Convolutional Reed-Solomon Codes

By P. M. EBERT and S. Y. TONG
(Manuseript received July 28, 1968)

We derive a mew family of convolutional character-error-correcting
codes which are a convolutional form of the Reed-Solomon block codes and
as such have nonbinary symbols. We also derive a bound on the error cor-
recting capabilities of these codes in which the error-correcting capability
per constraint length grows approximately with the square root of the
constraint length.

When these codes are used on a binary channel they are effective for both
random and burst error correction because a single character spans several
channel digits.

These codes have greater error-correcting capabililies than the Robinson-
Bernstein self-orthogonal codes bul are harder to decode. The single-
character-error-correcting codes, when interleaved, are shown to be more
powerful than the equivalent Hagelbarger code and appear to be simpler to
implement. They are also slightly better than the interleaved version of
Berlekamp’s code.

We discuss encoding and decoding algorithms and illustrate a simple
decoding algorithm for some of the codes. These codes are closely related
to the Bose-Chaudhuri—Hocquenghem block codes and share with them the
decoding simplification for character erasures in place of errors. Any
Bose-Chaudhuri-Hocquenghem decoding algorithm can be used to decode
these codes.

I. INTRODUCTION

This paper is concerned with a family of character error correcting
convolutional codes which are derived from Reed-Solomon block
codes. The derivation of the error correcting capabilities is easy be-
cause of the algebraic nature of the code; the convolutional nature of
the code allows the use of a simple encoder even at high rates. Also,
sequential decoding techniques might be applicable.

Throughout the paper we use elements of a finite field as symbols

729

730 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1969

instead of just 1 and 0. The elements can be represented by k-tuples
of ones and zeros if the field has 2" elements; these k tuples are called
symbols or characters. Thus with this code we are able to correct
character errors which may be bursts of binary errors. All that one
need know about finite fields is that each nonzero element has an in-
verse and that there exists at least one element which when taken to
successive powers will generate the entire field with the exception of
the zero element. This is called a primitive element.

The capability of the codes is given by the number of errors that
can be corrected within a fixed number of characters (the constraint
length). Suppose a code can correct three errors within a constraint
length of 12. Then the code can correct any pattern of errors as long
as no sequence of 12 characters has more than three errors in it. In
the context of error correcting ability one can define a minimum dis-
tance of the code. For linear codes the minimum distance (d), is
equal to the minimum weight code word segment, one constraint
length long, which has a nonzero first character. With this definition
the code can correct up to (d-1)/2 errors occurring within one con-
straint length.

The rate of a code, R, is the fraction of characters used as informa-
tion symbols.

A convolutional code has its check symbols formed as a convolu-
tion or weighted sum of a fixed number of the past information sym-
bols. The weighted sum is formed in the algebra of the finite field.

The codes deseribed in Section II are capable of correcting ¢ char-
acter errors within a constraint length of (2¢* — ¢t + 1)/(1 — R)
channel characters. The channel characters must be elements of a
finite field of size at least [R(2t — 1) (¢ — 1) + 1]/(1 — R). If
one uses as channel symbols elements of a much larger field it is pos-
sible to construct a code which will correct ¢ errors with a constraint
length of only 2¢/(1 — R). Those codes can be encoded by a stand-
ard convolutional encoder or by a number of accumulators which can
also perform multiplication. Decoding can be accomplished by a
modified Bose-Chaudhuri-Hocquenghem decoder.

II. CONSTRUCTION OF THE CODES

For a code of rate B = (b — 1)/b one can use every bth symbol as a
check symbol. To define the code completely one need only give the
weights used in the convolution of past channel symbols. For con-
venience we put these weightsin an N by b = 1/(1— R) matrix, B. B, ;=

CONVOLUTIONAL CODES 731

Wi_1+s; (The constraint length is Nb.) If z; is a check symbol we write

bN-1

fl:i:—zxi-kﬂrk: t=10,2b, -
k=1
or
bN=1
E T Wy = 0, W, = L. (1)
k=0

Following Wyner and Ash we take the N by b matrix called B and form
it into an infinite A matrix by shifting B to the right b places and

down one place:*
00 00
B[}00
B .
A= OOL]iBi| :
00 00 .

