Extension of Bode’s Constant Resistance
Lattice Synthesis of Transfer
Impedance Function*

By S. Y. LEE
(Manuscript received August 30, 1968)

Bode developed some explicit formulas in terms of the poles and zeros
of the transfer impedance function for each element of the first and second
degree constant resistance lattice structures. To extend work in this area,
we derive explicit formulas for two of Bode’s structures using coupled coils;
we give two new structures which avoid coupled coils. Illustrative examples
show the usage of these formulas. Finally, we include a general procedure
for synthesizing any physically realizable, rational transfer tmpedance
function by a constant resistance lattice network. A flow chart aids in
detailing this procedure.

With the addition of these results, a general method for synthesizing any
physically realizable, rational transfer impedance function with explicit
formulas is complete. The explicit formulas method developed in this paper
gives more rapid results and introduces fewer round-off errors than the
step-by-step procedures used in the past.

I. INTRODUCTION

An important characteristic of constant resistance lattice networks
is the absence of reflection effects when such two-port lattice net-
works are connected in tandem. The synthesis of a given transfer
impedance function is simplified by representing the function by a
partial product expansion. Thus the transfer impedance may be rep-
resented by a tandem connection of a number of constant resistance
structures (one for each partial product). This process will result in

*Some results presented in this paper are based upon the author's thesis,
“Explicit Formulas for Constant Resistance Lattice Synthesis of Transfer Im-
pedance,” presented to the Moore School of Electrical Engineering, University
of Pennsylvania in December 1965 in partial fulfillment of the requirements for
the degree of Master of Science in engineering.
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realizable, simpler, transfer impedance functions provided that the
constant multiplier of the given transfer impedance function is made
large enough to permit each of the constituent networks to have non-
negative loss on the real axis.! In general, then, there will be addi-
tional fixed loss for the overall two-port network.

For physical realizability, it is required that both members of any
conjugate complex pair of zeros or poles be retained within a given
partial product. Hence, each of the elementary constituent networks
must be represented by a bigquadratic factor. When there are single
zero and single pole pairs on the ¢ axis, the partial product factor
for each pair is reduced to the bilinear form. It is recognized that
the expansion can be performed with the zeros and the poles col-
lected in a variety of ways and assigned to the individual networks.
The elementary lattice networks for these bilinear and biquadratic
factors are first and second degree constant resistance lattice struc-
tures, respectively. Therefore, one can realize a complicated rational
transfer impedance function, to within a constant loss, by a combina-
tion of elementary structures in tandem.

Bode! developed the basic first and second degree structures, which
are given in Fig. 2. They cover all the possible pole-zero combina-
tions. Furthermore, he derived the explicit formula for each element
of structures I to VI in terms of the poles and the zeros of the transfer
impedance function. The object of this paper is to extend work in
this area. Explicit formulas are obtained for structures VII and VIII
and for two additional structures (Fig. 7). The structures of Fig. 7
avoid coupled coils. Illustrative examples are given to show the usage
of these formulas. Finally, a general procedure for synthesizing any
physically realizable, rational transfer impedance function by a con-
stant resistance lattice network is inecluded. This procedure is de-
tailed with the aid of a flow chart. The appendix gives a method
of obtaining the physical realizability conditions for one of the struc-

Fig. 1 — General constant resistance lattice network.
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tures as an illustration. Reference 2 supplies the derivations of the
physical realizability conditions of other structures.

I1. DEVELOPMENT OF SECOND DEGREE CONSTANT RESISTANCE LATTICE
STRUCTURE INTO GENERAL FORMULAS

The transfer impedance function exp 4 of the constant resistance
lattice given in Fig. 1 of second degree can be written as the biqua-
dratic factor

E K (s — a)(s — ay) (1)

_ & _
exp 0 = o (s — b)(s — by

where exp # is related to the series branch impedance z, by the ex-
pression

_[exp 8] — 1

= 2 =
z, = [exp 6] & 1 for zz2, =Ry =1 (2)
or
_1+z
exp 6 = - (3)

