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In this paper we derive upper and lower bounds of the spectrum of a
sinusoidal carrier phase modulated by gaussian noise having a rectangular
power spectrum. It has been found in practice that such a random process
adequately simulates for some purposes, a frequency division multiplex
signal, a composite speech signal, and so on. We show that these upper and
lower bounds of the spectrum are very close to each other if the root mean
square phase deviation of the carrier is even moderately high. Also, a simple
method called the saddle-point method can be used at all frequencies f to
estimate the spectrum with less than ten percent error. We also show that
the results obtained from the quasistatic approzimation, often used in
such cases, are too small for large f, and that this low-frequency approxi-
mation cannot be used in cases where the behavior on the tails is
of importance.

I. INTRODUCTION

It has been found in practice that a bandlimited random gaussian
noise having a rectangular power spectrum adequately simulates for
some purposes a wideband composite speech signal, a frequency divi-
sion multiplex baseband signal consisting of a group of single side-
band carrier telephone channels, and so on.* In the design of commu-
nication systems, the spectral characteristics of a sinusoidal carrier
phase modulated by such a baseband signal are of great interest;
various methods have been used in recent years to estimate this
spectrum for large and small values of mean square phase deviation
of the wave, both close to and far from the carrier frequency (that is,
in the principal part of the spectrum and far down on the tails of the
spectrum respectively).—®

It has been shown that the spectrum may be expanded as an
infinite series of weighted convolution terms.*®"® This series may
be used to estimate the principal part of the spectrum (close to the
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carrier) for small or moderate index (that is, small or moderate values
of rms phase deviation). However, for large index, or far down on
the tails for small index, too many terms would have to be included
if this series is to be used directly.

The simplest analysis—often called the quasistatic approxima-
tion—yields a gaussian spectrum for large-index angle-modulated
waves™ +8 in most cases.* This approximation fails far out on the
tails of the spectrum; a careful investigation has been given in only
a few cases.” We obtain below upper and lower bounds for the spec-
trum of an angle-modulated wave with white, band-limited phase
modulation; far out on the tails the spectrum far exceeds that pre-
dicted by the quasistatic approximation.

This problem is of interest in considering interference between
two (or more) phase modulation (PM) systems in neighboring loca-
tions. Consider the following situation. In the frequency bands above
10 GHz, where the signal attenuation due to rain storms could be very
severe, close spacings of the repeaters are almost mandatory for
reliable communication from point to point.? In such cases the prob-
lem of interference between neighboring systems may be much more
important than the problem of noise; the system may thus be in-
terference limited. In order to combat this interference it is very
likely that broadband modulation techniques like PM [or frequency
modulation (FM)] or pulse code modulation (PCM) will have to be
used. In order to investigate the effect of this interference between two
co-channel PM (or FM) waves it is necessary to evaluate the spec-
trum of a PM wave, so that the parameters (such as rms phase
deviations) of the two PM systems can be properly chosen to keep
the interchannel interference below a certain desired level.

We first obtain an expression for the covariance function of the
PM wave. From this covariance function we then derive an expres-
sion for the spectrum of the PM wave and show that it can be
expressed as an infinite series. This series has been evaluated for
certain values of rms phase deviation NV.®

We then show that the autocorrelation function of the PM wave
is analytic at all points in the finite part of the complex plane deter-
mined by the argument of the autocorrelation function. In determin-
ing the Fourier transform of the autocorrelation function we change
the path of integrationf so that the contour is very close to the path

* For exceptional cases see Ref. 7, Ch. 4, pp. 131-135.

i The method used in this paper to evaluate the spectrum is a close relative

of the method of steepest descent (or the saddle-point method) used in evaluat-
ing certain kinds of integrals® ™ % * 2
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of steepest descent of the integrand. We then divide this contour into
four (or five) disjoint sections and show that the major contribution
to the integral comes from one of these sections.

We next derive upper and lower bounds to the spectrum Sy (f) of the
PM wave and show that these bounds are very close for all f and for all
values of rms phase deviation N = 5. For N = (10)* we show that the
spectrum can be evaluated by this saddle-point method in a very
simple manner with a very small fractional error (less than 10 percent),
and we give this method.

We finally compare the quasistatic approximation to the saddle-
point approximation. For large values of frequency f, we show that
the quasistatic approximation gives too small a value for the spec-
trum, and that it cannot be used in cases where the spectral behavior
on the tails is of importance. However, as we show, the saddle-point
method can be used in all cases in which N is moderately high.

In conclusion, this paper gives a simple method of evaluating the
spectrum of a sinusoidal carrier phase modulated by gaussian noise
having a rectangular power spectrum and having a moderately high
modulation index.

II. SPECTRAL ANALYSIS OF PM WAVES WITH RANDOM PHASE MODULATION

A sinusoidal wave of constant-amplitude phase modulated by a
signal n (t) may be written as

W) = A cos [wit + n(t) + 6], ()]

where A is the amplitude of the wave, fy, = wo/27 is the carrier fre-
quency of the wave, and 6 is a random variable with probability density™*

1
7r9(0)=§;' 0=6<2r

2
0, otherwise.

Assume that n(tf) is a stationary bandlimited white gaussian ran-
dom process with mean zero and variance N2.7 Its spectral density

*If n(t) is a stationary random process the introduction of random variable
¢ in equation (1) makes W(¢) a random process which is at least wide-sense
stationary so that its spectrum ecan he ecalculated from the Wiener-Khintchine
theorem.> ” If we do not have @ in equation (1), W(¢) is no longer (even wide-
sense) stationary, and the spectrum of W(¢) is usually calculated from the time
autocorrelation function of W(¢)7 The results obtained in the two cases are
identical.

1 The parameter N represents the rms phase deviation (or modulation index)
of the PM wave given in equation (1),
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S, (f) can be represented (see Fig. 1) as

S.00) = {N S A )
0, otherwise.

