Uniform Synthesis of Sequential Circuitsf

By J. D. ULLMAN and PETER WEINERT
{Manuscript received July 19, 1968)

In this paper we consider the synthesis of sequential machines by
networks of a fived module with delay. We show that every binary in-
put n state sequential machine has an isomorphic realization using al
most p copies of a module with 2r + 1 inputs, where p is the smaller of

2r
r—1

(n'*1oee? 1 An't1oety gnd r2'/7), ([x] 4s the smallest integer = X.)

I. INTRODUCTION

The realization of an arbitrary binary output synchronous se-
quential machine by a network of copies of a fixed sequential machine
(module) or copies of a small number of machines is a problem which
has received recent attention.** An equivalent problem has been stud-
ied in Ref. 6. A design of this sort is particularly suited to batch fabri-
cation techniques, because it is possible to mass produce a fairly
complex integrated circuit (the module) and then wire these circuits
together to realize any desired sequential machine.

The machines, so constructed, will be fast; the time between inputs
need not be longer than the time it takes a single module to resolve
its output after a change in input, no matter how many modules are
in the network. The disadvantage of this technique, so far, has been
the large number of copies of the module necessary to realize a
machine; as many as 2" — 2 copies for an n state machine are re-
quired when using the modules of Refs. 1 and 2. These modules are
shown in Fig. 1 for the binary input case.

Not shown in any of our diagrams is provision for initializing the
output of any module to the hot (1) state if desired. Neither is pro-
vision for control of the module by a clock shown in this or any other
module.

 Portions of this paper appeared in the Proceedings of the IEEE 9th Annual
Symposium on Switching and Automata Theory, Schenectady, N. Y., October
1968

¢Princet0n University, Princeton, New Jersey.
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Fig. 1— Simple modules.

The modules of Fig. 1 each have two intermodule inputs, that is,
inputs to which either logical constants or the output of some module
will be connected. If a module with two intermodule inputs is uni-
versal (can realize any sequential machine having one binary input),
then there is a unique minimal network composed of copies of this
module realizing a particular sequential machine with a binary
input.>-2 If there are more than two intermodule inputs, there may be
more than one network realizing a given machine. We consider a class
of modules with different numbers of intermodule inputs and attempt
to design small networks consisting of copies of one of the modules
in the class.

The class of modules we use for single input machines is represented
schematically in Fig. 2a. There is a member of the class with 2r inter-
module leads for each r = 1. Let the module of Fig. 2a with a partic-
ular value of » be M, . Note that M, is essentially the same as the
module of Fig. 1la. M, is shown in Fig. 2b.

In what follows, we restrict ourselves to the design of networks for
the realization of machines with one binary input. The generalization
to the use of machines having k binary inputs is straightforward when
one uses a class of modules represented schematically in Fig. 3.

Notice that conventional designs of sequential ecireuits, represented
schematically in Fig. 4, require the construction of log; » Boolean
functions of & + log, n variables, where & and n are the number of
input variables and states, respectively, of the machine. The number
of gates necessary for a two-level realization of several functions of p
variables can be as high as 2%, so one would expect, even in the case
k = 1, to require as many as n gates for a realization in the form of
Fig. 4. We cannot show, for fixed r, that all n state machines with
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single inputs can be realized by networks of as few as n copies of M, .
However, we show that the number of copies of M, needed to realize
any binary input n state sequential machine is bounded above by two
functions of n. These functions, to within a constant factor, are 2"
and n'tleErt,
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Tig. 3 — Generalization of M.,.
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Fig. 4 — Conventional sequential eircuit.

II. DEFINITIONS AND BASIC CONCEPTS

A sequential machine will be denoted A = (K, 3, §, go, F'). & and =
are finite sets of states and inputs, respectively. F, the final stales, is a
subset of K. It is the set of states for which the output is 1. g, the
start state is a particular clement of K. § maps K X 3 to K. It gives
the next state for each combination of state and input symbol. The
function & is usually displayed as a flow table, with a row for each
state and a column for each input. The entry in the ith row and jth
column is the value of § for the ith state and jth input. The first state
will always be the start state. An example is shown in Table I.

We extend § to domain K X 3* by:}

(7) 8(q,¢) = gforall gin K.
(1) 8(q, wa) = & (8§ (g, w), a), for all ¢ in K, w in 3*, and « in 3.