Hence z, is a biquadratic of the form

_ A+ Ags + A,
== Us + As T 4, @
The solution for A;’s can be expressed in terms of the zeros and the

poles of the transfer impedance function exp 6 by setting (1) and (3)
equal

s' — (@, + a)s + aia,
s — (b, + by)s + bb,

_ (4. + Ags” + (A + Ag)s + (4, + Al)_ (5)
T (As — AYs’ + (Ay — Ads + (4: — 4)

For convenience let

K

a, = a + a, Qy = @10, (6)
and

B = b] + bz y B2 = bnbz . (7)
Then equating coefficients in (5) and solving for Aj’s yields

A, = 3lax(4s + A5 — 32(1‘1& — AJ)] ' (8)
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Ay = Faa(As + As) + Ba(As — 44)] ©)

A; = %[QJ(AB + Aa) - ﬁl(Aﬁ - AE)] (10)

Ay = %[al(Aﬁ + Aa) + .61(443 - Aﬁ)] (11)
As + As

K=a—a (12

Tixpressing exp # on the real frequency axis we have
e -K[(ﬂlaz - ﬂ’z) — (a, + 32)3'."-’]
e (98 = 1,0, — ) — (b b))

where § = & + j8 may be called the transfer loss and phase. From this
the expression for the transfer loss is obtained as

(13)

_ K2[(—£02 + a1a2)2 + (a, + Gz)zwz]
exp (2a) = (= F biby) ™+ (b, + by’ (14)
by letting
k= K* and T = (15)

and from (6) and (7), equation (14) becomes

ke, — 2)° + onz
(8. — 93)2 + Biz
It can be shown that in general the attenuation characteristic of a
lattice for which exp ¢ is a biquadratic funetion exhibits a minimum
at a real frequency.! One can shift this minimum loss to have zero
loss at that particular frequency; thus the transfer impedance ob-
tained will be within a constant loss. By doing this the attenuation
characteristics of all elementary structures will have zero transfer
loss at one frequency wp. Corresponding to wo, exp (2¢) = 1. Thus k
can be determined in terms of the zeros and the poles of the transfer
impedance funetion by (16). If 4 is equated to unity, As is obtained
by (12). With the relationships (8) to (11) one can determine A;'s
in terms of the zeros and the poles of the transfer impedance function.
Hence from (4) and (2) z; and z, can be obtained respectively.

exp (20) = (16)

III. EXPLICIT FORMULAS FOR STRUCTURE VII

The physical realizability conditions and the typical attenuation
characteristic of this structure are given in Fig. 2. Zero attenuation
occurs at a frequency w,; therefore we must choose % such that the
attenuation becomes zero at the same frequency.
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For zero attenuation, exp (2a) must be equal to 1 ; thus from (16)
after rearranging and letting w? = z, we obtain a quadratic in z,

(k — a5 + (kal — 205k + 28, — BDzo + (ke — F) =0 (17)
which can be written compactly as

axy + br, +¢ =0 (18)
where
a=k—1 (19)
b= (on — 2a)k + 28, — 6 (20)
e =ko — 3. (21)

In order that the frequency be real and the attenuation equal to
zero, the solution of (18) must have a double root at x,. This condi-

tion holds only when the discriminant b* — 4ac = 0. First we find
from (18)

—b
= —. 22
To %2 (22)

Secondly we obtain the following quadratic in k

AR* + 2Bk + C =0 (23)
where
A = di(e} — 4ay) (24)
B = (ai — 20,)(28, — BY) + 2(8; + a3) (25)
C = 618 — 46,). (26)

It can be shown that the larger root of (23) must be used to insure
that z, is a positive real function.* Denote this larger real root by
k,,. Thus, from (15) and (23)

.2 [—2B +[2B} — 4A0]*}
km - Km N { 2A max

Hence K, can be obtained quite easily and it is in terms of the zeros
and the poles of exp 4.

