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Most of the light scattered from high-reflectivity dielectric mirrors s
radiated into directions close to the reflected beam. We measured the angular
power distribution at angles between 0.01° and 1° from the beam axis by
scanning with a narrow slit. From this a linear structure function is
calculated for coherence lengths between 20 microns and 1 millimeter,
assuming isolropic surface statistics. The corresponding power density
decreases with the third power of the scaitering angle. The power outside
a given radius and the power density s plotted for various wavelengths
and distances.

I. INTRODUCTION

The improvement of dielectric mirrors during recent years has re-
duced their surface scattering considerably. Nevertheless, there are
applications which are limited by these small amounts of scattered
light. One of them is the laser gyroscope whose locking threshold
depends on the light secattered back into the direction of incidence.
Measurements have been performed recently to analyze this case.?

Another application is the simultaneous transmission of many laser
beams in an optical waveguide for communication purposes.? The
focusers in such a guide will probably be front surface mirrors rather
than lenses because, for the large apertures needed, lenses are apt to
have imperfections in the bulk. Dielectric mirrors have fewer im-
perfections, but they still scatter some light into adjacent beams where
it produces crosstalk. It was the purpose of our experiment to measure
some representative mirror surfaces as a basis for later feasibility
studies on multiple beam waveguides. Only the light in a narrow cone
around the beam is collected by the next focuser and eventually con-
tributes to the crosstalk. The experiment showed that, in this cone,
the scattered light intensity decreases relatively fast with increasing
angle.
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Applying these results to more complicated problems requires a
simple but adequate mathematical representation of the results. We
found that the standard seattering theory, which uses a covariance
function to describe the mirror surface statistics, serves this purpose
very poorly.? On the other hand, a simple structure function can be
found which is a satisfactory representation of the physical reality in
the range of the measurements and is easily applicable to practical
problems.

II. SCANNING THE SCATTERED POWER DISTRIBUTION

The measurements were performed with a 50-cm He-Ne laser gen-
erating a 1-milliwatt gaussian beam at 6328A. To achieve enough
sensitivity and discrimination against noise, the laser beam was
chopped for signal processing in a lock-in amplifier as shown in Fig. 1.

A slit was used to scan the scattered light. This requires scanning
only in one direction (while the slit averages over the perpendicular
coordinate) and more signal power is collected than with a pinhole
method. Because of its circular symmetry, the scattered power den-
sity can be caleulated from this measurement by a simple integral
transformation.

To avoid scattering from dust particles in the beam path to and
from the mirror, this path was evacuated to about 4 torr. But care-
ful comparison with measurements in unfiltered, though quiet, air
showed no measureable difference.

The mirror had a radius of curvature of 24 m and a diameter of
15 cm. The beam, having a 1/e-width of 24 mm at the mirror, was
focused to 0.8 mm in the plane of the slit. The slit was 0.15 mm
wide. Figure 2 shows the relative intensities normalized to the peak
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Fig. 1 — Setup to measure the scattering under vacuum.
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Fig. 2 —Scattered power at 24-m distance normalized to the peak power
(the vertical lines are part of the coherent beam profile).

intensity in dB and plotted versus the vertical coordinate. In this
logarithmic plot, the gaussian intensity profile of the coherent signal
has a parabolic shape, part of which is represented by the almost
vertical lines in the center of Fig. 2. If diffraction and spherieal
aberrations are taken into consideration, the fall-off is not quite as
sharp as indicated by the parabola, but these effects were estimated
to be well below the light levels measured. Therefore, we believe that
surface seattering is the sole source for our results. The scanning
range in Fig. 2 corresponds to angles from 0.01 to 0.1 degree.

For larger angles up to 1 degree, a 1-m set-up was used which was
basically similar to the one shown in Fig. 1, but had no vacuum en-
closure. The five mirrors tested in this arrangement had a radius of
curvature of 1 m, a diameter of 25 mm, and the same coating as the
24-m mirror. The test beam in this set-up was 4 mm wide at the mirror
and was focused to 0.2 mm at the slit. The slit had a width of 0.05
mm. Coatings from different batches showed up to 3 dB difference.
Figure 3 shows average and variation of the results. Again the in-
tensity normalized to the peak intensity is plotted in dB. The profile
of the coherent beam is shown in the center.
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Fig. 3 — Scattered power at 1-m distance normalized to the peak power (the
vertical lines are part of the coherent beam profile).

