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This paper considers the propagation of scalar (acoustic) waves from
a single-frequency point source imbedded in a medium with random re-
fractive index, in contrast with the usual plane-wave case in which the
source is far removed from the medium. With the index being a stalistically
homogeneous and isotropic function of position, but not a function of time,
the average complex field u.(r) = {(u(r)) and the spatial covariance
(u,(r)u*(p)) of the fluctuation field u;(r) = u(r) — u,(r) are calculated.
Beyond a few correlation lengths from the source, the average field can be
approximaled by a spherical wave with the same complex wavenumber
found in the plane-wave case. A near-source wave number is also obtained.
Under an tmproved far-field condition, the spatial covariance is reduced
to spectral integration formulas for both iransverse and longitudinal separa-
tion of the receiving points. These formulas reveal that correlation lengths
are much longer in the point-source case than in the plane-wave case, even
though the relative variances are the same. We illustrate this result with
plots for an exponential index spectrum and for a constant spectrum.

I. INTRODUCTION

TFor analysis of a detection or communication system which proc-
esses signals from an array of sensors, a convenient postulate is that
the signal field in the vicinity of the array is a plane wave (or perhaps
a finite collection of plane waves in the multipath case). Under such a
postulate, coherent addition of the sensor outputs can yield array
gain and directivity in the presence of ambient noise. However, there
is always some disparity between the predicted performance and the
performance realized in practice. In part, the disparity can be at-
tributed to shortcomings in the signal model, the field not being a
time-invariant plane wave in the vieinity of the array. The output of a
single sensor may not be constant in time but instead is apt to
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fade. Moreover, the outputs of different sensors do not fade “in step”;
that is, after the array is steered, the signals do not fade with the
unity correlation predicted by a fading-plane-wave model. Instead,
the signals fade with correlation less than unity. The origin of these
fading phenomena is the subject of this paper.

A simplified model of fading is considered within the framework
of the following assumptions. For a short period of time, the trans-
mission properties of a propagation path are constant; then they
undergo small deviations to attain another constant configuration for
the next short period of time. These short-term deviations are relative
to some nominal or average configuration, as opposed to representing
a slow gross trend of the overall path properties. Such short-term
deviations are modeled here by the effects of random fluctuations of
the index of refraction, which could be associated in the under-
water acoustic case, for example, with the temperature microstructure,
turbulence, and ecirculatory motion of water masses. Deviations of path
properties associated with fluctuations of a surface of reflection are
not incorporated into the model. Thus, the model is most appropriate
for short-term deviations of the properties of a pure-refracted path.

In the specific situation analyzed below, the acoustic source is a
single-frequency point source suspended far from any boundaries. If
the refractive index were nonrandom and not position dependent,-
the acoustic field would be the usual spherical wave. Instead, the re-
fractive index is a random function of position, but not of time. The
average value of the index is not position dependent, so that the aver-
age line-of-sight ray path is straight rather than bent. The spatial
covariance of the index is a function of the magnitude of the position-
difference vector (the index is second-order homogeneous and iso-
tropic). The problem is to find the average and spatial covariance of
the acoustic field.

Much of the literature (for example, Refs. 1-3 and most of Ref. 4)
is concerned not with the above spherical-wave problem but with a
situation in which plane waves impinge upon a half-space with
random refractive index. One essential difference is that the spherical-
wave source is imbedded in the random medium whereas the plane-
wave source is far removed from the random medium. Regardless of
how large the distance from the spherical-wave source to an observa-
tion point becomes, this difference of configuration is preserved.}

+ The configurations are called the “radio link problem” (spherical) and the
“radio star problem” (planar) in Ref. 9.
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Some aspects of the spherical-wave case have been treated with the
Rytov method (Refs. 4-5) and other techniques (Refs. 6-8).

This analysis treats the spherical-wave problem with a version of
perturbation theory previously applied to the plane-wave problem.*?
For distances greater than a few correlation lengths, the average
field can be approximated by a spherical wave with the same complex-
valued wave number previously derived in the plane-wave case.®* A
near-source wave number is also obtained. On the other hand, it is
found that the covariance function of the fluctuation field exhibits
much larger correlation lengths in the spherical-wave case than in
the plane-wave case.** This conclusion follows from simple integra-
tion formulas for the covariances and is illustrated by plots of the
covariance for special cases.

II. PERTURBATION THEORY

We consider the propagation of acoustic waves in a random time-
invariant medium for the case of a monochromatic omnidirectional
source. Our model is the Helmholtz equation:

[V + (1 + w@)) K Ju(r) = —8(r) (1

where V7 is the Laplacian V-V, u(r) is the random deviation of the
index of refraction which is a function of position r, k2 = ®/c% ¢ is the
sound velocity for a homogeneous medium if u were everywhere zero,
w is the angular frequency of the source, u(r) is the complex amplitude
(for example, the displacement potential), and & is the Dirac delta func-
tion. The time dependence exp (—iwt) has been suppressed. We assume
the source is suspended far from any boundaries; that is, we consider the
medium to be unbounded.

Our interest is in both the mean field (x) = u, (coherent field) and
the fluctuation field v — w, = wu; (incoherent field), where { ) de-
notes expectation.