Such a random process n(t), is often used to simulate a multiplex

signal, a composite speech signal, and so on.
We can show from equation (3) that the covariance function R, (r)

of n(t) is given by

. sin 27 Wr

2xW+ ' )
this function R, (+) is shown in Fig. 2. Since n(t) is a stationary gaus-
sian random process it can be shown that W(t) is at least wide-sense
stationary and that its covariance function Ry(r) can be represented
RSZ' 7

R,(r) =N

Ru(r) = &= exp [~Ru(O)] exp [Ra(x)] cos wnr. 5)

From the Wiener-Khintchine theorem, and from equation (5), the
spectrum Sy (f) of W (t) can be written as

Su() = [ Rus) exp [—j2nfr) dr, ©
or
Swlh) = 5 1Sv(7 — 10 + S + ), ©

where

o0

Se) = [ e [~RaO)] exp Ra()] exp |—-2efr) dr. (®

h
SPECTRAL DENSITY
IN RADZ/ HzZ 2
N
2W
-W W  FREQUENCY IN HZ

Fig. 1— Spectral density of phase modulation.
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Fig. 2 — Covariance function of n(t). Since Ra(r) is an even function of r we
only show R.(r) for r = 0.

From equations (4) and (8) we have

Selp) = 5o [ ew {—N{l - ﬁ‘p—ﬂ]} exp [—pldp,  (9)

where
A== (10)

III. SERIES EXPANSION OF SPECTRUM FOR GAUSSIAN MODULATION

The integral in Equation (9) can be evaluated by expanding

i

into a Taylor series; integrating term by term we can write®*

exp {—-N”[l — M]} = exp [—N7] i NTT (S—i%)" (11)

P =0
* We note that 3 7_; z*/n! converges uniformly to exp [z] for all finite values of z.
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From equations (9) and (11) we have®
Sy(f) = exp [-N"]
1 & N_“f‘“ (sinp)‘ }
'{6(1') towxal. \p) P [—izplpdp,  (12)

where 8(f) is the Dirac delta (unit impulse) function.
We now note that

[ B2 exp [~ gl dp = PN = {”' <L g
- P 0, otherwise,
or
Fi(\) = wlu(A + 1) — us(h — 1), (14)
where u_; () is the unit step function defined by
woi(e) = {1' v >0 (15)
0, z <0,
and that'
] : 14
[” (E22) exp (=gl dp = £t
U < (N =28
oo YD e 0SIA <z g
0, otherwise,

where

M= INT[f—Jrzm] , amn

and INT[z] represents the largest integer not greater than x.

It can be shown that F,(\), £ = 2 is a continuous function of A and
that F,()) is discontinuous at A = 1. For large £, we can show from the
central-limit theoremt that®

rov~ (%) e[ 2]

* The term containing &(f) in equation (12) represents the de component of Sy(f).
sin p) ¢
t See pp. 362-366 of Ref. 2. It can be shown that [TP] can be interpreted
as the characteristic function of the sum @ of £ independent random variables with
identical uniform probability distributions.® The function F.(\)/2r therefore
represents the probability density funetion of 2. Alternatively F()) is the £ - 1)-
fold convolution of the flat spectrum with itself,
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From equations (12), (13), and (16) we can write
. 1 o0 N2‘
Su() = exp [-N 1[50) + 57 & T F,(f/W)] (19)
For N* = 6, we have calculated the spectrum from equation (19)
and the results are shown in Fig. 3. Notice that the spectral density is

discontinuous at /W = 1.
For N* <« 1 (low-index modulation), we have from (19)

S & Suf) = exp [N 60 + 2o B |, 0

and the error in this approximation may be investigated from equations
(9) and (20).* The approximation given in equation (20) represents the
low-index approximation for the spectrum; this result has been obtained
by many authors.®~®

The series given in equation (19) may be used to estimate the princi-
pal part of the spectrum (close to the carrier) for small or moderate
index, since only a small number of terms need to be included in the
partial sum. However, for large N°, or far down on the tails of the
spectrum for small N?, too many terms would have to be included to
estimate the spectral density. In fact for N° > 1, or for f/W > 1,
the degree of complexity required in estimating S,(f) from equation
(19) becomes inordinately high.

When N* 3> 1, and for low frequencies, several authors have given'~
the quasistatic approximation f

3 2
$v 2 exp (=) o) + i (2) e [ 52 (£) ] e
for the spectrum. The question arises whether equation (21) can
be used for large f. Since Ry (r) is infinitely differentiable there is
no simple way (known to the authors) of investigating, for large f,
the error is this approximation.”

In the problem of interference between two neighboring channels
it is necessary to evaluate Sy(f) for large f so that the effect of this
interference can be determined. As we shall show later on in this
paper equation (21) gives too small values to Sy (f) for large f; it is
therefore essential to have a simple and elegant method (different
from the series method) to evaluate Sy(f) for large f and for large N2,

7

* At times the low-index approximation for the spectrum is written as exp
[—N28(f) + (N2/2aW)F(f/W). For N? < 1, exp [—N?] = 1.
T Note that mean square frequency deviation is N*W?*/3.
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Tig. 3 — Spectral density of a PM wave for N* — 6. The discrete part of Sv(f)

;%Vf = 0 is not shown in this figure. Note the discontinuity in the spectrum at
=1,

Readers who might be interested in the final results without wishing
to work through the detailed analysis, might skip Section IV of this
paper.

