )] dhy dty . (22)
27I'T 1=kT ty=0
From the definition of autocorrelation of equation (2):

R(tl ) ts) = R*(tz i tl)' (23)
Substitute equation (23) into equation (22) and change the variables
such that
t,—>t, — kT and ¢, —t, — kT.
Because R (t;, t.) is periodic as shown by equation (10) it follows
that

(=k+1)T T

1
Sufew) = 2T tr=—k7  Jig=0

R*(t, , ) exp [j(t, — 1)) di di, (24)

or

Su(w) = 8% (w). (25)

We can then combine terms in equation (21) where g > 0 in pairs and
equation (21) becomes

S(w) = T{ f f R(t, , ts) exp [—ju(t, — )] di, di,

(@+1)T

+ 2 Re [ f R(t, , &) exp [—jw(t — )] dt dt‘ae_l}' (26)

g=1 l;-cT
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III. DIGITAL PHASE MODULATION

Represent the signal by
z(t) = V. cos (w.t + ¢(1)) (27)
where
o) = X ag(t — nT). (28)

ne—og

We assume that the a,’s are independent with identical probability
distribution and g(f) is integrable and of finite length such that g(f) = 0
outside the time interval {0, pT'}. Otherwise g(f) is arbitrary.

The Appendix shows by means of transforms that the one sided

spectrum of z(¢) is
Vz
Slw. + w) = j I'w, w) (29)
where w is the difference between the actual frequency and the carrier
frequency. T'(w, , w,) is defined by equation (3) with

Rt , t) = E{exp [jo(t:) — jo(t)]}. (30)

If we substitute equation (28) into equation (30) and use the fact that
the a,’s are independent we get

Rt 1) = 11 Elexp (jalgt — nT) — g(ts — aD)]}]. (31

n=—o

To show that R(¢; + T, to + T) = R(ty, t2) let £ = ¢, + T and
ts = t» + T and reindex such thatn—n + 1.

Rh+T,t+T)

= T Elexp litunlgls — nT) — gt — nT)]}].  (32)

n=—cQ

Since we assumed identical probability distributions the periodicity

follows.
In order to use equation (26) we now have to evaluate R (Z;, t2) for

0t £ and 0=, =T.
Since t; ¢ {0, T}, g(t= — nT) will contribute in the factors when
—p—-1=n=s0
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Now t; « {qT, (g + 1)T} and g(t; — nT) will contribute when

—p-1D+g=n=g¢
In order to determine for which n’s only one will contribute and for
which n’s both will contribute to the factors in equation (31) let us
look at Fig. 1. We see that if ¢ < p then there will be factors where
both contribute. Equation (21) becomes

=p+a

Rt , t2) = II Efexp [—jag(t: — nT1}

—p+l

IDI E(exp {jalg(t — nT) — g(t. — nT)]})

—p+g+l

T1 Blexo ljag(t, — nD))}. )

In the first product we let n = n — p and in the secondn > n — p +
q. We also let ¢; — £; + gT and this part of equation (26) becomes

Lre{E e [ [7 1T wew tinolt, + @ — w1

¢=1 n=1

-E(exp {—jaglt. + (p — n)T1})]

'ﬁE[em (Gal{glt + (p — WT] — glta + (» — ¢ — W)TI})]

cexp [—jw(t, — &)] di dta}‘ (34)

The first double integral in equation (26) we get from equation (33)
with g = 0. Let n —» —mn,

2_,1,? for_/; ﬁE(exp {jalg(t, + nT) — g(t. + nD]})

n=0
~exp [—jw(t, — £)] dt, di, . (35)
We have yet to find the terms where p £ ¢ £ . If we look at Fig. 1, we
see that

Rt , &) = H E{exp [—jag(t. — nT)]}

—p+1

- TI Elexp lag(t — nT)]}.  (36)

—ptg+l
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Fig. 1— Contributions to E(i1, t2).