We develop a pair of equations for u, and w; as follows. Consider

(L + Ly + €LoJu = f @)

where I is a linear deterministic operator, L; and L. are linear
stochastic operators, e is a size parameter, and f is a deterministic
forcing funection. With p in (1) replaced by eu, the correspondence of
(1) and (2) is evident. We put © = u, -+ u; into (2) and operate with
{ ) to obtain

[L + L) + 52(L2>]uc =f— L) — €2<Lzu-‘>- (3)
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We then subtract (3) from (2) in which v = u. + w; to obtain

[Lu; + e(Lou; — (Law)) + € (Lau; — (Laui))]
= —e(Ly — (L)u, — €(La — (La))u, - 4
Equation (3) shows the source f of the mean field is countered by the
sink e(Lyu;)) + €(Low;) deseribing the effects of scattering into the
fluctuation field. Equation (4) is not written to exhibit true sources of
u; as much as to exhibit a zero-mean forcing function and zero-mean
terms on the left side. These equations are generalizations of those
derived by Keller [Ref. 2, p. 166, equations (12) through (13)] for
other purposes.
Solution of (3) and (4) can proceed with perturbation theory for
the case of small . Relative to € = 0, equation (3) exhibits v, = O(1)
and (4) exhibits u; = O(e). Accordingly, (3)—(4) can be rewritten

L+ (L) + (L), = [ — (L) + O() 5
Lu; = —e(Ly — (Ly))u. + O(<). (6)

These equations can be partially uncoupled by operating with L= on
(6) and substituting into (5) to obtain

[L + eLy) + €(Lo)lue = f + €(LL7" Lijue
— L Lo, + OE) (D)
u; = —eL Iy — (Ly))u, + O(€). (8)
Equation (7) for the mean field u, is the result obtained by Keller
(Ref. 2, p. 148, equation (10) ), who used a successive-substitution
solution of (2) in conjunction with a crucial, and at-first-glance
mysterious, replacement of L'f by (u). Equation (1.8) is a version of
Keller’s equation (31) on p. 169 of Ref. 2. Thus, we have shown that
these equations arise quite naturally from the pair (3) and (4).
We now specialize (7) and (8) to the case of the Helmholtz
equation (1). Here,
L= 4k L =20k L =ug0Ok. )
We assume (u(r)) = 0; that is to say, we neglect any systematic

dependence of refractive index upon position (the average profile).
We have

g(r') dr’, (10)

o [exp Gk, [r—1 [
L7g = f dr |r — 1" |
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where the integral is over all space. The inverse L™ is an integral
operator with kernel corresponding to the Green’s function

exp [k, [r — " |]
dr |r — 1" |

G, ") =

(11)
Thus, the pair (7) and (8) is specialized to

[V* + k(1 + €u0))]u(r)

—_ _a(r) . 462}‘:4 f exp [ikn |T _ T’ |]

(ur)u)u (') d' + O(€)

4 |r — 1" | 12
12
w) = 2a2 [ SRR ey ar + 0@). as)

III. THE AVERAGE FIELD

We now develop an approximation of the solution of (12) for the
average field u,. It is assumed that the refractive index is statistically
homogeneous and isotropic. The index covariance function is

r(|r—1"1]) = (@u@)). (14)
Equation (12) becomes

(V* + KL + €70 ul)
= ) — 4k [ —PH T o Dudlr + #) do + O(E).

(15)
We assume an approximation of w,(r) of the form
exp [ik |7 |]
ar |7 ] (16)

where & is a constant wave number to be determined (k # k,). It will be
found that (16) is not a global solution, because a constant & cannot
exist. Nevertheless, (16) can serve as a useful local approximation of
the solution, with & interpreted as a weak and slowly varying function
of | r].

If (16) were the solution, then u, would satisfy

(V? + K lu(r) = —a(r). (17)
Then (15) and (17) yield
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[E[1 + €T(0)] — & }u(r)

=—wmfﬁ%%%ﬁhﬂﬂmw+mw+0®. (18)

The volume integral in (18) can be evaluated by an integration over
the surface of a sphere with radius R followed by a radial integration
from B = 0 to R = 0. For the surface integration, we need only
observe

-/.;:Ipl-k e (T + P) 4 R—

ui(r) SRR 0 <R<|r|
= (19)
u.(r) sin k& |1f'|eXp [Zk(gR_ [~ D] , R>|r|

where dS is a differential of area on the sphere 8 = {p: |p| = R}.
This mean value theorem follows from (16) and (17); see Appendix
A. Then (19) inserted into (18) yields
{k* — k1 + €r(0)]}u.(r)
4&2:1{;4

Irl
u (r)[ f exp (ik,R)T(R) sin kR dR

+ fm exp (ik,R)T(R) sin k | r | exp [k(R — | r |)] dR:I + 0.
Ir|
(20)

f (16) were an exact global solution, then u,(r) could be cancelled
in (20); the result would be a relation for the supposedly constant
wave number k. But the integrals in (20) suggest that the relation is
| r |-dependent, which is a contradiction. Nevertheless, (16) will
serve as a local approximation of %,(r) in regions in which k& is vir-
tually constant.

The following manipulations are made upon the integrals in (20).
We run the first integral from 0 to = and correct for its contribution
from | r | to « by another term in the second integral. We then change
the variable of integration of the resultant second integral. Then (20)
becomes

= K1 + €T(0)) + 45 L7 [ f " exp (ik,R)T(R) sin kR dR
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— exp [i(k, — k) |7 ] f " exp (ikR)T(| 7 | +R) sin kR dR:I +0(&)
(21)

The |7 |-dependence is now confined to the second integral. The
large-| r | case occurs when we can assume this integral to be negli-
gible, namely

lexp [i(k, — k) [ )| T(|r | + R) K T(R), Re[0,R], (22)

where we assume the first integration can run from 0 to R, with
little error. The condition (22) shows that | r | must be much larger
than a correlation distance; moreover, (22) shows that the increasing
function exp[ (Im &) |7 | ] must be taken into account.

