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A single, constant amplitude, in-band, additive inferference is included
in the analysis of detecting phase shift keyed signals in gaussian noise. For
coherent detection we give a method applicable to any M-phase system, and
evaluate the symbol error probability for M = 2, 3, and 4. For differential
detection we treat the important cases M = 2, 4, 8, and 16, offering com-
prehensive numerical results for each.

The analysis in each case is based on a single sinusoid with random
phase adding to the noisy phase shift keyed signal. The results are then
interpreted lo include an angle modulation impressed on the continuous
wave interferer. The receiver consists of an ideal phase discriminator with
a perfect slicer. The channel is also assumed ideal in that intersymbol
interference is not considered.

I. INTRODUCTION

Phase shift keying (psk) is becoming more popular as a modulation
scheme for transmitting digital information. Lately much analysis has
been done for both coherent and differentially coherent detection.
Unfortunately the analyses done to date have generally considered
only two signal degradations: channel anomalies (such as distortion,
gain and delay variations, and so on) and thermally generated noise
modeled by a gaussian random process. This article considers the
effects of a spurious signal, or interference, falling in the band of the
desired signal, as well as gaussian noise. It is understood that both
the noise and the interference additively corrupt the desired signal;
these are the only perturbing factors.

For coherent detection, the phase probability density function for
the received composite of signal, noise, and interference is found.
From this, the theoretical error probability may be evaluated for
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any M-phase system. We give comprehensive numerical results for
the important cases, M = 2, 3, 4.

For differential detection we present analysis and results for M = 2,
4, 8, and 16. In the binary case a simple closed form solution was
found which yields both a good approximation and exact bounds to
the actual error probability. The solutions to the multilevel M > 2
differential detection problem, which are exact, required machine
computation of a double integral; complete numerical results are given.

Finally, we draw general comparisons between coherent and dif-
ferential detection error performance as affected by interference.

II. SIGNALS, NOISE, AND INTERFERENCE

A phase shift keyed signal has the form (ignoring any amplitude
function)

s(t) = cos [27f.t + ¢.(1)] ®

where we choose to normalize the peak signal amplitude to unity.
The digital modulation is carried in the angle of s by ¢,(t), which
assumes discrete values from a set of M equally spaced points in
[0, 2] at the sample times T seconds apart. Thus the Nth message
or baud is modulated by
2wk

¢,(NT)=ﬁ, k=0!1)2)"'1M_1 (2)
where each of the M values of k is equally probable.

For a coherent receiver an M-ary symbol is transmitted in one
baud by the value of k. For a differential detection receiver the in-
formation is transmitted by the changes in k (or carrier phase)
between adjacent bauds.

The noise is presumed to originate thermally and is therefore
modeled in the usual fashion by a stationary zero mean gaussian
random process with uniform spectral density. At the output of a
symmetrical bandpass filter the noise voltage may be written as?

n(t) = u(f) cos (2nf,t) — v(f) sin (2f,1) (3)

where » and v are low-pass, stationary, independent, zero mean gaus-
sian random processes with ensemble averages

MYy = Wy = (W) = o, (4)
equal to the noise power.
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In the differential detection analysis we make the further restric-
tion that the noise process autocorrelation vanish at the baud inter-
val, thus

R..(T) = 0. (®)

This assures the four gaussian random variables

ute), ulte + 1), v(t), v(to + 1)

to be uncorrelated and hence independent.?

Interference shall consist of a constant amplitude, possibly angle
modulated, sinusoid which lies within the bandwidth of the detector.
It is assumed to originate independently of the signal, and so it is
natural that its phase relationship to the signal is random with all
angles equally probable. Therefore let

i(t) = bcos [2nfit + ¢:(t) + T (6)

which has a peak value of b, and is angle modulated by ¢;. The arbi-
trary phase angle T, independent of ¢;, is a random variable whose
probability density function is (2#)-* when reduced modulo 2r.

For coherent detection, where the interference is observed only
once per symbol, the random phase variable I' vitiates the modulation
¢: because the sum (¢; + T') is distributed exactly as if it were uni-
form. This is discussed in Section III,

III. COHERENT DETECTION

An ideal phase discriminator is assumed which compares the re-
ceived wave (composed of signal, noise, and interference) with the
unmodulated signal carrier (the reference) and produces instantly
the signed phase difference between the two inputs.