The event defined by the machine 4, denoted T'(4), is {w | § (go, W)
is in F'}. That is, T'(A) consists of exactly those input strings which
cause A to go from the start state to a final state. For example, if 3
and 5 are the final states of the machine of Table I, then 110 is in
T(A), since 8§(1,1) = 6, (6, 1) = 4 and §(4, 0) = 5. 001 is not in
T(A) since §(1,0) = 3,8(3,0) = 1 and 8(1, 1) = 6.

Let B be a subset of %* for some finite set 3. For each w in 3%,
define the derivative of B with respect to w, denoted R/w to be set
of strings x such that zw is in B.%

7 2* is the set of all strings of symbols in Z, including e, the string of length 0.
1 This notion of derivative is “backwards” from that used in Ref. 7. It is
actually the quotient operation of Ref. 8.
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Let A = (K, 3, 8, qo, F') be a machine, and let = = {0,1}. We can
define two “inverses” of §, denoted o and p;. These functions map
sets of states to sets of states by:

w(G) = (g 8(g, 0) is in G},
m(G) = {g]8(g 1) isin G}.

For each subset G of K, let Ag be the machine (K, {0, 1}, §, go, G).
Let H = po(G) and J = uy (@). If R = T'(4g), then R/0 = T'(Ax)
and R/1 = T(A,). For w is in R/0 if and only if w0 is in T'(4g).
But w0 is in T(Ag) if and only if 8(go, w) is a state p such that
3(p, 0) is in G. Equivalently, w is in R/0 if and only if 8(go, w) is in
H. The argument for B/1 is analogous.

When talking about a fixed sequential machine, 4 = (K, {0, 1}, §,
o, F), we often identify T'(Ag) with G for each subset G of K. We
use G/0 and G/1 for p(G) and pi(G). For example, if A is the
machine of Table I and G = {1, 3, 5}, then G/0 = {1, 2, 3, 4, 5} and
G/1 = {3).

A network of a module M is an interconnection of copies of M
such that each intermodule input is connected to either the output
of a copy of M in the network or a logical constant (O or 1). The
external inputs of each copy of M (or corresponding external inputs
if a copy has more than one) are connected together and receive the
input to the network. One copy of M is designated the output of the
network; the network accepts an input sequence if the output of the
designated copy is hot (1) after receiving the sequence.

The module M, of Fig. 2b is repeated as Fig. 5 with certain points
marked. Suppose that this module is part of a network realizing the
event F of the sequential machine A = (K, {0, 1}, 8, o, F). Suppose
also, that it has been determined that the output of this copy of the
module must be some event G K. That is, the output of this module
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Fig. 5 — Points in the module M.

is hot exactly when the sequence of inputs to the network is in the
event (. Thus, when the last input appears at the external input of
this module, point a, the input to the delay, must immediately become
hot if and only if the last input completes a sequence in G.

Observe that point b can be hot only if the last input is 1 and point
¢ can be hot only if the last input is 0. Thus, immediately before the
last input appears at the external input terminal, point d must be hot
if and only if the previous inputs form a sequence in G'/1 and point e
must be hot if anly only if the previous input sequence is in G//0.

The union of the events at f and g must thus be G/1 and the union
of events at & and ¢ must be G/0. We are free to choose the events at
the intermodule inputs subject only to these constraints. For ex-
ample, we could choose the events at f and g to be those strings in G'//1
of even and odd length, respectively. However, we restrict our choice
so that the events at the intermodule leads will be representable as
sets of states of A.

Design, using the module M,, r > 2, proceeds the same way. If a
given copy of the module is to realize the event G, then the lowest » of
the intermodule inputs must be from modules realizing events Hy, Hoy,
-+« , H, whose union is G/1; the remaining r intermodule inputs must
be from modules realizing events Jy, Jo, -+ , J,, whose union is G/0.
However, some of Hy, -+ , H. or Jy, --- , J, may be the empty set
or the set of all states, in which case these events are “realized” by
logical constants rather than modules.

The above arguments justify the following reduction in the design
problem for the class of modules M,, r = 1:

Let A = (K, {0, 1}, 8, g, , F) be a sequential machine. An M -syn-
thesis of A is a set $ of subsets of K having the properties:

(¢) Fisin 8.
(#%) If G is in 8, then there are sets H,, H,, *++ , H, and
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Jo, Jy, +-+, J. in 8, not necessarily all distinet, such that

\UH.=6G/1 and \JJ, = G/0.
i=1 iml

From what we have said concerning the flow of signals in the
module M, , we may conclude that if § is an M ,-synthesis of 4, then
there is a network of m copies of M, realizing T'(A), where m is the
number of elements of $ that are neither ® nor K.t We call m the
size of 8.