Both the 24-m mirror and the 1-m mirror were polished and
coated by the same methods though by different manufacturers. They
were tested to be spherical within A/10. The reflection loss of the 24-m
mirror was measured by a multiple reflection technique to be 0.135%.
The mirrors were measured new without previous use, but no increase
of the scattering was measured by repeated checks during the follow-
ing weeks. Further lifetime studies are under way.

ITI. DESCRIPTION OF THE SCATTERING SURFACE

The scattering plotted in Figs. 2 and 3 originates from a slight
roughness or ripple structure §(X, Y) on the mirror surfaces which
is, of course, different for different mirrors. The surfaces tested in this
experiment, however, were manufactured by the same process and
are therefore equivalent in a statistical sense. That implies that the
average magnitude of each ripple eomponent, that is, the “power spec-
trum” of 8(X, Y), is the same from mirror to mirror. The average
has to be taken over an ensemble of test surfaces; however, for cor-
relation lengths small compared to the test area, the ensemble average
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may be replaced by an average over the individual surface. In this
case, measuring only one or a few surfaces still yields a meaningful
result, though only for correlation lengths small compared to the
radius w of the light beam at the mirror surface.

The “power spectrum” is closely related to the scattering profile
measured by the slit method. A vertical slit at X’, as in Fig. 4, col-
lects mainly light scattered from the vertical ripple component with
the spatial frequency

Xr
z =73 (1
where A is the light wavelength and L the distance between slit plane
and mirror. Therefore, apart from a constant, the scattered profile
s(X’) of Figs. 2 and 3 agrees with the “power spectrum” d,(z) of
8(X, Y) for Y = constant.* The quantitative relation between d, and
sis given in (38) of Appendix A and reads

3

d(x) = % erf( ’;‘;‘;)s(x). @)
where ¢ is the slit width and w the 1/e-width of the gaussian light
beam at the mirror surface. A log-log plot of d,(z) is shown in Fig.
5. The points on the left hand side are taken from Fig. 2 and rep-
resent the 24-m experiment, the ones on the right hand side stem
from Fig. 3 and the 1-m experiment. Since the mirrors are statistically
equivalent, all these points belong to the same function. A rough ap-
proximation is attempted by the straight line in Fig. 5 which represents
the function

D

dx) = ®)

with
D = 6-107" mm. (4)

The Fourier transform of d, is the covariance of §(X, Y) along
lines ¥ = constant.® It proves impossible, however, to perform this
transform without knowing d, for very small x where it increases
rapidly. Accurate information about this range is unnecessary if the

* Strictly speaking, s(z) is a two-fold convolution of d:(z) with the intensity
profile of the beam and the slit aperture function; but because the latter two
functions are very narrow as compared to the scattered profile, the above sim-
plification is appropriate.
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Fig. 4—Sketch of the experiment showing the coordinate system used.

structure function
AX, — X,, Y, — Vo) = ((3(X,, Y)) — 8(Xs, Vo) Do (5)

is used instead. The interrelation between A and d, is derived in the
Appendix A and given in (39). It involves the transformation

f " d.(z) sin® (rXa) dx.

The sin®-kernel of this transformation redueces the contribution from

the zero-end of the d,-function and A (X, 0) can therefore be caleulated

more accurately in the range of interest than the covariance.
Inserting (3) into (39) yields the functional approximation

o »ix ( 327" )]
where X has the meaning of a correlation length. In the range X < w,

which is shown in Fig. 6, the structure function (6) is essentially a
straight line given by

A(X, 0) = 47°DX. )

This result suggests that the mean square difference between sam-
ples of & increases proportionally to the distance at which they are
taken. At the right side of Fig. 6 the quantity (A)* can be read off,
which indicates a direct measure of the heights of the surface ir-
regularities as a function of their extension about the surface. This
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Tig. 5 — Power spectrum of the mirror surface roughness. The line represents

a best-fit approximation to the measured points.
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Fig. 6 — The structure function A caleulated from the approximated power
spectrum. The broken line indicates the possible uncertainty of the result.
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quantity does not, at least not in the measured interval, approach a
definite rms value, but increases unlimited for larger and large sam-
pling distances. This is not necessarily in contrast to physical reality,
but one has to keep in mind that, for macroscopic sampling distances,
the statistics of 8 are probably governed by a different process, which
could mean a steeper rise as well as a leveling off for the structure
function.

Unknown contributions from outside the measured interval of d,
will to some degree affect the accuracy with which (7) can be evaluated.
Ruling out any poles of d, for x # 0 (which would mean nonstatistical
components), a ‘“‘worst case’” may be established by assuming that (3)
holds only in the measured interval z, < z < =z, , everywhere else
d.(x) = 0. Then from (39) withz < wand A < 1

A(X, 0) = 8D fz.Siﬂzx;LX—w)dz ®)

with ; = 0.3mm and z; = 30mm. The dashed line in Fig. 6 shows
the evaluation of this integral. The accuracy seems satisfactory for
coherence lengths between 204 and 1 mm.