The detector examines the discriminator output and announces
an estimate of the transmitted symbol. The detector operates with
no timing error and with zero width decision thresholds. Using maxi-
mum likelihood detection based on equal a priori symbol probabilities,
the thresholds are at =/M, (3x)/M, ..., [(2M — 1)z]/M. In a
phasor diagram these thresholds correspond to (2x)/M angular sec-
tions centered about the M signal positions.

The approach used to find Pe, the probability of a symbol error,
is to find the probability density function of the phase of the re-
ceived composite (s + n + 1), and then integrate the density over
the error regions.
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We first notice that the phase angle of the interference relative
to the signal is, from equations (1) and (6),

®(t) = 2x(f; — [t + (1) — ¢, (O) + T (M

where T' is independent of the other terms on the right-hand side.
Sinee I' is uniformly distributed modulo 2, the relative interference
phase process & (t) is also uniformly distributed modulo 2x. This is
a general result for the modulo addition of several variables, one
of which is uniform.?

Figure 1 is a phasor diagram of the receiver input components,
signal, interference, and noise, at a sample time fo. The phase refer-
ence is 2xf,t + ¢, so that the signal lies along the reference (vertical)
axis. The orthogonal noise phasors are assumed to be at angles 0 and
=/2, relative to the signal. We seek the probability density function
of the resultant angle A, and begin by considering the two dimen-
sional joint probability density function of the cartesian coordinates
of the resultant phasor. Conditioned on @, it is clearly jointly gaus-
sian with means

{z), = bsin &, ()ow = 1 + D cos @ (8)
so that '
ixr(T, Y | @)
= ﬁ exp {~ L le—bsing' +@—1-5 GOS¢)2]}- 9)
o 20

Eliminating the ® dependency gives

exp {— % 2+ @y — 1"+ 52]}

fov(z, ) = @ro)”

e {ht @ - 0P es @+ afas 0

where n = tan™[ (y — 1)/x] is not a function of ¢.
This integrates directly to

fxv(z, y) = 5:—; exp{— # B+ @w— D+ b”]}

1fsE + -1
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Tig. 1— Phasor diagram of the signal, noise, and interference components at
a sample time t,.

where I, is the zero order modified Bessel function of the first kind.
We now convert equation (18) to polar coordinates through the
usual transformation

x=rsina and y = rcosa (12)

whieh has the Jacobian r. Then the polar coordinate two-dimensional
density is integrated over all radius values to yield the desired proba-
bility density function of the angle.

1 ” 1 ., )
fale) = mj; exp {— 547 [ 4+ 41— 2rcos a]}

IL% ¢* + 1 — 2r cos a){lr . (13)
The above integration has been done numerically to generate exact
f1(a) curves for several values of
—20 log1o[2%¢] = carrier to noise ratio in dB (CNR),
—20 log;ob = carrier to interference ratio in dB (CIR).

It is clear from equation (13) that f,(a) has at least the symmetries
of cos a.

Figure 2 offers typical families of f, probability density function
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curves for representative CNR values. As the interference amplitude
increases it is seen to control or to affect the shape of the curve to
a greater degree. At high interference levels a saddle-like shape ap-
pears with peaks at roughly tan—b, as one would expect in the
absence of noise.

Since equation (13) is the probability density function of the
angle of the complete receiver input, and since the probability of a
symbol error is the probability that A lies outside the region [—=/M,
=/M] at #,, we have

o= [ f@da+ [ fue da (14)

J—r

which by symmetry is

Pe — 2 f :M fule) da. (15)

Again, integral (15) was done numerically (a simple summation
of the f4 data) for practical combinations of CNR, CIR, and for
M = 2,3, and 4. The results appear in Figs. 3-5.*

The ahove method, which employs two (rather simple) machine
integrations, yields exact results but at the expense of not generating
useful expressions for Pe. Therefore we now indicate one approach
which yields Pe for M = 2, and hounds Pe for M > 2, as a convergent
series, We begin by considering binary reception.