Then by (1) any code sequence written as a vector x will satisfy
Ax = 0. (2)

We define the code by defining the elements of the matrix B. B is used
instead of the weights W, because the notation is clearer. Denote the
elements of B by B,; . Then let B,; = 8,y'"! where the b v,’s are o’,

a', -+, "% 0. The symbol « is a primitive element of the field, and
0° is taken as 1. The v,s are called locators. Let: 8; = """ @71,
where

- . .
W5, _0=0G=2)
v = Zﬂ i= 5
Thus for any b, N, and finite field a code is defined.
As an example we take the special case which was presented by
Wyner, where N = 2 and the B;; are given by?®

B. = a(i—l}(i—l) ?:¢ b
Y O(i—l) i=15
B=[1 I | 1} @)
1 a & -+ &7 0

This code has d = 3 and thus can correct single errors, or double
erasures in a constraint length of 2b. It has the additional advantages

732 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1969

that it can be easily implemented, it is optimal,* and it has no error
propagation. We deseribe, in Sections III through V, the implementa-
tion and some properties of the single-character-correcting codes.

III. DECODING TECHNIQUE FOR SINGLE CHARACTER CORRECTING CODES

Single errors are particularly easy to correct because the first
syndrome (difference between the calculated check character and the
received check character) is equal to the error, and the second syn-
drome is equal to the error multiplied by the error location. Since
we take

_ -1 .
Yi T a o, i1#b (4)
’Y:'=01 'i=b

the error location 7 can be found by dividing the second syndrome S,
by « and comparing the result to the first syndrome, S,. This is
repeated until they agree. The division can be implemented by a
shift register whose feedback path corresponds to the coefficients of
g(x) the generator polynominal of «, the primitive element.*

1V. HARDWARE IMPLEMENTATION FOR SINGLE CHARACTER CORRECTING CODE

The implementation is deseribed through the example: symbols in
GF(2¥) k = 2, b = 4. The elements of GF(4) are represented as
binary 2-tuples. Since ¥* + = + 1 is a primitive polynomial in GF(2),
division by « can be instrumented by a two-state shift register with
appropriate taps. The decoder takes form of Fig. 1. The entire re-
ceived vector is shifted into the data buffer and then the syndromes
S, and S; are computed and stored in two registers Ry and RE,, respec-
tively. S, identifies the error pattern. If S, is nonzero, it is assumed
that a single character error of the pattern shown occurred. For each
character shifted out of data buffer the Ry register is shifted once
with the feedback path connected (which corresponds to a division
by a). The error pattern S, in Ro matches that contained in register
R, when the erroneous character just emerges out of the data buffer.
This character need only have S, subtracted from it to complete cor-
rection. Tt is possible to do all of this with simple logic circuitry and
a storage of 2bk bits.

*No other code, of the same constraint length, which corrects single errors,
can have a higher rate (that is, fewer check symbols).

CONVOLUTIONAL CODES 733

DATA
FROM
CHANNEL

Tig. 1 — Decoder for single error correcting code. Gb and G: are timing signals:
@, is high during the time information characters appear; Gh is high when parity
character appears.

V. PROPERTIES OF THE SINGLE CHARACTER CORRECTING CODE

Observe that for every b character one must decide, based on the
current syndromes of 2k bits, the error pattern and the location of
the error. Since there are b possible error locations one needs at least
[logsb] = k bits for identification if 25 < b, and as there are 2* error
patterns in a character (including the no-error pattern) that ealls for
k bits of information; thus the lower bound on the number of syn-
drome bits is 2k which shows the code is optimal* when b > 2%,

Notice that since the syndrome is reset to zero after correction (cor-
responding to the removal of the effect of the error on syndrome) no
error propagation is possible.

Interleaving can be applied to this class of codes to achieve a class of
near-optimal burst-error correcting codes. If the interleaving degree is

* It is optimal in the number of check symbols.

734 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1969

m then two adjacent characters in the original code are separated by
m — 1 characters or I = k(m — 1) binary digits. A burst of length L
+ 1 bits will never affect two adjacent characters of the original codes;
hence the interleaved code is capable of correcting an L + 1 bit burst.
Since the original code has a storage requirement of 2bk bits, the in-
terleaved code requires, at most, 2kbm bits. Observe that to correct a
particular character one need not store the last character of the other
m — 1 interleaved codes; therefore the storage requirement is 2 bkm
— (m — 1)k =2bk(1 + L/k) — L.