IV. SPECTRUM EVALUATION BY CONTOUR INTEGRATION

Let us now consider the integral given in equation (9). Since &(f)
and F, (f/W) are discontinuous functions of f, let us define an integral®

s = [ ew [—N’]{exp [Nﬂ *%—’3] ~ (14w *’M)} s0e ) dp

P

*In Ref. 14 this integral has been studied by Lewin for A = 0 and A = 1. It
also occurs in several limiting cases in Ref. 1. It is sometimes referred to by
the name Lewin’s integral®
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or

[ _A? 2SIMp | 2 8in p
- [onton 2] (w0
-exp (—jAp) dp. (22)

Since all F,(f), { = 2 are continuous, it can be shown from equations
(19), and (22) that S(f) is a eontinuous function of f.
From equations (9), (19), and (22) we can then write*

Sy(f) = exp (-—N’){é(f) + QNW fu_i(f + W) — u_i(f — W)]}

1
+ W Re S(f). (23)

Notice from equation (22) that the integration is earried out along
the real axis, and that for large | A | (or | f |/W), the final factor of the
integrand exp (—jAp) is a very rapidly oscillating function of p. From
Refs. 7, 10-13 notice that in such circumstances the method of steep-
est descent (or saddle-point method), or one of its close relatives, is
often useful to get an approximate expression for the integral; we
shall now apply such a method to evaluate Sy (f).

In applying this method to the evaluation of an integral with a
real variable of integration, we must first be able to regard the inte-
gral as a contour integral along the real axis of the complex plane,
with an analytic integrand. We note that the integrand in equation
(22) is an analytic function of p, and that it has no singularities in
the finite part of the complex plane (defined by p). From Cauchy’s
theorem it therefore follows that the contour of integration can be
arbitrarily deformed as long as one end is at p = — e + j0 and the
other at p = e« + jO.2!

In making use of the method of steepest descent the contour must
be deformed so that the phase of the integrand remains constant (or
almost so), while the magnitude of the integrand is small except in
one or more localized regions, where it varies rapidly. This is usually
accomplished by deforming the contour so that it goes through one
or more saddle points. In other cases there may be some additional
constraints on the contour;” then only a portion of the path of steep-

*Re z and Im 2z denote respectively the real and imaginary parts of complex
number z.



778 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 19069

est descent through a saddle point may be used in finding the integral,
and the deformed contour may not actually reach the saddle point.
In this case the original integral is usually reduced to a virtually real
integral whose integrand behaves sufficiently simply on the modified
path of integration so that an approximate evaluation of the integral
with rigorous (upper and lower) bounds on the error may be obtained.

Departures from the strict method of steepest descent occur in this
paper in that approximate paths of steepest descent are chosen. Al-
though not quite optimum, they are analytically tractable and serve
to give useful bounds on the integral under consideration.

Consider equation (22). Since the integrand in equation (22) is
an analytic function of p, let us assume that p = z + jy is a complex
variable, and let us deform the contour so as to obtain the path of
steepest descent. Since the integrand behaves properly on the contour
for large | p |, it is clear that the contour of integration can be de-
formed in quite a general way in the complex p-plane without modify-
ing the value of the integral.

From equation (22) it can be shown that the major portion of the
integrand

R(p) = exp [—N°] exp [N2 ﬂ;ﬂ exp [jAp] (24)

has a saddle point on the imaginary axis, with the path of steepest
descent parallel to the real axis at this point. The location p, = jy, of
this saddle point is given by

coshy, sinhy, A f

v v N T NW (25)

for a given f/N*W, equation (25) can be solved numerically to give
the required y,. We plot ¥, as a function of f/N*W in Fig. 4, and In
R (jy.) in Fig. 5.

Let us now deform the contour so that it passes through the point
ps = jy, and is parallel to the real axis at this point. From equation
(22) we then have

S(f) = exp [~2N2(cosh2 ?”5 — m;—”ﬂ Re I (26)

where
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[ = exp [—N‘ S—i“; ‘»’]

- 2sin (z + gy) | _ 2sin (z + jy.)]}
'f_u{em[N z + jy, ] [1 TN

-exp [jAz] dz.
Rewriting equation (27)

1= 6@y)
where

G(z, y,) = exp [—Qr(x, ¥.)] exp [jQ:(z, v.)]

3 _ \psinh y]{ 2 sin (z + jy.)}
exp [ N ” 1+ N z + . exp (jAx),

where Qg (z, v,) and Q;(z, y,) are real and

Oz, ) = Nz{sin;n ¥ _ Re [sin (z + jy.)]}

z + 3y,
10 ]
‘E !
!
8|— ”
EXACT{’
/
6 7
o= /
“|z /
~— y
N
-z /
4 ya
/
’
7 \
’ |
V4
2 o
rd 1
P
-1 SMALL Ys APPROXIMATION
0 5 l E
[¢] | 2 3 4 5 [+

Fig. 4 — Location of saddle-point ..
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Fig. 5— Value of —[In R(jy.)1/(2N?).
or
| — Y sin
tanh y, = + 1 — coszx
_ .asinhy, . Y z’
Qx(z, y.) =N Y. z 1+ (x/y')ﬂ (31)
and
Q@ y) = N* Im fﬂfﬁjﬂ] + e, (2)
or
Ql(xr y.)

sinh ¥, cos z — ¥, cosh y.s—lgx-g
= N? + [

cosh y, sinh y]}
xg T yf ] x. (33)

Ys Ya

The functions Qz(z, ¥.) and @,(x, y,) have been plotted in Fig. 6 for
a set of values of 3, .

Since we are primarily interested in the high-index case let us assume
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that N* > 1. From equations (27)-(33) we now observe that the
principal contribution to the integral I comes from small z. For small z,

G(Z, Y,) =~ exp [_QR(IJ y-)]- (34)

It can be shown (see Figs. 6, 7, and Appendix A) that Qz(z, y,) is a
monotonically increasing function of = for 0 £ z < = and that it oscil-
lates for values of z > w. For large =z,

10

i ‘ Qr(x,Ys)
/! -===Q;(X,¥s)

AN

—

Qr(X,Ys)
N2

OR

QR(xst)
NZ

Fig. 6 — Functions Qg(z, y.) and Q(z, y.).
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Fig. 7— Function Qg(z, y.), From this figure, it can be seen that Qg(z, y.)isa
monotonically inereasing funetion of z for 0 = z = =.