Notice that an M,-synthesis requires that all modules realize events
which are identifiable with a set of states. Such networks are called
isomorphic to A. There may be networks of copies of M, which realize
T(A), but are not M,-syntheses of A. However, in our search for small
networks we shall not consider any networks except those which are
M -syntheses. See Ref. 5 for some comments on the existence of non-
isomorphic realizations of sequential machines.

III. CONSTRUCTION OF M ,-SYNTHESES

The purpose of this paper is to show that M,-syntheses of small
size exist for an arbitrary n-state sequential machine. The first bound
on the size of an M ,-synthesis is straightforward.

Let A = (K, {0, 1}, 8, go, F) be an n state sequential machine. We
may choose 7 disjoint subsets of K, say K, , K,, -+ , K, , such that
\UJ:.. K. =K and no K., 1 £ 7 = r, contains more than [n/7] states.}
Let s = (F} U {G| G C K, for some ¢}. To see that 8 is an M,-syn-
thesis of 4, we have merely to observe that any subset G of K can be
expressed as \J;., G;, where G; = @ N K, C K, for all <. Thus, for
any H in 8, H/0 and H/1 are both the union of » elements of 8.

The size of § is no greater than 1 4 r (2™ — 1), which is almost
2", We thus have:

Theorem 1: If A is an n state sequential machine, with a single binary
input, then there is an M,-synthesis of A using at most r2("/*1 copies

of M.

Notice that Theorem 1 is not dependent upon the assumption that A
has a single binary input. The machine A in that theorem can have
any number of binary inputs. Of course, the appropriate generaliza-
tion of the input module M,, as given in Figure 3, must be used.

+ & denotes the empty set.
+ We use [z] for “the smallest integer equal to or greater than z.”
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Example: We use a technique suggested by Theorem 1 to design a net-
work for the sequential machine of Table I with final states {4, 5, 6}.
We generate subsets in a sequential manner, and terminate when no
new sets are required. Let » = 2 and let the states be divided into two
sets Ky {1, 3, 5} and K» = {2, 4, 6}. Now {4, 5, 6}/0 = {2, 4, 5} and
{4, 5,6}/1 = {1, 2, 3, 4, 6}. If we intersect {2, 4, 5} and {1, 2, 3, 4, 6}
each with K; and K,, the inputs to the module realizing {4, 5, 6} must
be connected to modules realizing {5}, {2, 4}, {2, 4, 6} and {1, 3}.
The two derivatives of each of these sets are found among {2, 4, 5}, {6},
(1, 3}, {3}, {2, 5, 6}, {1, 2,4, 5, 6} and ®. Intersecting each of these
sets with K, and K., we find that the network needs modules realizing
the events {6}, {3}, {2, 6} and {1, 5}, in addition to the modules
already used. Proceeding in this way, we find that the entire network
also requires modules realizing {1}, {4} and {3, 5}. The completed net-
work is shown in Fig. 6. Modules are labeled with the event (set of
states) they realize. Those modules realizing a set including state 1,
the start state, must initially give a 1 output. Inputs to the module
are shown in no particular order, and inputs not shown are connected
to 0.

The second bound uses the concept of partitions on the set of states
of a finite automaton.? A partition on a set of states K is a set of
disjoint, nonempty sets, called blocks whose union is K. If A =
(K, {0, 1}, 8, qo, F) is a sequential machine, we can associate with
every string w in {0, 1}* a partition IT,, as follows:

(1) Me = ({q1}, {q2}, -+, {gu}), where K = {q1, g2, ~** , qu}.T
() For any w in {0, 1}*, let I, be (K;, Ks, --- , K,). Let
.o be the list of nonempty sets & such that G@ = K,;/0 for some 7 and
T, be the list of nonempty sets H such that H = K;/1 for some 1.
Example: Consider the machine of Table I. II, = 1, 2, 3, 4, 5, 6)
I, is the list of sets of states that map to a single state under a 0
input. Thus, I, = (1, 245, 3, 6). Similarly, II; = (14, 26, 3, 5). Pro-
ceeding, we can calculate Igoand ITyy from IT, by seeing which sets
of states map onto a single block of II, under inputs 0 and 1, respec-
tively. For example, states 2, 4, 5 and 6 are those which map under a
0 input to one of the states 2, 4 or 5. We find Iy, = (1, 2456, 3) and
Iy, = (14, 2356). Also, My, = (1, 245, 3, 6) and IIy; = (145, 26, 3).
A partition IT is said to represent a family of sets, namely those sets
+ We denote partitions by lists of the blocks. Sometimes it is simpler to repre-

sent each block by a string of states not surrounded by brackets. Thus ({q:, qa},
{qs}) will appear as (qiqe, gs).
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Fig. 6 — Network suggested by Theorem 1.