Thus, for large | 7 |, the wave number k satisfies

k=~ ki1 4 £T(0)]
4t

k
This is the relation found by Keller [Ref. 2, p. 151, equation (14)] for
the plane-wave problem. As expected, the spherical wave solution far
from the source has the same wave number as the plane-wave solu-
tion.

The small-| r | case oceurs when the integrals in (21) nearly cancel
one another; the wave number k is given by

k* ~ k1 + €T(0)] + O() (24a)

+ fo " exp (ik,R)T(R) sin kR dR + O(®).  (23)

or

k=~ k(1 + 3T(0)] + O(). (24b)

Whereas (24) yields the small-| r | values of k directly, notice that
(23) determines the large-|r| values of k in an implicit fashion.
However, an explicit approximation of the large-|r | value of k can
be obtained. Notice that (23) could be solved by successive sub-
stitutions, the first step employing either k, in the integral below or
employing (24) as follows

45Kt
k

f " exp (ik,R)T(R) sin kR dR

4élt

~ L TE f " exp (ik.R)T(R) sin {k[1 + TR} dR
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~ 4¢k3 [ exp ik R)T(R) sin (k.B) cos k,[3CT(OR)
+ cos (k.R) sin k,[A*T(O)R]} dR
~ 48K f " exp (ik,R)T(R) sin k,R dR. (25)

Since terms have been discarded consistently insofar as powers of e
are concerned, approximations (23) and (25) yield

W~ K1 + €T(0)]
+ 4€°] f ) exp (&, R)T(R) sin k,R dR + O(¢). (26)
From (26), it follows that
k=~ k[l + 3T(0)]
+ 26K fﬂo exp (¢k,R)I'(R) sin kR dR + O(é), 27
or equivalently
Rek =~ k,[1 + 3£T(0)] + €k2 fm I'(R) sin 2k,R dR + O(¢"), (28)
and
Im k ~ &k f (1 — cos 2k,R)T(R) dR + O(&). (29)

If T has a correlation length L, and if k,L, >> 1 (a large-scale condition
not yet imposed), then

Imk =~ k> f I'(R) dR. (30$)
1]

Also, accuracy of the approximation (25) requires the bracketed fac-
tor in the integrand to be equivalent to sin k,R; this holds when

k,e'T(0)L, < 1. (31)
But

f " I(R) dR ~ TO)L, ,

and (31) is equivalent to
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Imk<<Fk,. (32)

When (32) is not met, neither (28) nor (30) can be expected to be
a good approximation. Also, for the successive-substitution procedure
to yield a good approximation at this first step, it appears sufficient
that the first step value (28) be well approximated by the initial
value (24); equivalently,

() > k, f " I(R) sin 2k,R dR, (33)

which is a restriction on the large-wave number value of an integral
which resembles the spectrum of T.

The approximation (16) for the average field wu,(r) together with
(23) and (24) for the large-|r | and small-| r | values of k comprise
the principal results of this section. The further approximations (28)
through (30) for the large-| r | case are more useful than (23), but
conditions (31) through (33) must be met. When (28) through (30)
are compared with the small-| r | approximation (24), it can be seen
that the spherical wave (16) develops attenuation and a change in
phase velocity as |7 | increases. The transition from small-|r| to
large-| 7 | behavior occurs when (22) begins to hold, namely, when
the second integral in (21) begins to become negligible. The order of
magnitude of this transitional value of | r | is a few correlation lengths.

IV. COVARIANCE OF THE FLUCTUATION FIELD

The previous section provides a solution of (7) or (25) for the av-
erage field u.(r) which now can be used in (8) or (13) to yield the
fluctuation field w;(»). Thus, (11) and (13) yield

w() = 262 [ G, ) ' + 0@), (34

where u,(+") is given by (16) in which &k is a weak function of |+’ |.

The spatial covariance function (u;(r)u*%(p)) is now computed for the
case in which the medium is statistically homogeneous and isotropic.
Equations (34) and (14) yield

o) = 108 [[ 6,16, )

T(| " — p’ Dulut(p)) dr' dp’ + O().  (35)

1t is convenient to change to the following variables of integration
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(with unity Jacobian):

! !
y=%, z=r"—p, (36)
where
r’=y+§, p’=y—§- (37)

Moreover, it is convenient to evaluate the fields at the following
points:

r=n+%, p=n—%. (38)

where, by definition,

n= 9 3 E=T*p. (39)

The relation of the positions (36)—(39) is shown in Fig. 1. The
covariance of the fluctuation field w; is thus

(oo le-3)

&
=4Jk‘:ff(;'(n+%,y+§)0*(n—a,y—g)l‘(lxl)

x

u(y + g-)u*:(:u - 5) dz dy + O(e). (40)

In words, the second-moment of the fields at observation center 4
with observation position-difference vector ¢ comprises the integrated
effect of scattering of the average field by the refractive index at scat-
tering center y with scattering position-difference vector z.

We now approximate the integrand of (40). Although the approxi-

Fig. 1 — Scattering points 7, o' and receiver points r, p.
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mations are not valid over all space, they are valid for a region which
can account for the major contribution to (40) in the case to be de-
scribed later. The first approximation involves

WAYar ) ' =exp[z'ko([r~r’l—|p—p’ l)]
G(T,? )G (ps p) (47{)2 |'n" __TI l'{ p— pl | (41)
But
|7 =7 | =|n—y+3E—2)|
g IE——w
= n—y |+ TR (42)
and
le—p'[=1]n—y—2E—2l
_ - — ,
—ln—y| - EEEOED o

The above expansions in powers of (§ — z) are appropriate for a large
vector 7 — y as perturbed by the small vectors =3(¢ — z). Our approxi-
mation of (41) is

6(o+5.v+5)e( -5 -3)

~ 3 3 43
@m)* [ n —y | )
exp [ik,(y)- (& — 2)]
= ] 3 44
4m)* |7 — v | 44
where the relation

g Y

k@) = ko —, | (45)

defines a scattering wavevector .