In the first product let n — —n, and in the second let n — —n + ¢, and
finally ¢, — ¢, + ¢T. Substituting the result into terms in equation (26)
where ¢ = p we get

./;T ﬁE{exp [jag(t + nT)1} it dt |2-Re'[i e—r‘qw?‘]

n=0 a=p
T p-1
= 11 E{exp [jag(t + nT)]}e ' dt 1
™ n=0
-] p—1
-{Re [Z et — Ze"’"”]} (37)
g=1 a=1
which becomes
T p—-1 . 2
ﬁ n=0 dﬁ
: 2@2)
T 2rm 1 (» — l)wT] Sm( 2
T "'-Z-u: B[w B ] M [ 2 . T (38)
sin 'E‘

Substituting equations (35), (34), and (38) into equations (29) and (26)

S + ) = { [ [ 11 Bew tialgts, +n) — ot +nT0)

T p—1 2

exp [jag(t+nT))}e " dt

-exp [—jw(t — L)) di, di; +

. (cuT a=1
sm |\ =
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f f H [E(exp {jaglt + (¢ — n)T]})

F(exp {—jaglts + (@ — mT1))] :I:IjEleXP Galglts + (p — m)T]

—glt: + (@ — ¢ — n)T]})] exp [—jw(t, — t)] dt, dtg}

T p-—-1

II E{exp [jag(t + nT)]}

o - 2"—”’")1 (39)

- exp (—j 21;1mt) di

me
T m-—w

1IV. EXAMPLE OF PM SPECTRA

A complete evaluation of equation (39) is not attempted here. We
compute S(w, + w) for the ecase when g(f) is a rectangular pulse of dura-
tion 7 < 7T, and height 1. We assume that a has r levels which are
equidistant and equally probable such that

— 1

a® = + & (40)

<
'.]'_‘-a

P{a"} = (41)

First we rewrite equation (39) with p = 1:
Vi

St + o) = 5 [5hn [ [ Besp tinlate) - o)

cexp [—juw(t, — 1.)] di, di,
0] exp [—juwf] dt ]

(£ -2t -2)] @

The expected values in equation (42) will be
E(exp {jalg(t) — g(2)1})

- 15 en]a

. a][g(m = g(w]} (43)
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L)oo - (44)

[ [ B tialo(e) — 981} exp [—jolt, — ) diy s

= ;,1‘ > f: exp [.’f(ﬂa —1 a)]g(t) — jut dt

k=1
since we can separate the integrals and because the integral over i,
is the conjugate of the integral over ¢ . Also

and

E[efu(l)] — % E exp [:’( .

k=1

From equations (43) and (44) it follows that

(45)

2

‘ LT E[eiav(l)]e-fﬂli dt
S [ o[ e+ 25 a) o0 — | )

1
2

Let us set

[l

Then equation (42) becomes

a:)g(t) — jwt] dl = Fyw) (47)

fo-2)

With g(t) = 1 for t € {0, =} and O for ¢ ¢ {r, T'} we get (after some
trigonometric manipulations)

[ . wT 2
o[ [T
Sl e | B
L 2 LS' (_)

S, + o) = K{ﬁ[z | i) [ —

1 = L 2rm
+F Z ;TFk(T)

me=—c0

+ ,...E'.,. T2T2 mmr . (a)
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sin (%) ( 1) 2rm
. - COS [m-:r + a, + ] [m - H—] . (49)
oin () '

The continuous part of the spectrum is independent of «,. Only the
random deviations from «,, and the pulse length determine the con-
tinuous part of the spectrum. The term «, is related to the periodicity
of the signal and consequently the spectrum spikes will be functions
of ap.

There are some interesting special cases of equation (49). If («/r) =
n-2r then the continuous part of the spectrum disappears. We would
expect this because from equation (40) it follows that during each
pulse a phase excursion of a, plus an integer number of 2z is made.
This is the same as modulating with a periodic signal where in one
period we have a,g(t).

If + = T all spikes except the carrier spike go to zero; this gives

N (T P . « 2
vl |®™ ("2_) : L Y (2)

T2 |2r| WT 1 r (a)
2 sm2r

sin (C—Y)
LI—20 1 5 (50)
r . e

sin (5‘) J
which is a familiar result. This is independent of «, because in this
case a, is just a constant phase angle added to the carrier at all times.

It is interesting to note that if « = n+2nx, the carrier spike will also
disappear.

S(ew,

V. CONCLUSION

There is a large class of nonstationary processes which yield sig-
nals with periodicity in the two dimensional autocorrelation function
such that R(¢&, + T, ts + T) = R(t;, t2). Such a class includes many
of the common digital signals.
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A simple expression has been derived for the power spectrum of
such a signal. It was done by means of the double Fourier transform
which relates the spectrum of any signal to its autocorrelation fune-
tion, For this class of signals the method is very powerful.