The required guard space is simply one less than the constraint
length.* This can be seen by observing that in correcting a burst the
syndrome must be set to zero when the last character in the burst is
corrected. It follows that the guard space must always be shorter
than the constraint length. Table I compares some members of this
class of codes with some Hagelbarger burst-error-correcting recur-
rent codes as well as the Berlekamp burst-error-correcting recurrent
codes (assuming Massey’s decoding algorithm).** Table I shows this
class of codes requires less guard space and hence is more powerful.

TasLe I—ComrarisoN oF BursT CoRRECTING CODES

Decoder cost® Guard space

Rate Burst A B C A B C
R=1/2 20 44 — 61 61 — 60
19 — 60 58 -_ 61 57

R =2/3 21 132 — 112 170 — 111
22 — 120 _— —_ 122 —

R =3/4 20 183 _— — 223 — —
21 — 168 156 —_ 171 155

R =4/5 20 326 — —_ 384 — —_
21 —_ 225 — —_ 229 _—

22 —_ — 219 —_ -_— 218

* More precisely, the number of shift registers.
Note: A — Hagelbarger codes. .
B - Berlekamp’s type B2 burst-error correcting codes modified by inter-
leaving,
C - Single-character correcting codes modified by interleaving.

Although the number of shift register stages is not an accurate meas-
ure of decoder cost, it is seen that, except for the rate of 14, Hagel-
barger’s codes generally cost more, especially at higer rates. Although

*Tn our case the constraint length is equal to the storage requirement.

CONVOLUTIONAL CODES 735

the interleaved single character correcting codes are slightly better
than Berlekamp’s code for correcting type B1 bursts, they are both the
same (and optimal) for type B2 burst correction.?

VI. GENERALIZATION

In order to demonstrate the minimum distance of codes with a
longer constraint length we rely on the following lemma.

Lemma: If the code with N = N, = 1 has a minimum distance of at
least d, , then the code with Ny = N, + d, — 1 has a mintmum distance of
at least d, + 1.

The proof of this lemma depends on showing that no code word with
d, or less nonzero elements can satisfy Ax = 0, which is equivalent to
showing that any d, columns of A form a matrix of rank at least d,
and thus equation (2) can be satisfied only by x = 0 among all x with
weight d, or less.

Proof: By the assumption that the code with N = N, has minimum
distance d, , there must be at least d, nonzero elements in the first N,b
symbols of x. Assume that there are just d, and no more, as well as no
additional nonzero symbols in the rest of the constraint length N, .
We write x’ as a d, dimensional vector consisting of only the nonzero
elements of x. Accordingly A’x’ = 0, where A’ is a N, by d, matrix with
columns corresponding to the elements of x’. We must choose d, rows of
A’ which have a nonzero determinant. Assume for the moment that
none of error locations are zero. We then choose the bottom d, of A’.
We have a d, by d, array of nonzero elements. Each of the matrix
element is guaranteed to be nonzero by the fact that all the nonzero
elements of x lie within the first N,b elements and consequently A’ can
only have no zeros in the d,th or lower rows.

We now take the d, by d, array and divide each column by the first
element. The first row is now all 1’s and the kth row is

B.(J + k- 1) — ﬁ,‘+k~1'¥_i'”_2
Ba‘i 3;‘?:‘_‘

— (ai(b—ll'yi)k-lal(k-ﬂ(k-»i)(b—l)/il. (5)

We next divide each row by af (1) (=4 (--1)721 thyus obtaining a Van-
der-Monde matrix. The determinant of the matrix eannot be zero since
the quantity

a:‘(b—ll,y‘_ (6)

736 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1969

is unique for each column. If g of the locators are zero, we choose the
bottom d;, — g rows and those ¢ rows which correspond to the 1’s in the
q zero locator columns. This determinant is nonzero by the same logie.
Consequently, the equation A'x’ = 0, can only be satisfied by x’ = 0,
which contradicts our assumption. Therefore, the assumption is untrue
and the minimum weight code word which satisfies (2) must have
weight d;, + 1 or larger, therefore providing the lemma.