The second approximation involves replacing the coherent-field factor
u(y + z/2u*(y — 2/2) by a function that locally represents the
fields as plane waves. Thus, it follows from (16) that

T
- 2)]

. - exp [i(k
w(y+5)lv-3) - ‘
¥Y—5
2

(4m)°

y-l—%!—k*

(46)

T
y+2




1140 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1969

where the wavenumber k is a weak function of position. But

] 1
y+"2"‘=ly|+.;.|y|-x+--- (472)
|

z|_ 1y
lv=3|=lvl—gp, e+ > (47b)

leads to the approximation

wy + Dty — £) m fww) P oo, 48)
where
kw) = Re b) 15 (49)
defines an incident wavevector, and
2 _exp(—=2Imk|[y])

Colleeting these approximations into (40) yields

ulo+ 3ol 5)

~ 4R f & exp [ik,(y)-£ exp [-2 Im k | y []

@n) [n—y "yl

[ dz T % | exp tilkG) — k@))-x) (51)

This is the central result of this section. Equation (51) has the
physical interpretation of a volume distribution of sources. The
source at y generates a plane wave at the receiver with correlation
exp[iks(y) -£]. The strength of this wave is proportional to |5 — y |
| ¥ |* and to the value of the spectrum

S(e D = [ de (12 ) exp (ic-z) 5

as evaluated at the local wavevector k(y) — k,(y). At this wave
vector, the spectrum is a measure of the amplitude of those com-
ponents of refractive index with the orientation and the periodicity
required for constructive interference (Bragg scattering; compare
with Ref. 4, pp. 68-69).
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The physical justification of the above approximations follows from
(40) by noticing the role played by the index covariance I' in the in-
tegrand. The weighting introduced by T means that scattering from cen-
ter ¥ depends upon the neighborhood of y with linear extent L, , where
L, is the outer seale. First, the local plane-wave approximation (48) is
poorest near the origin where the wavefronts are most curved. With a
criterion of not more than 7/16 radian departure from plane-wave phase,
Fig. 2 shows that | y | must be larger than 4L7/X. In fact this usual far-
field condition can be replaced by |y | > 4L,(L./ M)} which is less re-
strictive when I, > \. This weaker condition, derived in Appendix B,
follows from an overbound of the phase error in (48) caused by elimi-
nating the remainder of (47). Second, the scattering approximation
(43) is poorest near the observation center n where the phase (and
amplitude) of (41) can experience large excursions as ', p range over a
neighborhood of linear size L, . A usual far-field condition is|lg—yl|>
412 /\or|n —y| > 4(|£| + L,)*/\. Again, when L, > ), only a weaker

condition,
L\
o= ol > 4]+ 2o HELEE), 53

need be met. Condition (53) follows from an overbound of the phase
error in (43) associated with the remainder in (52), (see Appendix B).
Strictly speaking, the y-integration in (51) must exclude the near-source
and near-receiver spheres of radius 4L,(L,/ M3, and their contributions
must be evaluated separately. In Section V we give a condition necessary
for this contribution to be negligible.

— 5
|
Lo
2
| 1 Lo/2 A N/32
LTy Co/2
OR
4l2
9l 2%
.S
3z

Fig. 2 — Distance for the plane-wave approximation [in fact, only 4L, (Lo /)12
required].
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Apart from the excluded regions of integration, the validity of ap-
proximation (51) does not rely upon a “large-scale” condition re-
quiring the wavelength A to be much smaller than some refractive-
index scale size. But when such a condition is met, (51) yields both
a maximum angle of important scattering and a finite volume of
important scattering. In the approximation (51), the refractive-index
spectrum (52) is evaluated at the local wave vector,

k(y) — k.(y). (54)

Suppose there exists an inner seale [, such that for | k | > 2#/1, the spec-
trum (52) is negligible. Since the maximum magnitude (54) can attain
is of order 4w/\, whereas 2z/\ 3> 2x/1, , it follows that the integrand of
(51) is large only for values of y such that

[ k() — k() | < 27/1,. (55)

Under the assumption that | k(¥) | = k, = 2x/), condition (55) yields
the maximum angle of important scattering. With ¢(y) the angle
between k(y) and %, (y), asfshown in Fig. 3, we have

| k@) — k() [ = 282 — 282 cos y(o) = 4k sin® B2 (5p)
Then (55) and (56) yield cos ¢(y) > 1 — A*/2% or 21,/X sin ¢(y)/2 < 1
or approximately ¢(y) < A/, .

These conditions may be used to find the region of important scat-
tering. Figure 4 shows cylindrieal coordinates with origin at the midpoint
between transmitter and receiver; there is rotational symmetry around
the transmitter-receiver axis. With tan ¢ constant, we have

tan « + tan g8

tan ¥ = tan (@ 4 8) = ] — tanatan § (67)
But
b
tan & = 7 (58)
2
tan 8 = — (59)
2
57— a
Algebraic manipulations which include completing a square yield
" iv) = )
a+(b+2ta,nu’z " \2gin ¢/ - (60)
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Fig. 3 — Angle of scattering.