27

* Notice that km as well as the discriminant of (23) must be positive and
real because of the physical realizability conditions. By considering all the
possible sign combinafions for 4, B and C, one of the positive roots of Km is
greater than, or equal to, unity.
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By substituting K,, into (12) and letting A¢ = 1 we obtain

K,—1
=% 1
Notice that from (12) and (28), the root K,, must be greater or equal
to unity in order for z, to be positive real functions.

Using (8), (9), (10) and (11) we can determine A,, 4., A3 and A;.
Then multiplying each coefficient by K,, + 1 we get

(28)

A, = 0K, — B (29)
A, = K, + B (30)
A, = 8, — Ko, (31)
A, = —8, — K, (32)
A, =K, — 1 (33)
A, = K, + 1. (34)

Thus the coefficients of z, and K,, are expressed implicitly in terms
of the zeros and the poles of the transfer impedance function exp 6.
Furthermore from (33) and (34), we must have the positive root
K,, > 1 for A;s to be positive.

Before considering the realization of the biquadratic z, in (4) with
its coefficients given from (29) to (34), we will show that z, is a
minimum resistance function.

Rewriting (3) as

1+z _(1+4+R)+ X,

PO = T (1= R) - X, (85)
where
z. = R + jX., (36)
the corresponding magnitude is
(1 +R) + X:
2q) = M) T As
exp( a) (l _ RI)Z _|_ Xf (37)
Since we require that
exp (2¢) = 1 at wy (38)

then R, must equal zero and hence z, must be a minimum resistance
function.
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Now we can determine the element values for structure VII by using
the results given in Chapter 4 of Boghosian and Bedrosian, in that
the element values of a Brune network were expressed explicitly in
terms of the coefficients of a minimum resistance biquadratic im-
pedance function.® Since we have shown that the biquadratic function
in (4) is also minimum resistance, it is a simple matter to express
the element values in terms of the zeros and the poles of exp 8. The
case when the coefficients of z, satisfy the inequality

[4:4,) — [4,4, < 0 (39)

is suitable for structure VII. Thus the Brune network for the series
arm z, of structure VII is shown in Fig. 3, where the equivalent-T
is used instead of the transformer. Since z,z, = 1, we have for the
cross arm of these lattices

L _ At A+ 4,
VA 4 Ass + A,

L [key T [lakmmg)RsJE
Li=-h I:R3 (Km‘”)J Laujoe[ (1—rI:m)C2:'

(40)

o OO DI
L=t
e _
Crwg gR @ Km - fBa
g= —2_m— P2
azKm+
_—aKn+ B, 2Km+ Bz
z ﬂeKm—ﬁzT

O

2 [(ﬂszja*ﬁ;J;' _ [{alazl‘m)e(b‘be)j;

Wy = >
Kt —1 K =1

K [(ay+a2) Km=(b,+b,) ] R, 3

o (1-Km)Cs

B (a;+az) Km+ (by+b;)
a;a;Km-by b;

Cz=

_ @y8; Kpy—byb,
" a,a; Km+b b

Tig. 3 — Series arm z; for structure VII of Fig. 2,
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Fig. 4 — Cross arm z, for structure VII of Fig. 2.

Then z, is given by the network in Fig. 4 where the values of K,,
the zeros and the poles are the same as those given in Fig. 3.

IV. EXPLICIT FORMULAS FOR STRUCTURE VIII

The physical realizability conditions and the typical attenuation
characteristic of this structure are given in Fig. 2. It can be shown
that general formulas in terms of the zeros and the poles of exp 6 for
K, and the A;s are the same as those for structure VII, with the
exception that for structure VIII the coefficients of z, satisfy the fol-
lowing inequality

[A:4,)' — (4,4, > 0 (41)

yielding a positive sign for the reactance jw,L, and a negative sign for
the reactance jwoLs of Fig. 3. Similarly, the cross arm z, of structure
VIII yielding a negative sign for reactance jw,L, and a positive sign for
reactance jwoLg of Fig. 4. Thus the Brune network for the series arm z,
and the cross arm z, of structure VIII is shown in Figs. 5 and 6 re-
spectively.
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|_'|= _LI |_’3='|_3
o OO o 'R

Lo

Cz

T

Fig. 5—Series arm 2, for structure VIII of Fig. 2. (L's, Cs, and R are same
as for Fig. 3.)