G(z, y,) = exp [—N2 S%l—y—"]

.{exp l:N2 cosh y, ?H;T’L} exp []'N2 sinh y, m:; z]

- [l + Nz(cosh Ys Lr;x + g sinh y, Goi a:):l}em,' (35)

and we note that the first and second terms both have small and
almost equal magnitude, and almost opposite phase angle, so that
they almost cancel. As |z | — oo the cancellation becomes exact. For
these reasons it is convenient to divide the range of integration in
equation (27) into at least four regions:

0<|z| <m, small | z |,

<l|z|<m, intermediate | z |,
< |z| <2, intermediate | z |, (36)
<z < o, large | z |.

From equations (25), (30), and (32) we can show that®

* These expressions for Qe and Qr may be obtained from the Taylor series
expansion of the function [sin (z 4 jy.)1/(z + jys).
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3

0 2
— A2 1yt T
QR(:EI yl) - N ;( l) A2l (2’6)! ] (37)
and
-] $2¢+l
. . 2 _ {+1
Ql(l; ya) - N ; ( 1) A2¢+1 (25 + 1)! ] (38)
where
_ sinh y,
AD - ya ' (39)
_coshy, simhy, A
4 = by by R 40
A, =Sy o Aeey g (41)
Y Ys
and
_ coshy, As, _ -
A2£+1 - y‘ (25—'— 1) y, ] { - 1! 2r 3! (42)
It can also be shown that
-] 1 y2t+]
Azis = ,gznzc+ 2k + 1 (20 + 1)1 k=123, 3
and
@© 1 yft
Ay = ) E=1,2,3,---. (44)

20+ 2k 4+ 1 (2017
Since the spectrum is an even function of f we can assume without
loss of generality that

¥, = 0. (45)

For y, = 0, from equations (43) and (44) all A,’s are monotonically
increasing funections of y, , and we can further show that

0 < Ag(“.]) < Azk y k= 0: 1- 2| Tty (46)
and

0< Appsr Ay, £=1,2,37--. (47)

For large y, (for large f/W), it can also be proved that

Asy e Ay = E&&Q (48)
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Since it appears that the main contribution to the integral I comes
from the region of small |z |, assume that |z, | is small and that

I=1 41z, (49)
where
1= 6@y, (50)
and
L= [ G y)de+ [ G v de. (51)
For small |z |, we have from equations (37) and (38)
Qr(z) &~ N'}A2", (52)
and
Q:(z) =~ N°1A:2. (53)
Let us choose* z, so that exp (—1N?4,z") falls to exp (—5) ~ 0.0067
for x = z, ,T or that
10 !
T = (N2A2) . (54)
Since it can be shown from equations (39)-(44) that the minimum

value of A5 is 1 (at y. = 0),

L
Assume that
Ty é Ty (56)

so that exp { —Qr(z, ¥.)} is 2 monotonically deereasing function of x for
0 = z = z, . Equation (56) will be satisfied for all y, if
M;%zmm (57)
Since we are primarily interested in the high-index case, this is not
a significant restriction.
* See equation (34).

+ While there is some degree of arbitrariness in such choices, the bounds
obtained are not too sensitive to small variations in the value of 2, s, and so on.
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Noticing that,

sinz £ z, 0z < o, (58)
sin (z + jy.) (sm z + sinh® y,)} (:1:2 + sinh’ y.)“ (59)
z + jy. )t S\ P4y 7
Sinee (sinh ,)/(y.) = 1, it can be proved from equation (59) that
sin (x + jy.) | . sinhy,
- =< . 60
z+ gy | T U (60)
We can show from equations (29), (50), and (60) that
(L <2 [ (e [~ Qe w) + By} da, (6D
where
H(z, y,) = exp [—N” 5%11[1 + N* “”"’hy;”] (62)

From equation (37)

7]

1 " 10! A,z
+']T)_if110:v [l_ﬁz_lix1+"'}' (63)

From equations (46) and (63) it can be shown that for all y,

.’.hl.‘-h

1 1 1
Qr(z, y.) = { 4,3 —ﬁAdx‘-i—aAﬁr[l—-g—

Qr(z, y.) 2 N’[% Ax® — i Am:‘] ., 0=z =gz < (6 (64)
We then have

11, | 2[ exp{ N’[ da® — o A, ]}+2f H(z,y,) dz.

(65)
One can show that
. e — 1
e =1+ B t, 0=t=R. (66)
Since we have
N? 254, 1
< — R i,
0=24A4$=6A2N2A2; Oéxézll (67)
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| [?éé 1 ] )

EN 2 -

1Ll [ ew [-NA1+ 0 AeNAsd o 4
0 1

+ 2] ’H(a:. y.) dx < 2.[ exp [—N*34,2%]
1] 0

Wikl
;4 2 f z' exp [—N°1A.2°] dx
1 0

+ 2

42 [ " H(z, y,) dz. (68)

From equation (68) it can be shown that

ILI<( )[1+E] (69)

A
- & .
+ 2(3) exp [—Nﬁsmjj yiH—1 + stmh Ye ] (70)

Since we know that
—|p| =Rep =|pl|, pany arbitrary complex number, (71)

equation (69) gives an upper bound to Re I;. Let us now find a

lower bound to Re I,.
From equations (29) and (50) we have

Rel, = 2 f oxp [—Qule, 1) cos [Qu(z, )] dx
_ - __ a2 8inh 7, ][ 28in (z + jy.)]
ZRej; exp[ N SRLe g || 1 4 Nt SEL |
(72)
As shown earlier in this paper