Equation (60) is a circle in the a-b plane passing through the trans-
mitter and receiver-center locations, Fig. 5. The slope of the curve is

D 6D
2 tan ¢
Thus, near the transmitter,
b db = tan ¢, 62)
L da
2 (—L/2,0)
and near the receiver
b db _
17 R - = tan y. (63)
=~ —a
2 (L/2,0)
Also, at the midpoint @ = 0, (60) yields
_Lf1 1 ) _Lin ¥
b =3 iny tany =g tang (64)
b
"
i 8
-t L a
2 2

Tig. 4 — Coordinates for the region of important scattering.
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L/2 L/a

2 SIN¥

TL TANY

Fig. 5— Region of important scattering (spherical waves).

The condition for important seattering is

2

N oa
cosy > 1 2F = cos V.

1969

(65)

The volume specified by (65) is enclosed within the surface generated
by rotating the arc of the circle (60), with ¢y = ¥, around the trans-
mitter-receiver axis. This volume lies within the volume common to
two cones with apexes at transmitter and receiver, each cone with

half-angle .

For the large-scale case, A K I, = L, , a condition necessary for (51)
to be an accurate approximation of the covariance (40) is now apparent.
The volume of important scattering shown in Fig. 5 must be much larger
than the volumes in which the integrand of (51) is a poor approximation
of the integrand of (40). These comprise a near-source cone of axial
length 4L*/A} and a near-receiver cone of axial length 4(L, + | £|)*2/A}.
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An equivalent condition is seen to be that the transmitter-receiver
distance must be much larger than the axial lengths of these cones, that
is to say,

L=|n]|>4L,+ | £/ (66)

It remains to observe that the covariance expression (40) is itself
an accurate relation provided that the average field is not severely
attenuated by virtue of scattering into the fluctuation field. The at-
tenuation exhibited in (50), as evaluated throughout the above region
of important scattering, must be small; that is to say,

(Imk) [ 7 [ <1, (67)

where Im % is given by (30). Combining conditions (66) and (67)
yields an interval for validity of (51). When | ¢ | = 0, this interval is

LN |y | < (Imk)™. (68)
In other words, the transmitter-to-receiver distance must be (1) suf-
ficiently large so that far-field approximations of the covariance are

valid, and (i) sufficiently small so that single-scatter perturbation
approximations are valid.

V. REDUCTION OF THE INTEGRATION FOR THE COVARIANCE-
SPHERICAL AND PLANAR CASES

5.1 Spherical-Wave Case

The central result of the previous section is the approximation (51)
of the covariance. The problem remains to evaluate the integral
specified by this approximation. In this section, we introduce a set
of coordinates which simplifies the integration, the result being (77).
Although Section V indicates the extent of the important region of
integration, the result (77) is equivalent to integration over all space
rather than over only the important region. Under the large-scale
approximation, the formula (77) is specialized to (83) and to (85)
for transverse and longitudinal receiver separations.

For simplicity, we first observe that (51) can be replaced by an
expression employing the unperturbed field u, rather than the average
field u,. We need only observe from (7) that

u, = L7 + O()
where (L) = 0. It immediately follows that (8) can be replaced by

w; = —eL ' Lyu, + O(&)
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where u, = L7f is the field that would exist in the nonrandom medium
(e = 0). In our special case,

and accordingly

wr) = — 26k f G, Pl () dr’ + 0

can replace (34). Equivalently, (51) can be approximated by

(ulo + Sl - 5))

~ A2 exp [ik.(y) -£] .
~ 4t [ ay PRl s kg~ k) D, (69
where the spectrum 8 is defined by (52) and where # = y/| ¥ |. That is
to say, the replacement of u, by u, corresponds to the replacement of
k(y) by k7.

The volume integration can be carried out with spherical coordi-
nates which have the receiving center  as their origin. In such co-
ordinates, the differential of volume of dQdR R?, where R = |n — v |
and d@ is the differential of the solid angle. Since k,(y) is a function
only of the direction of an element dQ relative to the origin at %, it
follows that (69) equals

?;:;; fdﬂ exp [ik,-£] de (ly [ 8( kg — k@ D} (70)

where the factor in braces is to be evaluated as a function of R with
k, fixed.

The angular integration in (70) will use the coordinates in Fig. 6,
where § = 0 corresponds to the direction of the transmitter. The
radial integration in (70) will employ the angle ¢ shown in Fig. 7. The
argument of the spectrum is the square root of

| kot — k, |* = k32 — 2 cos ¢) = 4k} sin” 2£ (71)
The law of sines is

Lyl _ L R
sinf sin(r— ¢) sin(y— 6)’ (72)
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A
—» £ (TRANSVERSE)

J 3 (LONGITUDINAL)

Fig. 6 — Spherical polar coordinates at the receiver.

and thus

sin 6

s~ @)
dR sin 6
dy =Ly (74)
The radial integral in (70) is thus
(L sin 6)7! f v 8(210,, sin -‘f;’) , (75)
ﬂ —_—
and (70) becomes
4€RL [T f o f ( )
m(4w)2(4wL)2 . do , de exp (ik, £) : dy S| 2k, sin (76)
The 6-y integration is over the triangle {0 < 6 = m, 0 = ¢ = T} =

{0 £ ¢ <70 =< 6 <y}, so that interchange of the order of integration
vields

% f dy S(Qk sin )f daf dy exp (ik,-).  (77)