V. EQUIVALENT NETWORKS TO STRUCTURES VII AND VIII

To avoid the need for coupled coils in the lattices developed pre-
viously, we can introduce the Bott-Duffin impedance arms in strue-
tures IX and X to obtain equivalent networks to structures VII and
VIII respectively in Fig. 2.* The series and cross arm of structure IX
have the same configuration as the cross and series arm respectively
of structure X. Hence only the series arm of each lattice is shown
in Fig. 7. These new lattice structures necessarily have the same phys-
ical realizability requirements and exhibit the same typical charac-
teristics as sketched in Fig. 2 for structures VII and VIII. The
element values for the general case of these lattice networks without
mutual inductance are given in Table I,

VI. EXAMPLE

We now illustrate by an example the methods we have developed
to obtain realization of constant resistance lattice networks. Let us
find such a realization given the transfer impedance function

K(s* + 2.268s" + 6.517s* + 3.302s + 4.905)
s* + 25 4+ 4.778¢" + 5.556s + 5.556

In order to represent the given function as tandem lattices, we ob-

exp 0 = (42)

Ug=-Ly 5= -Le

=2 T

Fig. 6 — Cross arm z, for structure VIII of Fig. 2. (L's, Cs and R: are same
as for Fig. 4.)
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TasLE I(a)—ELEMENT VALUES FOR STRUCTURE IX

Z, Z,
RiR 1
L. = ally =L
2 C] : C’]
M ,
Ls = {K, T B K. + DI C} = L,
_ M
T (@K, + bb)* (K. + D]
_ BB, , 1
G = Ly L; = C,
_ K, — B _ a,0.K,, — bb; ,
Rq B (!21(,,, + |82 - ala’2Km + b1b2 Ca - L3
[(Km - 1)3({12Km - ﬁz)]k 1
= R' =
L M )
(K. — D*aaK, — bibo)]}
B M
R,R, 1
= = L’ = —
C, L. ‘=
R, = ¢l = L,
)32)31_1{111) ,_l
R4 - Rd

K
€ = [(m—mwm4wJ
- (et

bmm+w—mw+mF
[— (b b — Kolas + a](Kn + 1)

where
M = (8 — Kna)[(:Kn + B)(Kn + 1)
— (8 + Kna)(@Kn — 8)(Kn — DI
= [(by + b.) — K.(a, + a:)][(@1a.K,. + b,b:)(K, + np
— (b, + b)) + K.(a, + a)][(@,@.K,, — bb)(K.. — D]
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TagLE I(b)—ELEMENT VALUES FOR STRUCTURE X

Z, Z,
I { (K — D(8) — Kunet) }* L -
? (asz + .82)(_131 - Kmal) 2 !
_ { (K, — Db, + b) — Kn(a + a5)] }*
(alasz + b1b2)[—(bl + b2) - Km(al + az)]

L!

C; = R}ZE La = C’g
3ivbg

1

L} = RIRIC! C, ==

3 3ibg4s g 3 La

. M _ 1
Cs = llak, — B (K — 1T Ra = g7

_ M
T (@K, — bib) (K. — D)

, C!z.K-m — ,Bz _ alazK,,. - b]bg .
ks = K, + B, h a’lla2Krn + b,b, L ¢
Li = RIRICS ¢ =1