We now prove the general result by induction. When N = 1 the
matrix 1 obviously has rank 1 and thus the minimum distance is 2.
To obtain a minimum distance of 3 we need to add 2 — 1 = 1 to b,
thus N = 2. Each time we increase the minimum distance by 1 we
increase N by d — 1, thus

d—2

N=1+ Z i= (i__mz(‘j__._!) +1
i=1

9N — 4 = d(d — 3) for any value of d = 2. Since this is a lower bound

on d we can be assured that for any d = 2 we can build a code with

2N — 4 = d(d — 3).

The field must be of sufficiently large size so that all the “locators”
of (6) be different. This can be done if the field has at least (b — 1)
[(d = 2) (d — 3) + 2]/2 nonzero elements. Thus for example we
could build a code which corrects two errors (d = 5), has a rate of
84 (b = 4) with a 16 element alphabet. The constraint length would
be Nb = 7 X 4 = 28. This eould be implemented by using 4-tuples as
symbols with an overall constraint of 112 binary digits.

VII. ALTERNATIVE CODE

It is also possible to obtain a minimum distance of N + 1 if one uses
only a certain set of symbols as locators. In the previous section one
needed a field with at least (b — 1) [(d — 2) (d — 3) + 2]/2 nonzero
symbols. In this section we show that N can be made equal to (d — 1)
if one is willing to use symbols from a much larger field. For this pur-

pose we define B by:
[1 1 .. 1
1 2 b
[51 Y T Yo

By Bva - B

_,B’(N)O.’Ilv-l I - ﬂv(mal;'—l

CONVOLUTIONAL CODES 737

)

i-2 s s

i=1 “
where y; is the locator and B will be defined later. As in Section VI
we wish to show that

Ax = 0 (7)

only if x has d or more nonzero elements, given that there is at least
one nonzero element among the first b. Suppose there exists a code word
x with weight d — 1 or less such that (7) is met. Then take the N by
d — 1 matrix consisting of the d — 1 columns of A corresponding to the
nonzero components of x, and call it A’. The determinant of A" is a
polynomial in 8, where the lowest power of 8 is no lower than that found
along the main diagonal. This comes about because the right-hand
columns are shifted down and thus contribute least to the power of 8
in the bottom rows. The highest power of 8 is shown in the appendix to
differ from the lowest power by no more than:

Sl

If we call the difference between the highest and lowest power of g, r,
then the determinant can only be zero when g is a root of an rth order or
smaller polynomial with coefficients from the field containing the v,’s.
Consequently we can choose 8 from an r 4+ 1 order extension field such
that it is a root of an irreducible r 4+ 1 order polynomial. Then it cannot
be the root of a polynomial of degree r or less, and the determinant
cannot be zero. Consequently x = 0 for (7) to be met.

We have now defined « as a member of the field with ¢g"** elements
where G'F'(g) is the locator field. In other words our symbols are
taken from a g"** element field and the locators «; are confined to the
g element subfield. For example, suppose we require a double-error-
correcting code (N = 4) with a rate 34. We use the four element field
as locators, and since » + 1 = 4 the symbols must come from a 4* =
256 element field. This results in an overall constraint length of
8 X 4 x 4 = 128 bits.

VIII. IMPLEMENTATION

The encoding can be accomplished by the standard convelutional
encoder. The decoding presents the same problems as the decoding of

* [+] is the symbol for the integer part of -.

738 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1969

a nonbinary Bose-Chaudhuri-Hocquenghem code. One takes increas-
ing estimates of the number of errors within a constraint length and
solves for the error locations and values. If the estimate is incorrect
there is no consistent solution for the error values. The problem of
error propagation can be easily handled by introducing a second set
of syndrome calculators which are not changed when errors are cor-
rected. A guard space equal to the constraint length, with no errors,
will then produce zeros in all these syndromes, indicating that there
have been no errors in the last constraint length.