Fig. 7— Radial variable R related to angle .
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Further specialization of (77) is made to the cases in which the
receiving displacement ¢ is transverse and is longitudinal, Fig. 6. In
the transverse case, ky,-& = —k, | £] sin @ sin ¢, and (77) becomes

91r:i:§1) f dy S(Q’v sin ) f o J(k, | £ |sin 6).  (78)

In the longitudinal case, k¢ = k, | £| cos 6, and (77) becomes

27.4

2«(2&) f dy S(?Ic sin ) f d6 exp (ik, | £ | cos 6).  (79)
Expressions (77) to (79) correspond to integration over all space,

rather than over only the region of important scattering. Further ap-

proximations rely upon the cutoff provided by S(x) for x > 2x/1,,

where [, is the inner scale size and I, 3> \. For the transverse case, (78)

becomes

2«2&) f dz S(z) f di Jo(k | £ ]), (80)

and in the longitudinal case, (79) yields

hLs o (ik, | £ |) f " o S() f " di oxp (—iﬁ—l—"f)- (81)

or(4rL)? 2k,
The x-integral in (80) can be evaluated in closed form, namely

[ de e €D = 206 (€D + oo | £ DB [
~Sal@ EDH@ I E) 6

where H, are the Struve functions. Thus, for the transverse case, (80)
is

%5 ‘/;no dx xS(:r)[Jo(:r: | £ |) + g Jix | g DH (x| )

— 5 Jde | EDHi(= | & |):|- (83)

The x-integral in (81) is related to the Fresnel integrals, namely

j: de exp (—i L%lc%z) _ (T_];LI)%(%)% fuueuzh)* dt oxp (—it“)
- () - )]
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Thus, for the longitudinal case, (81) is

EKL . = (1)*( 2k, )*
Sw(dr L) exp (ik, | £ |) j; dzx 28(z) ATy

[ -] oo

2k,

5.2 Plane-Wave Case

For the spherical-wave case, the spatial covariance (u;(n + £/2)u*(n—
£/2))is given by (77) and its transverse and longitudinal specializations
(80) and (81) or (83) and (85). By way of contrast, we derive the cor-
responding expressions for the plane-wave case.

Approximations (45) and (48) show that the covariance (40) is
approximately

(o 9te- )

~ 4t [ dy GXM@M; S( k@) — k() ) (86)

Yam™|
where k(y) is a constant wavevector, | k(y) | = k, in keeping with
the interchange of %, and w,, and | u,() |* = 1. Here the integral is

over the volume of a half-space with & perpendicular to the face.
With spherical coordinates centered at the receiving center n, (86)
becomes

2k4

(2m)*

where the radial integral has k,-dependent integration limits correspond-

ing to the half-space interface. Under the large-scale approximation,

M1, < 1, the radial integral is approximately L. For transverse separa-
tion, (87) is

EkiL

(2m)*

or

fdﬂ exp (tk,-OS(| k — k. |) de (87)

f f df de sin 0 exp (—1k, | £ | sin 8 sin qa)S(Z]C sin ) (88)

ekl [T . . ( . 8)
- f a0sin 0J.(k, | | sin 6)S(2k, sin 3 ) (89)

Under the large-scale approximation, with small angles yielding the
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significant part of (89) the covariance becomes

k| " i 28@) x| £ ). (90)

This expression was obtained by Tatarski [Ref. 4, equation (7.64)]
to be equal to twice the correlation function for either the log-ampli-
tude or the phase fluctuation of the total field. But

s@ =2 [ " dr +T6) sin 2, (o1)
because (91) is a funetion of | « |, and
> el
< g

Substituting (91) and (92) into (90) and changing the variable of
integration shows that

<u.~(n + -é)u".‘-(n — §E)> ~ 2&k2L f: dr T + | £ )} (93)

for transverse separation. This is a central result of much of the
literature (for example, Ref. 3); we have obtained this result in a
simple and novel way.

For the case of longitudinal separation, (87) is

fm de sin () Jo(x | £ |) = {W —LER™ (92)
0 0 ,

274 x 2
——E(Qk;f; [ f d6 dg sin @ exp (ik, | ¢ | cos 0)8(210,, sin 'g) (94)
Jo Jo

or

Y SN AT T
fd|92sm§coszexp[zk | £ | 1—251112 S2kosm2

(95)

Under the large-seale approximation, the upper limit of the variable of
integration « = 2k, sin /2 can be replaced by infinity. Thus,

(o + o 9)

~ ;c oL exp (ik, | £ ) f dr xS(x) exp (—~z J%li) (96)

It does not appear possible to simplify (96) by using (91) together
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with the sine-transform of the exponential in (96). However, the
special case
() = exp (—r°/2L) 97
is of interest. Then
S(z) = (2r)**1} exp (—12%/2). (98)
Inserting (98) into (96) and using the variable u = I22®/2 for integration

yields
_ el
1 7 e

(o + D — )~ cvenngaey o e 16D —
o+ (5]
kL,

(99)

This expression corresponds to a result of Chernov [Ref. 1, p. 94, equa-
tion (187)] for longitudinal log-amplitude or phase fluctuations. The
magnitude of the last factor in (99) is reduced by 5" when | £] = 2k.05 .

5.3 Comparison of the Spherical and Planar Cases

Notice that the relative variance (zero receiver separation) is the
same for the spherical and planar cases. That is to say, expressions
(80) and (81) yield the same variance, relative to the spherical-wave
power (4zL)=2, as do expressions (90) and (96), relative to the unity
plane-wave power.