[(.K,,. + 1)3(5\52Km + 32)]% R 1

o ), = —

C o =
_ (K., + 1)(@a.K, + blb_ﬂ;)]_i
M

, K.—1 _ 1
Ri=K. ¥1 C=1

where

M = B, — Kna)[(@K, + 8)(E. + DI}
— B + Kna)(@K, — B)(K. — D]}
= [(by + b)) — Kula, + a)][(0:0.K,, + b0 )(K. + D]
— [(bs + b2) + Knlas + ))[(0,0:K,. — bibo)(K, — DT
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tain a partial product expansion of exp 6 wherein the factors are
bilinear or biquadratic forms. In the present example, we find

s+ 25+ 5)(32 + 0.268s + 0.981)
exp 6 = K(sz + 25 + 2 & + 2.778 (43)

or

[ (st 25+ 5)][ (32 + 0.268s + 0.981)]
ep 9 [Kl(sz +os+ 2/ L5\ w2 44)

where K or K;K, are constant multipliers to allow for any corre-
sponding net increase in loss required by the overall network.
Each biquadratic factor must be physically realizable if it is to be
synthesized using one of the basic structures. For the first factor we
get the following zeros for the polynomials

a=—-14+72, a=-1-32,

(45)
b= —-1+414, b, = —1 —j.
From these a’s and b’s we determine
a = —2, a;, = 5,
ﬁl = _2; ﬂE = 2; (46)

a; +a; = —6, bi+ b =0.

Substituting into the physical realizability conditions of structures
VII and IX, we find that these conditions are satisfied. The second
factor in (44) has the following values

a, = —0.268, a, = 0.981,

B =0, B, = 2.778, (47)
1 1 1 1
p + Z = —1.964, b? + b= —0.72.

With these values the second factor satisfies the requirements for
structures VIII and X. Hence, the given transfer function (42) can
be represented by two second degree lattices in tandem with or without
mutual coupled coils.

Using (27), K; and K, of (44) become

K, = K,, = 1.2895, (48)
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K, = K,, = 7.035, (49)
and the constant multiplier K is

K = K,K, = 9.0716. (50)

Thus by substituting (46) and (48) into the explicit formulas for
structures VII and IX, and substituting (47) and (49) into the explicit
formulas for struetures VIII and X, the element values for each
corresponding structure can be obtained. These element values are
summarized in Tables II, III, IV and V. It should be apparent that
another realization may be obtained for (42) by interchanging the
numerators of the two biquadratic factors given in (43). Then the
counterparts would have to be re-examined to see which basic struc-
ture would be realizable.

VII. GENERAL SYNTHESIS PROCEDURE

The flow chart shown in Fig. 8 is a guide for the general synthesis
procedure of any physical realizable, rational transfer impedance
funetion exp 6. This flow chart can be summarized as follows:

(7) Factor the given transfer impedance function into first and
second degree functions with both members of any conjugate complex
pair of zeros and poles retained in each given partial product.

(4%) Synthesize all first degree functions by structure IIT or IV
according to their physical realizability conditions.

(#7) Examine the poles and zeros of these second degree functions to
see whether they are real or complex; then use the appropriate group of
structures indicated. If the poles and zeros are real, factor the second
degree function into first degree functions.

(7v) Examine the physical realizability conditions further to de-
termine to which sub-group of structures the function belongs.

TaBLE II—ELEMENT VALUES oF STRUCTURES VII FoR (43)

z: (series arm) zy (eross arm)
Ly = —0.0658 L,= 2.0178
L, = 0.1290 Ls = 1.9379
C. = 1.0296 Cs = 0.0685
Ly = 0.1344 Lg = —0.9876

1.8994

R

0.5265 | Ry




654 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1969

TaBLE III—ELEMENT VALUES oF STRUCTURE IX roR (43)
(EQuivALENT TO STRUCTURE VII)

Z: (series arm) zy (cross arm)
Cy = 0.4956 L; = 0.2084 €)' = 0.1342 Cy' = 0.2084
I. = 0.1342 R, = 0.1264 L,y = 2,0178 R/ = 7.9113
Ry = 0.5265 Ly = 0.0424 Ry = 1.8994 Ly = 3.1319
C; = 1.5695 Cy = 0.3193 Ly = 0.6371 C)/ = 0.0424

(v) Connect the synthesized elementary structures in tandem.
(vz) Raise the impedance level to the desired R, .

The realizability conditions of structures VII and IX are the same
and also those for structure VIII and X. If one wishes to avoid hav-
ing coupled coils, he should use structures IX and X. Since strue-
tures IX and X are generally more complex, one may elect to use
the structures VII and VIII to save on the number of elements in
the final network.