Though A(X, 0) describes the statistics of & only along lines ¥V =
constant, this result can easily be generalized assuming that the mir-
ror surface is isotropic. Then the structure function has circular
symmetry and ean be expressed as a function of the radius R =
(X + ¥Y2)%, This function reads

A(R) = A(R, 0) (9)
where A (R, 0) is given by (7).

IV. THE DISTRIBUTION OF THE SCATTERED POWER

For most applications the actual scattered light distribution around
the beam is of more immediate interest than the structure function.
Of course, this light distribution not only depends on the properties
of the mirror, but also on the properties of the light beam reflected
off the mirror. More specifically, this light distribution is the convolu-
tion of the intensity profile of the primary beam with the “power
spectrum” of the mirror irregularities. Only when the beam profile
is very narrow, as in our experiment, do the scattered light distribu-
tion and the “power spectrum” become proportional functions.

In this section we evaluate this distribution for various optical
wavelengths in arbitrary cross sections of the beam. If applied to
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problems where the width of the beam may not be neglected, the
convolution of this function with the intensity profile of the beam has
to be formed. :

Because of the isotropy of the mirror surface, the scattering has
circular symmetry. If we define a normalized radius r = (2* + y*)}*%,
the scattered light distribution p(r) ean be ealculated from (32) of
Appendix A. By substituting z by r in (32), one obtains

2t f* pl)rdr
S(z) = =
where r is related to the radius B” = (X’? 4+ Y’*)*% by the normaliza-
tion

(10)

Rf
= I
One can solve (10) for p(r) by multiplying both sides by zdx/
(z? — %)% and integrating with respect to « from r to o0.* After inter-
changing the order of integration on the right-hand side, the integral
over v can be evaluated and one obtains

(11)

r

Lx [ 28(x) dx 7[“‘ N
2 ) -/, 2rrp(r) dr. (12)

The integral on the right represents the total power scattered out-

side a circle with radius » and will be called P(r) in the following.
Insertion of (2), (27), and (35) into (12) yields

8x° [ zd.(z) dx
Pr) = P37 L@ = (13)
and the power density p(r) is finally obtained from the differentia-
tion
) = _l @
P 21 dr

By using (3) for d, in (13), one obtains for the power outside the
radius r

(14)

3
Pl — ‘;—’2 % P... (15)

and the power density

y 2D :
plr) = e P . (16)
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To gain information about the power density as a function of the
scattering direction, one may multiply (11) by A and find the seat-
tering angle

!
p = Ar = 1%- an
The power scattered into directions deviating by more than p from
the beam axis is obtained by inserting (17) into (15)

py _ 4" D
p(2) = & D P (18)

The derivative with respect to p yields the angular power density

1 dP 20° D
pa(p) = “Smpds T N ;ﬁPm . (19

Equations (18) and (19) are evaluated for wvarious wavelengths in
Figs. 7 and 8. Figure 7 shows the power fraction outside p which de-
creases linearly with increasing radius. Fig. 8 shows the power frac-
tion radiated into a given solid angle at p. This function decreases
with the third power of p.

Finally, for a certain distance L, one finds the power arriving out-
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Fig. 7— The total power fraction scattered with an angle larger than p off
the beam axis for various wavelengths A.
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side a cirele of radius B’ to be

R _ DL
P(L)\) = 4r RR’ P!.nl. (20)
and the derivative with respect to R’ yields

1 dP DL
pr (R = ~onp AR = 27 )TR_”"P“” . 21

where pg. is the scattered power density at a distance L. Equation (20)
is plotted for various L in Fig. 9. Figure 10 shows the power density
versus the radius which decreases with the third power of R’. It is
interesting that the power density at a fixed radius increases pro-
portional to the distance from the scatterer.

Of course, equations (15) through (21) hold only for » < 0.3 mm™,
the lower limit of the interval measured, and are based on the assump-
tion that (3) is valid for » > 30 mm™". However, as d, is small in the
latter region, a possible error introduced by this assumption should not
be significant in the range of interest.