# [ jesiohy, ][ zsm(x+u)]
ZRBj; exp[ N + ||+ N z T+ 7.

Y

< 2z, exp [—N2 Pim%:l{l + N* Sﬂ;—l} (73)



SPECTRAL DENSITY BOUNDS

One can also show that for z real

2

Z

cosz=1—— —w <z < w©,

2 L]

Using equation (74) we can write

2 f " exp [—Qu(zay.)] cos [Qi(z, )] dx

22 [ e - ute w1 - U512

Now from equations (37), and (38) we have

Qulz, 1) = NB At — % Ag:*(l

- '8:_[? Aaxs(l

and

2| 1 1 5
Q:(z, y.) = N~|:E Az’ — E Asxl{l

— % Agx"{l

4! A, 2)

_Eij‘l—dx

_ 81 4, 2)_ :|
10! 4, ° ’

[

'4;
!Aﬁx}

I An } ]
ma /- r

o I

From equations (76), and (77) one can show that

Qﬂ(xv ya) g %NEAExzv 0
and

Ql(xs y.) é %NQAZ!Q:B: O
Equations (75), (78), and (79) yield

<z =z < (30)

<z =z < (42

2 [ " exp [—Qa(z, )] cos [Qi(z, )] do

z1 4
> 2[0 exp [—%NzAgrcz][l _ %— Aiz{l dz

= 2f exp [—iN*A,2° dx — 2 f exp [—iN°A.2%] dx
0 Ty

4 T
— o= 4; f 2’ exp [—3N°A,2°] dx.
0

36

787

(74)

(75)

(76)

(77)

(78)

(79)

(80)
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Notice that

f * exp [—IN*Aa?] de < f 2* exp [—3N*A?] dx
0 0

1{ 2\ 15

=3 (N""Ag) 4y 6D

We can also show that
] _ 2 4

f exp (—p*f) dt < ﬂ{,%gf“—) . apt = 0. (82)
We can, therefore, write

2 [" o [~V A" da < (—2—)% (83)

.. Xp 2 a2l 4 5N2A2 e .

From equations (72)-(73), (75), (80)-(83) it can now be shown
that

Rel, > ( 2r 2)%[1 — £, (84)

-exp [—N2 SL; y][l + N SL; 3’} (85)

We shall now obtain upper and lower bounds to Re I in equation
(51). According to equation (36) let

In =1+ Ir (86)
where
I, =f_ " G@, v dx+f G(z, y.) dz, (87)
and
I, = f_ Gz, v) d:c-l—f Gz, v.) de. (88)

From equation (87) we have

Lis2[ 6@y |d (89)
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Now it can be shown from equations (29) and (60) that
é exp [_QR(:E: y:)]

+ exp [—Nzﬂ%&][l +Nz%&]' (90)

From equations (89) and (90) we can write

| Gz, y.)

(L1s2[ e l-Qu v dr

+ 2(r — z,) exp [—«N2 EE]:I—IL:H:I + N? sm%_;l (91)

From equation (64)

Qr(z, ¥.) 2 N2[% Apa® — i A-lff:'l] = N%, n=x=T (92)

where

1 1
v =35 A 24 Az, (93)
It can be shown (see Fig. 8) that v and dv/dx are positive for v, £z <
tm = (6)1(d,/A)! = (6)! and that dv/dx is a monotonically increasing
funetion of 2 for z, £ a £ z, where
A\
z. = V2{T) z v2. (94)
We also know that Qr(z, ,) is a monotonically increasing function of z
for z, £ 2 < m. Let us now assume that z, < /2.

- __

. . d . .
Fig. 8— Functions v and 7z 2ppearing in equation (95).
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Equations (92)—(94) therefore yield

2 [ oxp i~ Qule, 1) do

<zf exp [— Nv]—dv+2(«—f)exp[ Qx(VE, 3], (95)

where
5[, 54, 1 ]
Ul - N2 [1 6 Ag N2A2 i} (96)
A,
v, = A, — 6’ (97)
and
0<v =Zv,. - (98)

Since we know that

1
dz dz sz, 3 A, N?A, 1

we can write

1y 2 LE]
2 f exp [—N")] e dy < {V 4 f exp (—N%) dv
v d'f) 5[1 . Qé ]. ] vy
3 A, N4,
2 L]
< N — [ o (=Nt o, (100)
5[1 - 2 _'i 2 } "
3 2 N-AZ
Since it can be shown that
= .22
[ oo (—pnat = ﬂ[ﬁ’—@—] . pi=0, (101)

from equations (91), (95) and (100), we have

| I | < (NA )QEQ ) (102)
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where
1 1 . 54, 1
B2 = Gyt |5 A 1 P [‘“(1 6 A, N Ag)]
34, N z
+ 2(r — ( = exp [—Qz(V2, 5.)]

8 a

x, < V2.  (103)

+ 2@ — as])( AE) exp [—NE S,in;l y’][l + N? S“——inil y:| ,

Similarly, if z, > /2, one can show that

2 4
B, = 2(r — .’Bl)(N2;12) {e}ip [—Qx(z: , ¥.)]

+ exp [—N2 “—1;5}[1 + N* ﬂ%‘i]} (104)

Let us now consider the range of integration 7 < z < «. For z >>y,
H
exp [_QR(I! y-) + jQI(mi y!}]

,-"'-dexpl: (Ngsmin, Nzcoshy,smx)

+ (m + N?sinh y, &8 “’)] . (105)

and

exp[ N sinh y, + ?\:L]

[1 + N? s_____mx(x_i_-l—jyy )] 2 exp [—N“ sinh g, + M::l

-{1 + N{w cosh y, + 3 L sinh y.]} (106)

Let us choose the point 2, + jy. along the path of integration so
that the amplitudes of the two terms in equations (105) and (106)
differ by less than 10.5 percent [(N” cosh y,)/2; = 0.1]and their relative
angle departs from 180° by less than 0.1 radian [(V % ginh ,)/z, < 0.1].