VIII. CONCLUSION

In the field of classical network theory, Bode developed explicit
formulas in terms of the poles and zeros of the transfer impedance
funetion for synthesizing constant resistance lattice structures of the
types I, II, III, IV, V, and VI. This paper has shown the detailed
development and derivations of explicit formulas in terms of the poles
and zeros of the transfer impedance function for synthesizing types
VII and VIII, with coupled coils by Brune Method, and for types
IX and X which are new types of structures that may be used to
avoid having coupled coils by Bott-Duffin Procedure. With the addi-
tion of these results, a general method for synthesizing any physically
realizable, rational transfer impedance function with explicit for-
mulas is complete. The explicit formulas method developed in this

TasLE IV—ELEMENT VALUES oF STRUCTURE VIII For (43)

z: (series arm) 2y (cross arm)
L' = 0.7896 Ly = —1.3958
L, = 2.4106 Ly = 5.6767
C. = 0.4572 Cs = 0.1948
Ly = —0.5949 Ly = 1.8564
R, = 0.4266 R, = 2.3475
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TaBLE V—ELEMENT VALUES OF STRUCTURE X FOR (43)
(EquivaLeENT To StrUCTURE VIIT)

Zz (series arm) zy (cross arm)
C\ = 2.4677 Cy' = 1.2658 C, = 1.2665 C; = 1.1481
L, = 0.7896 Ry = 0.7511 Ly = 2.4677 Ly = 2.7222
Ry = 0.4260 C) = 2.7222 Ry = 2.3470 C, = 2.4691
Ly = 0.8710 Ly = 0.4050 L; = 1.2658 R, = 1.3314

paper gives more rapid results and introduces fewer round-off errors
than the step-by-step procedures used in the past.
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APPENDIX

Derivation of Physical Realizability Conditions

We now develop the physical realizability conditions for second degree
lattices in terms of the poles and the zeros of exp #. We shall find that
the requirement for non-negative loss at real frequencies for such two-
ports leads to both a product and a summation condition on the poles
and zeros of the transfer impedance funetion. This analysis is carried
out in terms of an example utilizing structures VII and IX. These
structures exhibit zero loss at a finite frequency w, (see Figs. 2 and 7).
To evaluate the constant multiplier for these structures we set
exp (2a) = 1 at w, , and let 2, = «} . Then from (16), k becomes

I o= (52 —- 350)2 + ﬂfﬂ:o

(a — T0)* + aizo

(51)

where o's and f8’s are given by (6) and (7) respectively.
Substituting (51) back into (16) and applying the non-negative loss
condition, that is, exp (2e) = 1 for all frequencies we have

[(m — )’ + ﬁ?xu][(az — 2’ + afa:} - (52)
(r — T0)° + aizo L (B — 2)° + Biz) = -
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We shall obtain one of the realizability conditions by letting the
frequency approach infinity. The result is the expression

B — 1‘0)2 + ﬁfl'o = (o — Io)g + a'fxn . (53)
Expanding this expression and substituting for «'s and B’s from
(6) and (7), we obtain

(bibo)* + (b7 + bo)xo = (a,a)” + (ai + ad)z, . (54)

For
| a,a, l = | b,b, I (55)

then
(a1a2)2 = (blbﬂ)Z- (56)

Thus (56) can be rewritten as

(ﬂ102)2 = (blbz)z + € (57)
where ¢ is a positive quantity. Substituting (57) into (54) we get
(bnbz)z + (b? + bg)xu = (b1b2)2 + e+ (a? + ﬂi)xu . (58)

Simplifying and dividing both sides by x, yields

bi+ bzl +at+ (59)
0

Since ¢ and x, are positive quantities their ratio may be deleted
without altering the inequality of (59). Thus we have shown that the
realizability requirements for second degree structures VII and IX
are given by the pair of expressions

b + b: = df + a; (60)
and

| blbgl.

| aya. |

v
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