The results were applied to get the general expression for the power
o0
spectrum of a wave phase modulated with a pulse stream » a,g(t —

nT). The only restrictions on the pulse stream are that the a,’s are
independent and have identical probability distributions and, g(f)
is integrable and of finite length. As an example a rectangular pulse of
length + < T was considered.

The same method can be used for digital FM to arrive at the ex-
pression given by Anderson and Salz.® It can also be shown that the
expression given here for PM goes into the one for FM given in Ref.
3 with the accrued phase per pulse equal to 0. This corresponds to o
= 0 in Ref. 3, a case which was not treated there. We get this FM
case by substituting

t
o [ o) ar
0

for g(f) in our equation (39) where w, is a frequency deviation parameter
defined in Ref. 3.

APPENDIX

Carrier Translation

An angle modulated signal is represented by

z(t) = V. cos [wt + ¢()]. (51)
The autocorrelation function of z(t) is
R.(t, tx) = Elx(t,)-2*(t)] (52)

which becomes

P (exp a(ts + VE{exp io(h) + (8]}

Rz(il ] lz) =
+ exp [—jw(t, + t)]E{exp [—jo(ly) — jo(t:)]}
+ exp [jw.(t, — t)]E{exp [jo(t) — jb(t)]}
+ exp [—jw(t, — L)1E{exp [—jp(t) + jo(L)]}).  (53)
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The average energy in the two first terms will for most practical cases

of modulation go to zero. To show this we take the double Fourier

transform of the first term

V2

g Talexp ot + B)]} * Fo(B{exp [ig(h) + ja()]})
(54)

Pl(wl ,wz) =

or
Vi o2
Ti(w; ,w) = vy 2m)" - 6w, — w.)

“8we + w.) * Fo(Efexp [ip(t) + je(t)]})  (55)

where F, is a double Fourier transform operator and * means convolution
in both ¢, and ¢, . The plus sign in the second §-function comes from the
plus sign in front of w, in the definition of the double Fourier transform
of equation (3). Equation (55) shows that we can find I';(w, , wz) by
first finding

Fo(B{exp [jo(f) + jo(L)]})

and then move it in the (w, , w,)-plane so that the point (0, 0) falls at
(wo,, — w.). (See Fig. 2.) To find the average energy we set w, = w, .
We see then, if

F(E{exp [jo(t) + jo(t)1})

does not have any significant mass density for frequencies of the order

of w, there will be no contribution from TI',(w, , w:) falling on the line

w, = w, . This will be the assumption here, that is, the modulating fune-

tions do not produce sidebands as far as . away from the carrier. Then

it also follows that the second term in equation (53) will not contribute.
Now let us set

Efexp [jo(h) — jo(t)]} = Rt , L). (56)
Thus
Efexp [—jo(t) + jo(t)]} = B*(4 , 1). (57)
If
T(w , ws) = Fo[R(E, )] (58)

then from equation (3) it follows

Go[R¥(l , )] = T(—ws, — wy). (59)
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Taking the double Fourier transform of equation (53) then yields

Do w) = £ @) [00r = ) 8o — @) * Tr , @)

+ 8w + wo) 8ws + w,) * I'(—wa , —wi)]. (60)

If we look at Fig. 2 we see that the convolution just means sliding
I'(w, , ws) and I'(—w, , — w;) along the line w, = w, . We want the portion
of T'.(w, , w) that is located on the line. The sliding process takes the
portions of I'(w, , w,) and I'(—w,, — w,) that are already on the line
and moves them to the points (w, , w,) and ( — w. ,—w,), respectively.
Setting w, = w, = @, + w in equation (60) and performing the convolu-
tion we get

Lo, + @6+ 0) = 2 [T,0) + T—w, 9. (6D

The second part in equation (61) is just the mirror image of the first
and the one-sided spectrum becomes

S, + ) = 22 o, o) (62)
where

Dlw , w) = Fa(B{exp [ip(t) — jd(t)]}).

wa

(wc. o)

@y

Fwcrwc)

Tig. 2 — Carrier translation.
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