792 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1969
Such a point x, + jy, is given by

2, = 10N*? cosh 3, . (107)
We assume that 2, > = = 2, , or that

N® > I% ~ 0.31416. (108)

Since from equation (57) N* = 30/#°, this inequality is always satisfied.
We shall now write

I.=1,+1,, (109)
where
L= [ 6wy i+ [ 6w dn (110)
and
I, = f_h G(z, y.) dx + f Gz, y.) dx. (111)
Noticing that
|sin (x 4 jy,) | . _coshy, _ coshy,
; = 73 Ny = , 2
|z +dy. | = @+ )t - (112)

we can show that

| I, | =2 f exp [—Qr(z, y.)] dx

. In (_:c_z)
+ 2(z, — ) exp [—NE S%“J—][l + N* cosh y, —— } . (113)
Ys T2 .

and
[“ew - ez X [ 1 e (—Qule ) do

K (24+1) 7w
v [ e Qe vl de, (119
where K is an integer such that

Q2K + )r > z, =2 (2K — I)m. (115)
One can show that equation (115) is satisfied if
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SR O |
K = INTl:Q?I’ -+ ‘):l

or

5N? cosh y, l].
m

K = INT[ + 2 (116)

We now have

2

mm)® 2 (D
)+ =24yl =+ D+l

nr £ x =< (n+ r, n=1213,- -, (117)

0<

and

, sinz 1 — cosx
—'TLH-'—_+JE—-2—

" tanh Yo X T

(2 — )r <2 <2r, {£=1,23 ---. (118)

v

1,

From equations (31), (117), and (118) we can now prove that

.:-El j; F exp [—Qx(x, y.,)] dx

2{-1)mw
K .].h
< 3 rexp _ e sinh g, 1 .
{=1 ?)'- 1+ yn _
(26 — 1)°
. K 2 -
=1reXp[—N2S%L]Zexp Ny,j;nhy. 1 .
Kl =1

2t — 17" + %
™

(119)
Further it can be shown that®

i ox [N”? , sinh 7, 1 :|
e P T Vi e
| N%y, sinh v, 1 ]
< exp [ R N

N%.sinhy, 1
+(K—1)exp[ y} y9+y%2]- (120)

* The upper bound derived in equation (120) can be improved in various
ways. Since this makes only a minor contribution to the total integral we shall
be satisfied with this simple bound.
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From equations (119) and (120) we have
K

Z] j;uil)' exp [_QR(IJ y-)] dx

=

A sinh y, [Nzy. sinh y, 1 ]
s e [ - ]{e"p w1 /)]

1+ (K — 1) exp [N yf;lnh s T é_ /ﬂ_)z]}' (121)

For 2tr 4+ 7/2 < z £ (20 + 1), £ = 1, we can show that

_ _ Y, sinz »1 — cosx
1 tmhy, o + v, p
> Ys Y
21— b v, (4€ _|_ 1),rs“1"7 + @ + 1)2 3 (1 — cos )
= Jda). (122)
In this range of
cosz =0, (123)
sinz = 0, (124)
and
e _ Y. 2 v
ax N taﬂh y, (4{ + 1)11- cos & + (2£ + 1)2 28]11 €T 2 0 (125)
We, therefore, have
_ Y, sinz, .1-—cosz
1= tanh y, = ¥ 2
= J(x) = J;(?f?r — g) = V.y.), (126)
where
1 U 2 o
V) =1 tanh y, (4f + L)7 + e+ )% (127)
It can be shown that
2
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that V,(y,) reaches its minimum at

4
N[l +45+ ] (129)

and

2
(V) min = 1 — i [1 + 45-11- I:I >0, ¢=1. (130)

Now for 2(r < 2 £ 2(r + 7/2, it can also be shown that

Y, sinzx 21l — cosz Y, sinz
“tanhy, =z + v z° =1~ tanh y, 20r
e 0 cosa) = Lix).  (181)
(4t + 1)2 2 ¢ N
One can prove that L,(x) reaches its minimum at
_ @+ x ]
x = 2{r + tan [ M 7. tanb g, | (132)
and
L) lae = Uy = 1+
I3 xr min — '3 :“}'u - (4( + ])211_2
16y, Vs ]*
[(4(, i (133)
Next we can show that
Uf0) =1 — b <1 — 2 — = V,0) (134)
ass 2T (4 + w7

that U/,(y,) is a monotonically decreasing function of ¥, (see Fig. 9), and

. 4 + 1)°
Lim U) = 1 - Y551

It can alco be proved by numerical methods (see Fig. 9) that

>0, £=1. (135)

Udy) 2 Ui(y), y. 2 0, (=1, (136)
and

Vey) > Us(y.), 9. 20, (=1 (137)
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We therefore conclude that

_ _ Y, sinz 21— cosx _ 4y
1 tanh y, = + v, e = Ui(y.) = 1+257r2

_ |: lﬁy: yf ]l £>1 >0
625m° | 4x° tanh® y, |’ =5 %=
Ur <z = (20 + Dr. (138)
Equations (31), (117), and (138) show that

(26"
(25}27r2 + yf ’
o%r <z < (204 Dr.  (139)

From equation (139) we can now write

b o,
Qule, ) 2 N UG

K (2t+1) 7
; j;; €xXp [_Qﬂ(wv y:)] dz

= 7 exp [mNE S%L Ul(lj.)]

< N’y, sinh y, 1 ]

. ; exp [ e U.(y.) (23)2 ¥ (y./ﬂ_)z . (140)
It can be shown that
K 2 .