Referring back to Fig. 1, an error is made if |« | > 90° or, equiv-
alently, if the resultant resides in the lower half plane ¥ < 0. Then
for fixed @,

(4]
Pe|® = (2770’2)_%[ exp [* % (y — 1 — b cos ¢)2:| dy
e LM)
= dente (M (16)
Averaging over the uniformly weighted @ gives
5. 1 14 becose
e = L[y ente (550 ) o 4

This integral, which is virtually the cumulative distribution func-
tion of a sine wave of amplitude b plus gaussian noise of variance o’
* The abscissa values are true ecarrier-to-noise power ratios, and are not ad-

justed to reconcile bandwidth to bit-rate differences. One may do this by sub-
tracting 2 dB (3 dB) from the abscissa values for M = 3(4).
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(evaluated at —1), has been examined by Rice* and others. It can be
evaluated by expanding the integrand in a Taylor series about (26%) 7
and then integrating term by term. If the interference is small, b < 1,
only the first several terms need be retained for reasonable accuracy.

The Pe values obtained for Binary may be used to bound the symbol
Pe for M > 2. The decision thresholds are at @==/M for the M-ary re-
ceiver. The error region consists of the union of two half planes formed
by the extended detector thresholds. The probability that the resultant
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Fig. 3 — Binary (M = 2) Pe versus CNR. Coherent detection.
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Tig. 4 — Ternary (M = 3) Pe versus CNR. Coherent detection.

phasor terminates in the error region, Pe, is thus bounded by the proba-
bility of terminating in either half plane. As M increases, the bound
becomes a good approximation* because the size (hence the relative
probability) of the doubly counted intersection decreases rapidly with
M.* By symmetry, the probability of terminating in either half plane is
twice that of one half plane.

* The approximation improves with CNR also.
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Tig. 5 — Quaternary (M = 4) Pe versus CNR. Coherent detection.

The probability of one half plane is related to the binary Pe very
simply. The distance to the boundary from (0, 1) is sin (x/M). If
now the interference phasor and noise phasor were scaled by the
same factor, we see that the probability of the half plane is just
the binary Pe with interference amplitude b sin (/M) and noise
variance [o sin («/M)]%*

* The author is grateful to 8. Q. Rice for suggesting this notion.
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Therefore we have the interesting relationship

9 G i I — .
Pe (M > 2, osing5, b sin M) =2Pe(M = 2,0,b) (18)

which means that twice a given binary Pe value is an upper bound
(or approximation) to an M-ary Pe where the binary CNR and CIR
values are each increased by —20 log sin (=/M) dB.

IV. DIFFERENTIAL DETECTION—BINARY

This type of detection has become widely considered lately because
it eliminates the requirement of phase synchronism between the
transmitter and receiver. The price one pays for nonsynchronous
detection, however, is poorer performance.

The analysis for differential detection is complicated by the fact that
the phase reference, being the previous signal, is subject to the same
corruptions as the present signal being phase detected. (I'or the noise-
only case, an exact solution in closed form is available for binary, and
good approximations exist for M/ = 4.) We begin with an analysis for
binary differential psk (d-psk), considering again a single CW inter-
ference in addition to noise, which yields in closed form both bounds
on Pe and a good approximation.

We are concerned with the reception of two successive bauds, where
the data is encoded in the phase change of the signal. Arbitrarily, let
no phase change represent a “0” and a = phase change represent a
“1.” For convenience, we will refer to the signal during a baud
interval as a “pulse” of carrier at a certain phase angle, although
in a pure phase modulated (PM) system the signal would not con-
sist of carrier pulses.

From previous assumptions, the noise corrupting each signal pulse
acts independently; the interference at two adjacent sample times
to and t, + T does not. This dependency may be summarized by an
angle

0= 2x(f; — )T

which is the relative phase slip of the interference from one sample
instant to the next. Assume, for the present, that the interference
modulation is absent.

We will use the same equally spaced detection thresholds as in
the coherent psk analysis. Ignoring interference, the probability of
error in d-psk is not data dependent because of obvious symmetries.
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However, the addition of interference destroys that symmetry, and
causes Pe to be strongly data dependent for a given 6. Fortunately,
however, the error probability for only one symbol (that is, “0” or
“1”) needs to be found because the probability of error for the other
symbol(s) is derived directly from it. An over-all probability of
error is then found by averaging the individual symbol error proba-
bilities with equal weighting.

Consider the transmission of a “0” whereby two carrier pulses of
the same phase are sent. A “double exposure” phasor diagram, Fig.
6, pictures the signal, noise, and interference components at the two
successive sample instants ¢, and ¢, + 7. The interference at t,
assumes an angle ¢ relative to the signal, where ¢ is random and
uniformly distributed in [0, 2«]. At time ¢, + T the interference has
progressed to an angle ¢ + 6.