In both coding and decoding, symbols must be added and multi-
plied. This is easy to implement when the symbols are represented as
binary k tuples. Addition is just bit by bit modulo two addition;
multiplication by « (the primitive element) is accomplished by a
linear shift register.*

IX. CONCLUSIONS

We have presented a class of algebraic convolutional codes. These
codes can be compared to other convolutional codes, such as Robinson
and Bernstein’s self-orthogonal codes.® The Robinson-Bernstein codes
are binary error correcting codes which have a constraint length bounded
hy N = [(2£* — #)(b — 1) + 1]b. Our codes have a constraint length
bounded by N < (2 — ¢ + 1)b, which is less than the above for
b = 2. Ignoring the fact that our code is a character error correcting
code, our code is more powerful than the Robinson-Bernstein code.

If one takes account of the fact that characters are several bits long,
one can still make a comparison by taking the constraint length of our
code as

N =@ —t+ Db({ nal(® — D@ — 3¢+ 1) + b} + 1),
[-] integer of.

One now finds that our code is more powerful than the Robinson—
Bernstein code for sufficiently large b. More specifically, if ¢* < 2"/16b
our code is more powerful. The Robinson-Bernstein codes have the
advantage that they can be decoded by majority logic devices while we
require much more complex devices.

The codes described in this section may be useful when one desires
a high rate code. Here the amount of storage needed at the encoder
can be made equal to the redundancy per constraint length. The
decoder must store the entire constraint length in order to make cor-

CONVOLUTIONAL CODES 739

rections but the part of storage needed to compute the error locations
and values is only equal to the redundancy. The disadvantage is that
the decoder must perform finite field multiplication, division, and
addition.

The code is also capable of correcting erasures; decoding is much
simpler in this case. Therefore it may be advantageous to let the
k tuples (which represent symbols) be code words in a binary sub-
code. The subcode then could be used to detect binary errors (produc-
ing an erasure), and the convolutional code used to correct these
erasures. This is a convolutional version of Forney’s concatenated
block codes.”

The decoding algorithm is also simple for any code of distance four
or less. This includes the single-error correcting code, the double-
erasure correcting code, and the single-error-plus-single-erasure code.
The decoding complexity is comparable to that of Hamming codes.

APPENDIX

Bound on the Powers of 8

We wish to bound the difference between the maximum and minimum
power of 8 in the determinant of A’. The matrix will be made up of
columns taken from B or columns from B shifted downward. This
shifting downward of columns is the only parameter which effects our
bound. Therefore we take Z; as the amount that the 7th column is
shifted; the 7th column is headed by Z; zeros. By ordering we make Z; a
nondecreasing function of 7. We can assume that Z; < 7; otherwise this
would put a zero on the main diagonal and produce a zero determinant.
One could then take the largest nonsingular upper left minor A” and
write A”X" = 0. The only difference here is that A" has smaller size;
but the bound will still be valid.

The determinant of the matrix is given by

N
E I_Il b:’.w(l’) (8)
where ¢ is a permutation of the numbers 1 to N. The term b, ., is
zero if o(?) =< Z, ; otherwise it contains 8 to the {[¢(z) — Z;, — 2]
-[e(?) — Z; — 1]} /2 power. For any given ¢ the product of (8) contains
8 to the

12 [ol) — 20 — 2[o(i) — Zi — 1] ©)

i=1

740 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1969

power, provided that for all ¢ «(?) > Z;. Equation (9) can be re-

written
N

} 2 d'6) — 30() — 20)Z: + (Z: + 2)(Z: + 1). (10)

i=1

The only term which depends on o is

-2 o@)Z; . (11)

i=1

The minimum power of 8 in (8) is given by (10) when we minimize
(11). Since Z; is nondecreasing the term which minimizes (11) is
clearly o(7) = 4. Furthermore, the only other terms of (8) which con-
tribute to this lowest power of 8 come from o's which permute the 's
over regions where Z; is constant.

The difference between the maximum power of g and the minimum
power is

N N

D= Y iZ;,— Min 2 «@)Z

i=1 g,0(i)>Zi i=1

Max i [Z — o(@)Z; = ZN: (T — omin(D]Z: . (12)

a,0(i)>2Zi i=1 i=1

The minimization in (12) is accomplished by assigning the smallest 1
to the largest Z;, subject to the constraint that o (i) > Z. This can be
done by starting with Zy and assigning the smallest possible integer
to o(N), namely Zy + 1. The term Zy then receives the next small-
est integer which is still free, and so on. This is the minimum as any
other acceptable o can be converted into this omi by a sequence of
pairwise permutations which do not increase the sum. In Fig. 2 we
show an example of the assignment on a square array where the 0's
indicate the ¢ which minimizes the sum and the z’s that which maxi-
mize it [¢(7) = i]. The 0’s in Fig. 2 are not exactly as described above
but are permuted somewhat above equal value Z;'s for reasons which
will be clarified in this appendix.