S exp [N Ya S;nh Y,
=1 ™

o 1
Uiw.) oy (y./wf]
[N %y, sinh y

R 1
Uilva) 3 (y./vr)”]

0= 1) o [ VS ) ]

< exp

Equations (140) and (141) yield

[T e (ute w1 s < 7o | N ERL g |

(=1 V2 L]

-{GXP [N : %&Lﬂ_ Ui(y.) m]

+ (& 1) exp [NE LS 77y, m]} (142)
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From equations (113), (114), (121), and (142) we can write

2 k]
[ I ]| < (‘_ﬁ*szz) E,, (143)

where

_ N”An)* [ %ﬂy_]
E, = ( o 27 exp N "

_ N?y, sinh y, 1 )
[e"p ( N R

+ (K — 1) exp (Ngy' :inh & 9 + (L./w)”)]

inh y,

+ 2r exp [—NE e ” Ul(y,)]

-{exp [Nz L S]:Qh Ya U.(y,)

4+ (;J,/ ﬂ")z]

+ (K — 1) exp [N W

h In ﬂ) |
+ 2(1:2 _ '}T) exp [_NZM] 1+ N2 GOSh y,m _“T"r J’- (144:)

yl

Finally, from equation (111) we have

(Lls2 [ 6@y | d (145)

Now from equations (27)-(28)

| G(z, y.) | = exp [—sz—;y—']

2 sin (E f Jy.):l [ . 8in (-7: .?.Tj.)] ‘
— | = |1+ N ———= | |-
exp |:N = + 7. N z + . (146)
If z is & complex variable, it can be shown that

lem@ —1—2] s 2l e 2. (147)

From equations (112), (145)—(147), we can write
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| I, | < exp [—sz;—y']N4 cosh’ 7,

’f” 1 [N:’ coshy]d
ety P LE )
N* cosh® y, exp l:_Nz sinh y.]

T v,
'fN’ oosh ¥,/ (232 +ys?)} exp (.t) dt
0 (N"1 cosh’ y, tg)*
Ys
4 2 H
_ N* cosh® y, exp [—NZ sinh y.]
yl ?}-
8in=1 ys/(za?+ya N} 2
- f exp [N—E@y— sin a] do.  (148)
0 Y
Since
0 < singd < 6, ogagsin‘(2 y2)<’§r, (149)
we can show from equation (148) that
4 2 .
| L | < N cosh 9. ey, [—N” sk y—:l
Y Ys
sin=t pa/(za? +ya M)} 2
5 exp [N_E'S_hJL 9] s
0 Y

= N? cosh y, exp [—Nz smhy;y]

Py 2coshy, . v U _ 4\
{exp [N sin™ oy y?)%] 1} (150)

Y.

Now we have
(151)

1A
1A
—

g

a, 0

l\'.!l=|

0=<sin'c¢ =

From equations (149)-(151), we can write

| I, | < N* cosh y, exp [—Nﬁ%]

2 cosh UYs ] } .
{ l: N (100N* cosh® y, + 32)* < N? cosh y,
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E
- exp [ N? sm; Ys :H:exp (27;)) 1] = (N-——-%ZQ) E,, (152)

where

A 2 8inh ¥, E
b (580 s ] ). o

From equations (27), (49), (69), (71), (84), (86), (102), (109),
(143), and (152) we can write the following bounds for Re I:

()0 - B~ B — B - B

< Re1<(N2’r )[1+E1+E +E 4+ E] (154)

It has been shown that

sinh y, _ 2
Y, y, N*

A, =

(155)

V. UPPER AND LOWER BOUNDS TO Sy (f)

We have shown in the previous section that
Sv(h) = exp (—NZ){BU) + X+ W) — g = 1)

+ 53 W exp {—QNE[cosh” % — "’—yi]}u (156)

where
(sz ) (1 — B/ — By — Ey — E,)
<n<(\3 )[1+E VB 4+ B +E]  (157)

coshy, sinhy, _ f

Ys yf - ATQW ) (25)
—sinhy, 2
A2 - y‘ y‘ NZW (155)
Parameler Equaiion
Ey 70
Ef 85
E, 103 or 104
Ey 144

E, 153
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For N* = 10 and 25 we plot, in Figs. 10-16, E, , E! , E, , E; , and E, .
Notice that E, , E! , E, , E,, and E, appearing in these bounds are
all very small compared to unity so long as the modulation index is
moderately high, and that E, , E, , and E, are monotonically decreasing
functions of f and N*®. Also notice that E{ and E, may first increase
(see Figs. 11, 12) with y, (or f), reach their maxima and then decrease
with y, .* It can be shown that these maxima are all very small com-
pared to unity for all N* which are even moderately high.

For all f, we can then write

27 )* ( 2r );
(o -0 <w< () a+n. (158)
where
C=E;+E2+E3+E4v (159)
and
D=E +E +E,+E,. (160)

From Figs. 10-16 and expressions for C and D, we can show that
C and D are both small (<2%) compared to unity for N2 > 25 and
for all f. Hence we deduce that

or \*
B~ (NQAE) ) (161)

and that the fractional error in this approximation is very much
less than unity (<2%).

For N2 = 10 and 25 the spectral density Sy(f) and the fractional
error C and D obtained from equations (158)—(161) are plotted in
Figs. 17-20. From these figures notice that C' and D are less than
10 percent for N2 > 10,} and that

C < 29, for N® = 25, (162)
D < 29, for N® = 25, (163)

proving the assertion made earlier in this paper.
For N? = 6 the spectral density obtained from equations (158), and
(161) is given in Fig. 21; the percentage error between this spectral

* One of the terms in Ey' is independent of f and N*.