The noise phasor amplitudes are the random variables

Us=ult), Va=ol), U=ulte+T), and V=0olt+1T) (19)

which we recall are independent, equal variance, zero mean gaussians.
The two resultant phasors, Z and Z;, are the actual phase dis-
criminator inputs; the output being their phase difference, 8. Since a

-

S b #,-SIGNAL

[ Zd

Tig. 6 — Signal, interference, and noise phasors at successive sample times
to and to 4 T for a transmitted “0.”
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“0" is transmitted, the probability of error is

Pe | “0” = Pr{| 8| > g} , —rT<8§=Tm (20)
which is equivalent to Pr{cos § < 0}.
Also, because
Re [ZZ%]
COSO0 =771 7 (21)
| Z || Za|
and the denominator is nonnegative, we have alternatively
Pe | “0” = Pr{Re [ZZ%] < 0}. (22)

We now employ a technique used by Stein which leads to a closed
form solution to equation (22).° Based on the simple identity

Re[ZZﬁ]=‘Z’2LZ“2—’Z;Z“Z (23)
we see that
Pe|“0” = Pr{|Z + Zs| < |Z — Zu|} (29)
For economy of notation we let
2=2+Z,=U+ U+ «V + V) + C©3) (25)

A=Z—-72,=U—=U;+ 4V — V) + C(4)
where C' () denotes the nonrandom components,® that is,
C(Z) = blsin ¢ + sin (¢ + 6)]
+ {2 + b[cos ¢ + cos (¢ + )]} (26)
C(A) = blsin (¢ + 6) — sin ¢] + <bleos (¢ + 6) — cos ¢].

Thus = and A are complex (two dimensional) random variables
whose jointly gaussian orthogonal components have equal variance
20°. We are concerned with the magnitudes, | 5| and |A |, often
referred to as a Ricean random variable.

The probability density function (of | 3|, for example) is the well
known result for the envelope of sine wave plus noise*

fin0) = gz oxp | - TELGEL [ EB]

*¢ is constant and we have conditioned the solution on ¢.
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Furthermore, |=| and |A| are independent by the following
argument. U + U; is independent of V — V. Consider U + U, and

U — U;. They are uncorrelated, hence independent, by virtue of
their equal variance.
U+ U)WU — Udlar = [U* = U] =0 (28)

Therefore all four random components of = and A are independent,
from which the independence of | % | and | A | follows.

The advantage of this approach is that equation (24), the proba-
bility that the amplitude of one complex gaussian (that is, a Ricean)
exceeds another, is expressible in terms of the function™

QA, B) = fn " exp (— %)IO(AT) dr. (29)
One formulation is®
P3| <o) =3 - g[LERL LEO ]
|C@) | | 1]}
+ Q[ 5 12, (30)

Evaluating the magnitudes of the means from equation (26),

}
|CE@) | =2 1+2bcosgcos ¢—|——6 -I—bzcos?ﬁr
2 2 2

(B1)

L
5"
We have thus far found Pe|“0” exactly, conditioned on the initial
interference angle ¢. The desired result is obtained by averaging
equation (30) over ¢. However, inserting equation (31) into equation
(30) leaves an expression which offers little promise for analytically
performing the integration. As an alternative, the integral is both
approximated and bounded in what follows, thereby avoiding a ma-
chine integration.

The integration parameter ¢ appears in |C ()| but is not a factor
of |C'(A)|. Then with the identification

B =|C() |/2
4 =|c) /20
* () functions are tabulated, but not adequately in the argument ranges needed

for these problems. Their usefulness lies in having good approximations which
lead to easy machine calculations. See Ref. 8.

| C(8) | = 2bsin

ll

(32)
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we are led to consider the behavior of the integrand
F(4,B) = i[1 — Q(B, 4) + Q(4, B)] (33)
as a function of B only (fix A). Familiarity with F (A, B) suggests
that it is roughly exponential in —B*/2.
To affirm this supposition we first show that

iﬁ%f;tﬁl = —BK(A, B)F(4, B) (34)

where K (A, B) is bounded near 1:
12KA B =21—e (35)

This approach is motivated by the recognition that if F (A4, B)
could be approximated by an exponential in B2, the integral of
F(A, B) over ¢ would be simple.