which are the union of some of the blocks of II. For example, IT,, above
represents the sets &, {1, 4}, {2, 3, 5, 6} and {1, 2, 3, 4, 5, 6}. Suppose
o, = (K,,K,, -+, K,) and G is the union of jof K, , K, -+, Kn,
say @ = K;, U K,;,, U -+ U K; . Then for a = 0 or 1,

G/a = K; fa\J K,,/Ja\J --- U K, /a is represented by II., and is,
in fact, the union of, at most, j blocks of II,,, . Armed with this obser-
vation, we prove:

Theorem 2: For every n state sequential machine with single binary input
A = (K {0,1}, 8, qo, F) and r = 2, there is an M,-synthesis of A of
S?;Ze at most 2r21' l(nl+log,2 + 4nl+lag,4)-
Proof: Let j = [log, n]. Define the blocks of those partitions II, , such
that | w | £ 71 to be basic events. We will choose 3 to be a set of pairs
(G, w), where G C K, wis in {0, 1}*, and for each (G, w) in 3, G is re-
presented by II,, . After constructing 3, we construct 8, an M ,-synthesis
of A, from 3 by § = {®} U {G | (G, w) is in J for some w}. We con-
struct 3 by:

(z) (F, eisin 3).

(1) If G is a basic event, then (G, ¢) is in 3.

(473) Let (G, w) bein 3, |w | < j, and let G be the union of k& blocks
of I, . We may choose H, , H,, --- , H. such that their union is G/0

¥ |w| denotes the length of w.
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and for each ¢, H; is the union of from zero to [k/r] blocks of IT,,, . Also,
choose J,, J,, ++- , J, such that their union is G/1 and for each 2, J;
is the union of from zero to [k/r] blocks of IT,,; . If H; is not ® or a basic
event, add (I, , w0) to 3. If J, is not ® or a basic event, add (J, , wl)
to 3.

We say that each (H; , w0) or (J;, wl) in 3 is in the family of (G, w).
We extend the notion of a family by saying that (G, w) is in its own
family and if (H, ) is in the family of (G, w) and (J, %) is in the family
of (H, z), then (J, ) is in the family of (G, w). The family of (G, €),
where (7 is I or a basic event, can be thought of as the set of elements
that must be in J because (G, €) is in 3.

We must show that 8§ is an A, -synthesis of A. If (G, w) is in 3, then
@ consists of at most #'~'! blocks of II,, . (Since »’ = n, we haver’ ' =
/el = [n/r]; 7% = [ /r] 2 [[n/r]/r] and so on.) We may conclude

that if | w | = j, then G would be a basic event, and hence, for no G and
w of length 7 is (G, w) in 3. If G is a basic event or F, one can, by rule
(¢7) find H, ,H,, --+ ,H,and J,, J», - -+, J, such that

G =\JH,, 6G/1=UJ;.
i=1 i=1
For all ¢, either (H;, 0) isin 3 or H; = ® or H, is a basic event, and
either (J,;, 1) isin 3 or J; = ® or J, is a basic event. In any case, all of
H ,Hy,, - ,H . and J,, Jo, -+, J, arein 8. If (¢ is in § but G is
neither a basic event not F, then it must be that (G, w) is in
Jand | w | < 7. But in this case, it again follows immediately from rule
(#7¢) that H, , H,, -+, H,and J,, J2, *++, J, in § can be found with
\Ji.. H: = G/0and i, J: = G/1.

We must now put a bound on the size of 8. We do so by bounding
the number of elements in the families of all (G, €) in 3. The sum of the
sizes of all these families bounds the size of 8.