V. CONCLUSIONS

The small angle scattering was measured for very highly reflecting
dielectric mirrors. A reasonable functional approximation for the
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measurements leads to a linear struecture function for coherence
lengths between 20 microns and 1 mm. The rms difference between
surface deviations found at two points 1 mm apart is 30 Angstroms
and decreases with the root of the distance for points closer together.
At an angle of 0.1° the scattered power density per em? is 10-¢ of the
total power. It decreases proportional to the third power of the angle
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and linearly with the light wavelength. No considerable differences
were found for mirrors polished and coated by two different manu-
facturers which were using the same processes and chemicals.
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APPENDIX

The Structure Function

Consider a coherent Gaussian beam of wavelength A to be reflected
off the mirror in Fig. 4 and focused on a plane with a slit. Assume
that unperturbed phase fronts emanating from the mirror were
spherical with a field distribution

E(X,Y) = Eyexp [—(X* + Y*)/v°. (22)

The mirror diameter may be considered sufficiently large compared
to the 1/e-width w so that ths field at the mirror edge may be
neglected. In this case, the field in the focal plane is

fx,y) = f f e T Y) dX dY (23)
where
X' Yy’
N and v =1 (24)

are the normalized coordinates in the focal plane (see Fig. 4). The
solution of (23) is

flz, y) = Eow’r exp [—7°w’(x® + )] (25)
The total power
2
P = "5 E; (26)

can be calculated by integrating (22) or (25).

Assume that the slit in the focal plane is long enough to collect all
the power in y-direction and has a width ¢ in 2-direction. Then for
X’ = 0 the signal received is

8(0) = P.,, erf (‘fg”’;\) @7)
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where erf denotes the error function. This is the peak signal measured
with no scattering present. However, for the case in question where
the scattered power is less than a percent, (27) can also be used for
the peak center signal of the scattering profile.

The scattering under consideration originates from a slight rough-
ness 8(X, Y) of the mirror surface which gives rise to a phase varia-
tion

4
o X, ¥) = 7 8(X, Y) (28)
on the otherwise perfect phase front. The term 8(X, V) is assumed
to be a gaussian random process with isotropic statisties. Its structure

function is given by (5).
Tt can be shown that for gaussian statistics®

{exp tle(X, , Y1) — o(X, , Y2)]) = exp [_8?\% A]- (29)

The power density in the focal plane can be calculated from (23) by
introducing the phase factor exp[—tp(X, ¥)] and then multiplying
(23) by its conjugate complex. Using (29) yields finally

pl, 1) = fﬁf E(X, | VIE(X. , Y2

' exp [_8)%; AX, — X, ¥ — Yz)]

cexp [—22r(X, — Xo)z]
cexp [—i2r(Y, — Yoyl dX dX,dY,dY,. (30)

After a standard coordinate transformation, this becomes
pa, 1) = Pur [[ o0 [-(X* + V/207)

* exp [—SK":— A(X, Y):' exp [—22x(Xz + Yy)]dX dY. (31)

To measure the relatively flat power distribution outside the co-
herent beam, one may average over the slit width ¢ and consequently
the signal measured in this region is approximately

+

i p(z, ¥) dy. (32)

t
S =X,
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Because of (31), this becomes

S(z) = Pm - exp [—%l —i”-_f_ A(X, 0)]3"'2'-“ aX.  (33)

For experlmental convenience the normalized signal

was measured and plotted in Figs. 2 and 3. From (27) and (33) one
finds

@ = 75 Lo () |

f exp [—% {— - ii AKX, 0)]5"““ iX.  (35)

Inverting the Fourier transformation in (35) yields

exp |: X' - &[— A(X, 0)]

2w

(34)

_ _L_?\ ) ( th) e i2x Xr
== erf 5 In j; s(a)e dx. (36)

The evaluation of this integral is problematic for small x where the
measurements are impeded by the coherent beam, but where s(z) is
large and contributes significantly to the de component of A(X, 0).
To overcome this difficulty, the identity A(0, 0) = 0 can be used
which is based on the definition (5) of the structure function. Incor-
porating this identity (36) can be rewritten in the form

1 — exp [—-l-& - 87[ A(X, 0)j|

2w’ A
- Ll" m-f(/’f“;L)f s@[ — e ™) dr.  (37)
The function
1 ; ‘t
do(z) = 1() 7 © f(_g;\—L)S(x) (38)

may be interpreted as the “power spectrum” of §(X, V) for ¥ =
constant. Consequently, = has the meaning of a spatial frequency
related to the Fourier components of § along lines ¥ = constant. d,
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as well as s are even functions of x. Therefore, the solution for A (X, 0)
can be written in the form

N[ 1x 64wa°° e ]}
AX,0) = 3.7 {—2 = In [1 e d.(z) sin” (#X ) dx
(39)
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