The derivation of equations (34) and (35) consists of elementary
manipulations of the series and integral representations for Q (A4, B)
which are given in Ref. 8. Henceforth, a prime designates partial
differentiation with respect to B. For brevity, let

B=ew| - AHE 30
Then using the series representations

o4, B) =1 3 (4) 1048 (37)
1-Q®,4) = F 3 (&) 148 (39)

we see that
2F(4, B) = 2Q(4, B) — EL,(4, B). (39)

Then

2F"(A, B) = 2Q/(A, B) — EI{(AB) — E'I,(AB) (40)
= 2Q/(4, B) — EAL(AB) + BEL(4B).  (41)

Referring to the integral representation for the @ function we
inspect

Q'(A, B) = —BEI,(AB). (42)
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Therefore, from equations (42) and (41) we have

A

2F'(A,B) = —BE[ID(AB) + B II(AB)]- (43)

But from equations (37) and (38),

1 —-Q(B, 4A) + Q(A,B) = E[ID(AB) + 2 i ( )m ...(AB] (44)
So that equation (34) is true for

I.(AB, + (A)I,(AB)

K(A,B) = (45)

1,(AB) + 2( )1 (4B) +2 3 (A)MI,,,(AB)

Since 4, B, and the I,,(z) are nonnegative the unity upper bound
in equation (35) is obvious. For the lower bound, invert equation
(45) and notice that

km s £ (5) 7R “

1+2Z() (47)

m=1

lIA

since the I,, (z) decrease with the order m.

Referring to the definitions of equations (32) and (31) it can be
shown that A < B whenever b < 1/(2) %, so that the summation con-
verges for reasonable interference levels (CIR > 3 dB). Then

24
— A

K(A,B)™" £ —I— (48)

so that
24
B+ A

In most cases B 3> A so that K(4, B) is near 1.
We now solve the linear, first order differential equation (34) to
obtain

IIA

(49)

B
F(A, B) = Pe, exp [ f — K(4, 7) df] (50)
-
with initial data F (A, B;) = Pe,. The above expression for F (4, B)
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is exact. We now approximate the exp argument by approximating
K(A, B) with a constant K,. Then we are able to carry out the
integration in equation (50) to obtain

>

Se (B - Bs)]- (51)

&

F(A, B) = Pe, exp [—

We know the function at By, and we extrapolate to the function
using an approximation of its derivative. Now the ¢ integration will
range over some section of the exponentially varying F(4, B) in
equation (51) above. Because it is exponential, the significant con-
tribution to the integral occurs over a relatively small range of B
where F(A, B) is near its maximum. This suggests that the initial
data be specified at a maximum so that the approximation function
is best in the important range of integration. Therefore we let

By, = Baia (52)
g0 that
Pe, = F(A, B)) = F(4,B), 0=¢ =2 (53)
We notice from equation (31) that
Buin = 1 (1 — b cos g) (54)
a a
and so
B - B =32cos§[1 + cos (¢+9)]- (55)
a r4 2

In addition, we slope-match at By, approximating K(4, B) by Ko =
K (A, By). From equation (45)

L+ (5) 2im

;4) 1,(ABy)
B,/ 1,(4B,)

K(A, By =~ (56)

l-[—2(

Inserting equation (55) into equation (51) and integrating,

-1_ 27 B ) B bKn B]
o f F(A, B) dé = F(A, By) e).p[ 2 cos

’d bK, 0
. ﬁ exp [— 7 cos (¢ + 5)] (67
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gives the desired result

Pe | “0” = i[1 — Q(B, , 4) + Q(4, By)]
-exp [ b_O.IgE cos Q]Iﬂ[beﬂ (0] g] . (58)

Exact bounds are now easily obtained by bounding K(A, B). With
By still chosen to be By, clearly

B B
f—qmmﬂmgf-rmmmz—aW~me (59)
B °

where Knin is the minimum value of K(A4, B) in [By, B]. Similarly,

B
f—ﬁ%ﬂ&;%ﬁ—%mw (60)
Bo

Therefore

(‘1 B) Peu exp [ ( 2 - BIZJ)Kmu] (61)

min

so that

Pe | 0", 0 § Pe, exp [—Km;n ;ba cos —Q]IQ[KMH —bg cos g] (62)

max 2 max

The ratio of the bounds in equation (62) may be bounded in order
to ascertain their closeness, We omit the cumbersome derivation, but
state the result below,

B 0.65
— COS = 5N
cos 5 + s

/) .
— CoS 5~ sin

Upper Bound _ 63)

Lower Bound ~—

[~ =
Nl

For CIR = 10 (15) dB, the ratio is less than 1.6 (1.25).