We now show that we can increase various Z,’s to Z!’s so that A} =
Z!,, — Z! = 1 (in Fig. 2 we increase Z, , Z; and Zs) and D will not de-
crease. When we change the Z, , oin(2) does not change. When A; = 1,
our construction of omia (%) gives omin(t) = Zin < © + 1;thus oun(i) =4,
and 4 — omia(d) = 0. Once we have the new 2/ with Z{,, — Z{ = 1 we
write D' = D in terms of a sequence

A = Ziyy — 2} = {2-
1

CONVOLUTIONAL CODES 741

10 o] X
9| o X

8 [} X

7 X o
6 X [}

5 X o Z
a X o

3 X o z Z Fd

2 X o

1] x o

ol Z 4 Z

L

Fig. 2 — Bounds on the minimum and maximum powers of g in the determinant
of A.

Since

i—1
= 2 A,
i=1

then

<
Il
Mz

[i — a@]Z = Z i — @) E Al

i=1

=

i=

=

V—1

2 4] E [t — o(3)]

i=1 i=j+1

_ 'i A;[(N - ﬂ(f\;-i-j-i- L _ > U@]. (13)

We observe that our choice of o (2) gives

S-S oo Yi* g,

=i+l i=Zi+2

when A} =1,
and (13) becomes
N=1
2 AN —)G — 1 —Z).
i=1

Tor each value of Z,(0, 1, 2, ---) there can be only one nonzero A} ; if

742 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1969

one takes K to be the number of nonzero A/, then

~ ch— WG — 1 — k),

where f, is that value of j for which Z; = k and A} = 1. We now show
that

SO -G —1-B S 2 N = - 1.

i=fo

The terms on the right are all nonnegative and for every k& on the left
there is an 7 on the right with 7 = f, . For that term f, =< f, + &, as f,
cannot increase faster than k.

fi—1—k
(N = f)(fi =1 — K

SN =) -1 =0 —1

i=fo

IA

fO - 1:
(N — f)(fo — D).

IIA

The integer value of f, which maximizes this is

fo = [é—v] + 1, [-] = integer part of-

RIS -) w

This bound on D can actually be achieved for any N.

and

REFERENCES

. Reed, 1. S., and Solomon, G., “Polynomial Codes over Certain Finite Fields,”
J.Soc. Ind. Appl. Math., 8, No. 2 (June 1960), pp. 300-304.

. Wyner, A., and Ash, R., Atl‘llySlS of Recurrent Codes,” IEEE Trans. on
Inform. Theory, 9, No. 3 (July 1963), pp. 143-160.

. Wyner, A., “Some Results on Burst-Correcting Recurrent Codes,” IEEE
Conv. Rece., Part 4 (1963), 139-152.

. Peterson, W., Error Correctmg Codes, Cambridge: M.I.T. Press, 1961.

. Hagelbarger, D. W., “Recurrent Codes; Easily Mechanized Burst-Correcting
Codes,” BS.T.J., 88, No. 4 (July 1959}, pp. 969-984.

. Berlel\amp, E. R., “Note on Recurrent Codes,” IEEE Trans. on Inform.
Theory, 10, No. 3 (July 1964), p. 257.

. Massey, J L. “Implementation of Burst-Correcting Convolutional Codes,”
IEEE Trans. on Inform. Theory, 11, No. 3 (July 1965), pp. 416-422.

. Robinson, J. P. and Bernstein, A. J,, “A Class of Binary Recurrent Codes
with Limited Error Propagation,” IEEE Trans. on Inform. Theory, 13,
No. 1 (January 1967), pp. 106-113.

9. Forney, G. D., Concatenated Codes, Cambridge: M.I.T. Press, 1966.

o =T & Ot W N e