Suppose G consists of k states and m = [log.k]. TFor each ¢ = 0, there
are at most (2r)° elements (H, w) in the family of (G, ¢) such that |w| = 7.
If (H, w) is in the family of (@, €), then H consists of at most pmiel
blocks of II,, . Thus the family of (G, €) contains no pair (H, w) such
that |w| = m. An upper bound on the size of the family of (¢, €} is
1 + 2r 4+ (2 + -+ 4+ (29™". This number does not exceed
@r™/(2r — 1). But m = 1 + log,k, so (2r)™"" = ko2,

We may conclude that the family of (¥, ¢) consists of at most

21‘2—11 n'*1°5? elements. We must also bound the families of the basic

events, and do so by the following argument.
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Let N, be the number of basic events consisting of exactly k states.
There are 1 + 2 + 4 + --- 4 27 partitions II, where |w| < j. The
number of these partitions is at most 2”**; the blocks of each partition
have among them a total of n states. Thus:

; EN, < n2/, 6))

An upper bound on the sum of the sizes of the families of all the basie
events is

- 2r 1+logr2
.:Z:; Nig—k .

Sinee k does not exceed n in the summation, we have

= 2?' 1+logr2 < 27' logr2 -
;N"%—lk =9 —1" ;kN"'

Using equation (1), we see that the sum of the sizes of the families
of all basic events is bounded above by 2r/(2r — 1)n'*'°#*2*!, Since
i <1 + log, n, this bound becomes 8r/(2r — 1)n'*!°e*,

Including the family of (F, €), we see that the size of § is no greater
than 2?'2-?'_ 1(n1+logr2 + 4n1+lugr4).

We comment that a straightforward generalization of this argument
shows that every sequential machine with p binary inputs (2° symbol
input alphabet) can be realized by a network of at most 2%r/(2r — 1)-
(n}*»losr2 | APp1+2 1osrt) gopies of the generalization of the module M, .
Thus, for any number of binary inputs p, and any ¢ > 0, there are
constants r and % such that any n state sequential machine with p binary
inputs ean be realized by a network of at most In'*° copies of a module
with 27r intermodule leads.

Example: Theorem 2 suggests the design of a network of copies of M,
for the machine of Table I with states 4, 5 and 6 final. That machine
has 6 states and [log. 6] = 3. However, in this case the construction of
3 given in Theorem 2 will not require the addition of any pair (G, w)
where | w | > 1. So we may restrict ourselves to consideration of certain
sets represented by the partitions I, , for | w | = 2. These were caleu-
lated in the previous example:

m =(1,2,3,4,5,6) I,, = (1,2456, 3)
I, = (1, 245, 3, 6) o, = (14, 2356)
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I, = (14, 26, 3, 5) o, = (1, 245, 3, 6)
o, = (145, 26, 3).

We begin by placing ({4, 5, 6}, ¢) in 3. {4, 5, 6} /0 is the basic event
{2, 4, 5}, and {4, 5, 6}/1 is the union of three basic events {2, 6}, {3]
and {1, 4}. These three must be formed into two groups; we choose to
realize {2, 3, 6} and {1, 4}. We place ({2, 4, 5}, ¢) and ({1, 4}, ¢ in 3,
since these are basic events, but since {2, 3, 6} is not a basic event,
we place ({2, 3, 6}, 1) in 3.

{2,4,5}/0 = {2,4,5}\V {6}, s0 ({6}, ¢) is placed in 3. {2, 4, 5}/1 can
be expressed as {2, 3, 6} \J {5}. We thus place ({5}, ¢) in 3. {1,4}/0 =
{3} and {1, 4}/1 = {2, 6}. Each of these are basic events, so ({3}, €
and ({2, 6}, €) are placed in 3. {2, 3, 6}/0 = {1} \U {6}. These are basic
events, so we add ({1}, €) to 4. {2, 3,6}/1 = {1, 4} \J {5}; these basic
events are each represented in 5 already. Proceeding, we find that the
basic events added to J require no new events, basic or not. The re-
sulting network is shown in Fig. 7.

IV. CONCLUSIONS

We have considered the design of synchronous sequential machines
by networks of a fixed module. This design has various advantages,
including speed and ease of production using bateh fabrication. It was
shown that there is a family of modules M, , r = 1, such that any n
state sequential machine with a single binary input can be realized by

a network of at most p copies of M,, when p is the minimum of r2""
2T 1+loge2 1+logrd
and ] l(n + 4n ).
L
1 5 236
3 — ¢ 245 —] 456 |0

26 14

—

Fig. 7— Network suggested by Theorem 2.
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We feel that the type of design suggested in this paper leads to

many interesting questions. In particular, the bounds expressed
in Theorems 1 and 2 do not seem to be attained, or even approxi-
mated, in most cases. Efficient search techniques will probably yield
much better networks than indicated; there is every reason to sus-
pect that the bounds themselves can be improved, even if we restrict
consideration to isomorphic networks.
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