The symbol “1” is transmitted as two pulses of carrier 180° apart.
Then correct reception results if 90° < | 8| < 180°. If an analysis
quite similar to the preceding were carried out for this case, the
resulting expressions would be identical with those above except that
6 is replaced by = — 6. It follows that

Pe | “1”,0 = Pe | “0”, = — 6. (64)
We will elaborate on the relationship of Pe for the different data
symbols in Section V.
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Notice that Pe[“0” is symmetric in # about 0 and =. The sym-
metry follows from the averaging of ¢, and the insignificance of
which of the two pulses occurs first as far as the detector is concerned.

Since the overall error probability

Pe (0) = 3[Pe | “1”, 0 + Pe| “0”, 0] (65)

we use equation (64) to write

Pe (6) = §[Pe | “0”, 8 + Pe| “0”, = — 6] (66)

which is easily shown to be evenly symmetric about 0, = and 7/2. We
therefore need examine Pe only in the range 0 < 8 = 90°.

Pe(#) does vary considerably as seen in Fig. 7. Here the maximum
and minimum values of Pe(#), which happen to occur at «/2 and 0
respectively, are given for interesting combinations of interference
and noise levels. To further illustrate the effects of interference, we
present curves of decibel degradation versus # in Fig. 8. Degradation
is defined as the dB reduction in carrier-to-noise ratio which is
allowed to maintain the same Pe after removing the interference.

Finally, consider an angle modulation impressed on the interfer-
ence. This situation may be viewed simply as a time varying 6. Then
one may average the Pe(f) results given here over the variations of 6.
If this is undesirable, the curves of Fig. 7 are certainly bounds on
Pe averaged over the # variation.

V. DIFFERENTIAL DETECTION—QUATERNARY

We now examine the effect of a single interference on a differentially
detected quaternary (4-phase) signal. We will refer to the four sym-
bols as “0”, 17 “2” and “3”, where the associated baud to baud
phase shifts are 0, »/2, =, and —=/2 respectively. As before, the
phase diseriminator examines the two composite phasors, Z and Z,,
and reports their angle difference 8. The ordering of the bauds is
important, since we must distinguish between § = »/2 and § = —=/2.
The “0” symbol possesses the same symmetry as in the binary case;
we therefore base the analysis on Pe|“0”. Then in an analogous fashion
we relate Pe|“0” to the probability of error for the other symbols.

In the binary case the receiver tested for the sign of Re [ZZ%]. This
test was transformable to a test between the amplitudes of two Ricean
random variables, one which enjoys a closed form solution. Unfortu-
nately, in the present case the test, which is for a “0”
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s _ Re[zz%) (_2)_*}
Pe | “0 Pr{cos&—lz'lzd|§2
is not known to be transformable to one which has a closed solution.
On the other hand, we offer a very straightforward analysis which
is exact and amenable to machine computation.

Figure 9 is a “double exposure” of the signal, noise, and interfer-
ence components for a “0”, The two carrier pulses are, of course, coin-
cident and lie along the reference axis. We recall that the angle of
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Fig. 7 — Binary Pe versus CNR. Differential detection.
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the interference at ¢, is ¢, and at £, + 7 is ¢ + 8. We will again
average over ¢, leaving 4 as a parameter.

At time ¢, the resultant of signal and interference, shown by a
dashed line, has length W and angle ¢ which by inspection are

W = (1 4+ b* + 2b cos ¢)} (67)
_ b sin ¢
- 1 —_ .
£ =tan [1 + b cos ¢] (68)
5.00
arsl MmERTO e
4.50 ' 14
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Tig. 8 — Degradation in CNR caused by interference versus ¢ for binary dif-
ferential detection.
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Fig. 9— Phasor diagram for quaternary differential detection.