+ By modifying the contour of integration we also have been able to show
that C' and D are less than 8% for N® = 10. Since this modified contour leads to
unnecessary complications, we have not given that modified contour analysis in
this paper.
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1.4
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1.0
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»
Z 223
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i I : '
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10-! 2 4 6 8 2 4 6 8,5 2 4 6 B2 2 4 6 8.3
Ys

p Fig. 9— Functions U7 ,(y,) and V (y,). It can be observed that V (y,) > Ux(y.) > 0,
= 1.
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Fig. 11— Parameter E." as a function of |537| 77
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Fig. 12— Parameter E. as a function of [Z_N’] %
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L \

1o-13
Ea \
o714

{o-10

10715 AN
10718 1 \
N
1077 \
0 1 2 3 4 5 6
3 /2 £
(eNa) W

311
Fig. 16 — Parameter E, as a function of [W] %, with N? = 25,

density and that obtained from equation (19) has been plotted in
Fig. 22 (for a set of values of f/W). The scatter diagram in Fig. 22
indicates that the spectral densities obtained from the two methods
agree very closely and that the saddle-point approximation error is
not related in a simple way to the truncation error (it does not seem
possible to draw a smooth curve through the points shown in Fig. 22).

For all practical purposes, including interference caleulations, esti-
mation of the spectrum to such an accuracy is almost always suf-
ficient. Tt can therefore be said that the saddle-point approximation
given by equations (25), (155), (158), and (161) is a good approxima-
tion to Sy (f) as long as the modulation index is even moderately high
(N2 > 10). The spectrum can be estimated by this method for all
values of f even when it is millions of decibels smaller than the con-
tinuous part of the spectrum at f = 0.

Now compare the spectrum obtained from the quasistatic approxi-
mation* to that obtained from saddle-point approximation. For this
purpose, the spectra obtained from equation (21) for N * = 10 and 25 are
plotted in Figs. 17, and 19. We see that the spectra obtained from the
quasistatic approximation agree very closely with those obtained from
the saddle-point approximation for low frequencies, but that the quasi-

* See equation (21).
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2N2/ W

Fig. 17 — Spectral density of an angle-modulated wave, with gaussian phase

modulation with a rectangular spectrum. N = (10)** =~ 3.162 radians, rms phase
deviation.

static approximation to Sy (f) is too small for large .* In fact for N* = 10
the quasistatic approximation is 30 dB too small for /W =~ 13.5. We
have therefore shown that the quasistatic approximation to the spec-
trum cannot be used in any interference calculations or in any calcula-
tions where the behavior of the spectrum on the tails is of importance.}

The saddle-point approximation can be used at all frequencies as long
as N? is moderately high.

*For small f (or small ) it can easily be shown that the saddle-point ap-
proximation reduces to the quasistatic approximation.

t The higher the rms phase deviation, the further out will the low-frequency
(quasistatic) approximation be valid,
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Fig. 18— Bounds on fractional error in saddle-point approximation to the
spectrum. N* = 10.

VI. RESULTS AND CONCLUSIONS

A simple method (called the saddle-point method) has been pre-
sented in this paper to estimate the spectrum of a sinusoidal carrier
phase modulated by gaussian noise having a rectangular power
spectrum.

This method gives upper and lower bounds to the spectrum and
shows that these bounds are very close for all f and for all moderately
high phase deviations, We also show that the fractional error in the
saddle-point approximation is less than 2 percent for N* = 25 and
for all f.

The calculation of the spectrum by the saddle-point method is
rather simple. For a given value of f, N2, and W, we caleulate ¥,
from equation (25) and A, from equation (155). The spectrum Sy(f)
is then caleulated from equations (156) and (161).

We have also shown in this paper that the quasistatic approxima-
tion to Sy (f) is only good at low frequencies, and that for large f the
results obtained from that approximation are too small.
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APPENDIX

It can be shown (see Ref. 7, p. 114) that

1 L] ‘:.\]-2 w
Sy(f) = oW f_w exp [_ﬁ f_“' (1 — cos 2mur) d.,u]

-exp [—72nfr] dr, (164)

ot

10"& ! ‘
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1074

1075 — | | 3

)Vzws\, ()
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———— QUASI-STATIC APPROXIMATION
SADDLE —POINT APPROXIMATION

— . -

IB*'\I

o-12

1013 |

3 3,I/a f
() w

Fig. 19— Spectral density of an angle-modulated wave, with gaussian phase
modulation with a rectangular spectrum. N = 5 radians, rms phase deviation.
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Fig. 20 —Bounds on fractional error in saddle-point approximation to the
spectrum. N* = 25.
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] ‘ \
N

3
/:
(38)

Fig. 21 — Spectral density of an angle-modulated wave, with gaussian phase
modulation with a rectangular spectrum. N = (6)* = 2449 radians, rms phase
deviation.
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Fig. 22 — Percentage error between the spectral densities obtained from saddle-
point approximation and that obtained from equation (19). It does not seem
possible to draw a smooth curve through the points shown in this figure. We
have, therefore, shown the error as a scatter diagram.

or

0 = [ {ow [ 57 [, (1= o o)

— exp [—N”][l + N? @f]}e”v dp.  (165)

From equation (165), it can be shown that

[ = exp [—Nﬁ—Lh y.]

Y
/: {exp [_fNIiV j:‘: cos % (x + jy.) d.u]
- [1 + N S——mx(i"';.y{y')]}e‘“ dz, (166)
and
@z, ) = N* S Re 2 : cos 7 (@ + ju.) du,  (167)
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or
Qal _ p2sinh y, _ E v o I
rZ,y,) = N ” W . €08 357 & cosh W Y du. (168)
Equation (168) yields
3 Ly N T
Qﬁ—y)zﬁfn L sin & cosh 5y, du. (169)
For0 = uz/W = =,
sin % z=0. (170)
Fory,=2 0,and 0 = p = W,
0=z =m, (171)
%sin%x cosh%z. =0, (172)
and from (169),
W@ 9) > 9 gzazzm (173)

ox

From equation (173) we then conclude that Qg(z, y.) is a mono-
tonieally increasing function of z for 0 = z = =
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