To the resultant of signal and interference adds a Rayleigh ampli-
tude, uniform angle noise phasor. The resultant W is perturbed both
in amplitude and angle by the noise. The resulting amplitude is
unimportant, but the angle, ¢ + «, establishes the reference for de-
tecting the second pulse. The probability density function of « is well
known to be

fola) = ‘717r exp (—¥) {1 4+ T cos
-exp (¥ cos® a)[1 + erf (¥ cos )]}  (69)
where
_2[ 0
erf (@) = 5 ﬁ exp (—u?) du (70)
is the usual error funection integral and
w*
v = Sy (71)

is the power ratio (signal plus interference)/noise.
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At t, + T the second pulse is examined. It is disturbed by inter-
ference to the point (x4, ¥o),

Ty = b sin {qb + BJ (72)

Yo =1+ bcos(p+ 6).

The decoding region is a quarter plane bisected by the direction
of the first pulse as shown by the orthogonal decision boundaries.
The probability of correct reception is simply the probability that
a random noise phasor originating at (z,, o) will terminate inside
this quadrant. Using the independent orthogonal phasor representa-
tion for noise, and choosing the components to lie alongside the per-
pendicular distances d; and d» from (zo, yo) to the boundaries, we

write directly
ds \'|
[l + erf (E)J - (73)

1 — Pe|“0", ¢,a= l)l:l + erf (i‘g)]

Now using erf + erfe = 1 we have

1| =

Pe | “0", ¢, a = § erfe (%)

+ 1 erfe (;%‘(—T) — 1erfe (g—f;) erfe (%) (74)

The distances d, and d. may be verified to be
d, = —ji,sin (a + &t — g) + ¥, cos (a + &t — E)

(75)
d,

?J.:sin(a-}-g-%—g)—n-gcus(a+§+§)

such that they take the positive sign if (xo, yo) lies on the correct
reception side of the respective boundary.
Eliminating the ¢ and « dependency results in a finite limits double

integral
pe 0 = [
1]

which was machine evaluated.

The relationship between Pe | “0” and the other symbols is easily
demonstrated graphically. Figure 10 is a phasor diagram illustrating
a typical noise and interference corrupted first pulse, and the four

27

‘_;—‘i [ f.(a) Pe | “0”, ¢, a da (76)
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Fig. 10 — The relationship of Pel¢ for the individual symbols.

possible positions of the pre-interference second pulse. Decoding
quadrants determined by the angle of the first pulse are shown by
dashed lines. Adding to each of the possible second pulse carrier
phasors, which correspond to the four data symbols, is an interfer-
ence phasor having some angle ¢ + 6.

If a “0” had been sent, the probability of error conditioned on the
present geometry (that is, the values of ¢, «, and ) is the probability
that a noise phasor originating at the tip of the solid interference
phasor (labeled “0”) terminates outside the “0” quadrant. This proba-
bility is a function of ¢ and the distances from the tip of the inter-
ference phasor to the boundaries.

Now assume that a “3” had been sent instead. The associated
second carrier pulse is shifted clockwise by x/2, but the interference
phasor at to + T is still at ¢ + 6 relative to the diagram reference.
Returning to the “0” quadrant, consider an interference phasor hav-
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ing the angle ¢ + 8 — #/2, shown by the dashed line labelled “3".
It is apparent (and trivial to show) that the distances of the dashed
“3"” phasor to the “0” quadrant boundaries are identical with the
distances of the actual “3” interference phasor to the “3” quadrant
boundaries. We conclude, therefore, that

Pe | 3", ¢, a, 6 = Pe | 07, ¢,a, 0 — T @

Now integrating both sides of the equality over all ¢, « yields the
desired relationship

Pe| 37,6 = Pe | “0”, 6 — g (78)
Similarly we have

Pe| 2", 0="Pe|“0",0—n= (79)

Pe | “1”, 6 = Pe | “0”, 6 +72£ (80)

so that the average symbol error probability becomes

Pe (0) = i[Pe | 0", § + Pe | “0”, 6 —’5’

+Pe |07, 6+ 3 + Pe|“0”, 0 — ﬂ-] (81)

which is solely in terms of Pe | “0”.

Notice that equation (79) is exactly the result obtained for a “1”
in binary. This is not surprising, since a “2” constitutes a 180° phase
shift of the second pulse. In fact, the arguments relating to Fig. 10
may be generalized for an M-phase d-psk signal with a “J” symbol
phase shift of (2xJ)/M, to be

12rJ

Pe | “J", 6 = Pe | 0", 8 + i (82)
Averaging over the symbols in equation (81) produces a Pe(f)
which is evenly symmetric about 0, /4, /2, . . . ; points half as far

apart as in binary. Also, while Pe|“0” still varies over a considerable
range, when four symbols are averaged instead of two the range of
Pe(6) is significantly decreased. This is evidenced by the numerical
results plotted in Fig. 11. Again, the solid and dashed lines represent
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Fig. 11 — Quaternary symbol Pe versus CNR. Differential detection.

maximum and minimum values of the symbol Pe. The values of
which correspond to the maximum and minimum are not the same for
all noise and interference level combinations. However, Pe(6) is gen-
erally lowest near 0, /2, = . . . and highest near »/4, 3=/4, . . .,
and so on.

Since Pe(#) fluctuates less severely for quaternary, it is more mean-
ingful to average over §. This was done, and the average used as a
base for computing the degradation curves of Fig. 12.
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VI. DIFFERENTIAL DETECTION — M > 4

For large M systems, for example M = 8, we compute the average
error probability

/M
pe = M f Pe (6) do (83)
T Jo

assuming now that @ is a uniformly distributed random variable. Be-
cause of the rapidly diminishing ¢ dependency noted in Section V,
the average over # is a useful measure of error performance. The
choice of a uniform distribution for  allows an approach which relies
on the previously obtained f4 () data, rather than finding Pe(§) and
then integrating.

Let the interference phase angles at {, and {, + 7' be random variables
® and ® + O, respectively. We first note that the sum & + @ modulo 27
is uniformly distributed since ® (or ©) is uniform. Hence both inter-
ference angles, ® and & + O, are uniformly distributed. Furthermore,
since for any ® = ¢ the sum ¢ + ® (modulo 27) is uniform, we conclude
that ® and ® + O are independent. The adjacent interference angles
then are independent; and consequently the phase angle, 4, of s +n 4 ¢
is independent from sample to sample.

We therefore obtain the probability density function of the differ-
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Fig. 12 — Degradation in CNR caused by interference for quaternary differen-
tial detection.
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ence angle 8§ = A(fyp + T) — A(ty) as the modulo 2= convolution of
F4(a) with itself. Then the integral of the probability density func-
tion of 8 over | 8 | > (x/M) yields Pe. Numerical results were obtained
in this fashion for M = 4, 8, and 16. The M = 4 data was in excellent
agreement with Fig. 11. Pe for M = 8 and M = 16 is displayed in Fig.
13. When b > sin(x/2M) the interference alone can exceed the
thresholds and cause errors. This is seen as a Pe floor for low CIR
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Fig. 13 — Symbol Pe versus CNR for 8 and 16 phase differential detection.
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values; increasing CNR does not cause Pe to tend toward zero.

Finally, we remark that the averaging of Pe over the M symbols
was implicitly done in the # averaging. We see from equation (82)
that all symbols have equal error probability when @ is uniformly
distributed.

VII. SUMMARY AND CONCLUSIONS

We have evaluated the symbol error probabilities for both coherent
and differential detection of low M psk signals in the presence of in-
terference. The effect of the interference is readily observed in the
curves of Figs. 3-5, 7, 11, and 13. Although the increase in Pe result-
ing from interference is large, it is considerably less than if the inter-
ference were replaced by gaussian noise of the same power, especially
at low Pe levels.

Comparing Figs. 3, 4, and 5, we see that vulnerability increases
with M. That is, at a given CNR, the Pe is raised least for M = 2
and greatest for M = 4 by the addition of interference. For example,
without interference the error performance of M = 2 versus M = 4
differs by 3 dB. When a —10 dB interferer is added, it differs by ap-
proximately 5 dB, indicating a 2 dB CNR penalty for equal Pe values.

Drawing comparisons between coherent and differential detection
reveals that differential detection clearly suffers more degradation.
Binary differential, however, performs about as well with interference
at optimum @ values as does binary coherent. This is in contrast with
the performance disparity between the two M = 4 systems. With a
—10 dB interference, differential detection suffers a degradation rang-
ing from 515 to 8 dB; coherent detection is degraded only 4 to 414
dB for the same CNR range.

We use degradation rather than the raw Pe versus CNR curves to
make the above comparisons because of the inherent difference in
performance between differential and coherent psk for noise alone.
That is, the degradation comparisons automatically reconcile any
disparities in the noise-only performances of the various systems.
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