For transverse receiver separation, the planar-case result (90) can
be compared with the spherical-case result (80). The weighting of the
spectral function xS(z) is jo(x | ¢|) in the planar ease; this | £ |-fune-
tion has its first zero at | £| = 2.4/ with subsequent zeros spaced
3.1/x apart. In the spherical case, the weighting is

2! f de J e | £ D

this | £ |-function is a mixture of functions with “periodicity” larger
than that of J,(x | £|). Presumably, correlation lengths would usually
be larger in the spherical case than in the planar case.

Tor longitudinal receiver separation, the planar-case result (96) can
be compared with the spherical-case result (81). The weighting of xS(x)
is
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in the planar case; this | £ |-function has period 4rk,/z”. In the spherical

case, the weighting is
o [ acom (—i14H5)

this | £ |-function is a mixture of longer-period functions, and again
correlation lengths would presumably be larger in the spherical case
than in the planar case.

Physical reasoning also suggests that correlation lengths are larger
in the spherical case than in the planar case. First, compare the regions
of important scattering. For the spherical case, this region is sketched
in Fig. 5, where the angle ¥ is given by (65). For the planar case, this
region is a cone with half-angle ¥ and axial length L (the transmit-
ter-receiver separation being replaced by the distance the receiver is
imbedded into a half-space of random refractive index), Fig. 8. Com-
parison of the two regions suggests the the fluctuation field in the
spherical case is more directive than the fluctuation field in the planar
case.

Second, consider the implication of a more directive fluctuation
field. The directionality function N can be defined by

<“"(” Z;E:; 111) 2 > = [ a0 esp ik, ONG).  (100)

A wave in direction k, contributes a correlation exp(ik,-£), and the
total correlation is a weighted average of such constituents. The form
(100) is exhibited by (70) in the spherical ease and by (87) in the
planar case. An idealized directionality function would be constant
with k,'n above a threshold and would be zero elsewhere. That is to
say, (100) would be

Fig. 8 — Region of important scattering (plane waves).
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1 .
= fm 40 exp (k. &) (101)

where AQ is a small cap on the unit sphere of size 2r(1 — cos ®) ~ 70
When £ is transverse, (101) becomes

(2] 2r
[2r(1 — cos @)]" f f df de sin 6 exp (—1k, | £ | sin #sin )
0 0

(102)
<]
(1 — cos®7! f d@sin 8J,(k, | £ | sin 6).
(1]
Under the small-angle approximation, (102) yields
2J.(k, | £ 9)
AHCE (105)

The correlation function (103) is unity at |£| = 0, is 0.88 at | £ |
A/270 =~ 0.16 \/0, and is zero at | £ | =~ 0.61 A/O.
When £ is longitudinal, (101) becomes

5] 2r
2r(1 — cos®)]" [ [ dbdgsin 6 exp (k. | £ | cos 0
[1] (1]

. 1— 1R 1 — §
= exp (itk, | £ ) f;c(:)|[z | (lg_l(cos @fjﬂs )] (104)
1-— —12k, AQ/4
= exp (i, | £]) e}:'gk[ IZ l Alsf/rliw S

The correlation exp (ik, | £ |) associated with a plane wave is modulated
by a function having ripple in its numerator with period A(27/AQ).

The A-dependence exhibited in (103) and (107) must be tempered by
the A-dependence of the angle ©. Figures 5 and 8 suggest that © would
be at most A/l, (AQ at most w\*/1?) for equivalence of the idealized and
true directionality functions. For the transverse case, the null of (103)
would be at |£| = 0.61 I, or more; the A-dependence disappears as in
(80) and (90). For the longitudinal case, the period in (105) would be
at least 212/); this period is to be compared with the width of the last
factor in (99) for the plane-wave gaussian-index correlation case.

Both (103) and (105) exhibit the fact that correlation lengths are
inversely proportional to AQ, the width of the directionality function.
But the scattering volumes depicted in Figs. 5 and 8 show that this
width is smaller in the spherical case than in the planar case. This
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physical reasoning corroborates the previous interpretation of the
integration formulas which showed larger correlation lengths for the
spherical case.

VI. EXAMPLES OF TRANSVERSE COVARIANCES

It has been shown that, for transverse receiver separation, the covari-
ance (u,(n + £/2)u*(n — £/2)) is given by (80) in the spherical case and
by (90) in the planar case. These expressions are now evaluated in closed
form for two illustrative spectra.

Recall that the speetrum S(x) is related to the refractive index
covariance T'(r) by (52) which becomes (91) for the statistically
isotropic case. For convenience, (91) is repeated here, together with
its inverse:

S() = %{E f dr rT'(r) sin &r (106)
(1]
T(r) = #f dk kS(k) sin «r. (107)
0
Also, the planar-case covariance (90) is
27,2 L]
EL [ s .06 1 £ D, (108)
2 Jy
and the spherical-case covariance (80) is
k2L © = _
(4arL)”21r./; di J (e | £ ) f dz S(); (109)

the order of integration has been changed.
The normalization of the speetrum follows from (107) evaluated

atr =20,
1.,
1= E;f dk 8(1), (110)

so that ¢ plays the role of the variance of the refractive index.
Our first example is the case of an exponential spectrum:

S(x) = =°A° exp [—Ax], (111)
re) =1+ /8077 (112)
where A 3> \. Then, the planar covariance (108) is
ek La’ A

oo L+ (El/0T (113)
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and the spherical covariance (109) is

272 2
e L+ (£ /T (114)
The respective correlation functions in (112) to (114) are plotted in
Fig. 9. The correlation length for the spherical case is larger than
the comparable correlation lengths for the planar case and for the
refractive index.
Our second example is the case of a constant spectrum:

1y 0 <« < 2n/A
S() = Jdr =k=9r (115)
0, k> 2r/A
sin ?ﬂ — 2_11" CcOS Q—T—FT
rgy = —> 4 A (116)

T T ]

\ A = "INDEX CORRELATION LENGTH"

= 08 \ \*7”
pd
w
S \
w SPHERICAL
W 0.6 \
[} i ~N
(@]
N \
o
K o4 \\
d \ PLANAR \
3 \
1
o INDEX
o \
0.2
0 l o
0 0.5 1.0 1.5 2.0 2.5 30

NORMALIZED RECEIVER SEPARATION |£|/A

Fig. 9 — Correlations for the exponential spectrum,
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Then, the planar covariance (108) becomes

€koL 3rA 2J’( A

2r 2 2z | £ |/A
The correlation function in brackets agrees with (103) with @ = A/A,
which determines the angular extent of the constant directionality
funection. The spherical covariance (109) is

(117)

KL 3rA {2 Ja(zw K |) Y ‘(MA_EJ)

(4rL)?® 2 A or | £ |/A

+ ﬂ_Jl(Q?r & L)Ha(zw 5 l) _ WJO(zwllxs |)H,(27r £ i)} s

A A

where H, are Struve functions. The correlation functions in (116) to
(118) are plotted in Fig. 10. As before, the correlation length for the
spherical case is larger than the comparable correlation lengths for
the planar case and for the refractive index.

VII. SUMMARY

In Section II, the perturbation theory of Keller is developed in a
novel way.? This development shows that the nearly uncoupled equa-
tions (12) and (13) arise naturally from the fundamental pair (3) and
(4). In Section III, the equation for the average field (12) is solved for
the case in which the refractive index is statistically homogeneous and
isotropie. The spherical wave (16) is shown to be a good local approxima-
tion of the average field; the wavenumber [ is a weak function of position
and satisfies (21). Beyond a few correlation lengths from the source,
the wavenumber is a constant given approximately by (28) to (30).

In Section IV, the equation for the fluctuation field (13) is shown to
imply (40) for the spatial covariance of the field. A useful approxima-
tion of the covariance is (51) which is then justified on physical grounds.
For the large-seale case A << [, , where X is the wavelength and [, is the
inner seale for the refractive index, this approximation shows that the
region of important scattering is given by (60) with (65) and lies within
the volume common to two cones with apexes at transmitter and re-
ceiver, each cone with half-angle approximately A\/I, . The interval for
validity of (51) is given by (68) which states that the transmitter-to-
receiver distance is sufficiently large for far-field covariance approxima-
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Fig. 10 — Correlations for the constant spectrum.

tions to be valid but is sufficiently small for single seatter perturbation
approximations to be valid. In Appendix B, it is shown that a far-field
condition relative to the covariance is less restrictive than a far-field
condition relative to the field itself.

In Section V, the volume integration of (51) for the covariance is
transformed to the angular integrations exhibited in (77). For the
large-scale case, the covariance is given by (80) and (81) for trans-
verse and longitudinal separation of receivers. These expressions for
our spherical-wave model are contrasted with (90) and (96) for the
plane-wave model, showing that relative variances are the same but
that correlation lengths are larger in the spherical-wave case than in
the plane-wave case. This is to be expected on physical grounds, for
comparison of the volumes of important scattering for the two cases
indicates that the fluctuation field is more directive in the spherical
case. But a more directive field has longer correlation lengths; this is
illustrated by (103) and (105) for transverse and longitudinal sepa-
rations under the idealized directionality function in (101). In See-
tion VI, two special cases of refractive-index correlation which cor-
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respond to an exponential spectrum and a constant spectrum are
considered. For transverse separation, the covariance functions are
derived in closed form. Plots of the correlation functions show that
correlation lengths for the spherical wave case are larger than the
plane-wave correlation lengths, which are comparable to the correla-
tion lengths of the refractive index.
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APPENDIX A

A Mean-Value Theorem
We show that any solution of
[V? + Elu(r) = —é8(r) (119)
satisfies the mean-value relation
1
AR f dSulr + p)
ugr) B 0<R<|rl,
= (120)
sin kR |, sink(|r | — R)
YO TR T dm |r kR
where the integration is over the surface of the sphere {p: | p| = R}.

In particular, when % (r) is of the form (16), then (120) becomes (19).
Introduce a function () that satisfies

R>|r|

[V* + Fl@) = —é(r — r,). (121)

Then (119) and (121) imply that
V- -(YVu — uVy) = uslr — r,) — ¢a(r). (122)
For the sphere {7: |7 — »,| = R} with the outward unit normal p =

(r — r,)/| r — r. |, the divergence theorem yields

[ a8 wo-vu — up-vy)
_ {u(r.,), 0<R<|r|,
u(r,) — ¥(0), R>|r|.

(123)
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We choose y to be a linear combination of

exp (£ik |r — 7. |)
dr |r — 1, | (124)

such that y is zero on the surface of the sphere and satisfies (121).
This choice is

_ _sink(lr—r,|—R)

VO = 4 |r — 1. |smER (125)

The radial component of the gradient of (125) evaluated on the sur-
face of the sphere is

. _ kR
PVY =~ R en kR

Then (125) and (126) in conjunction with (123) yield (120).

(126)

APPENDIX B

An Improved Far-Field Condition
The kernel (41) used in the integral (40), yielding the covariance, is

S, n _explik(r—1"|—1p— 0" D]
(J(’I‘,T)G (P: p) - (4‘1‘(‘)2 IT _ TI l l p — PI | : (127)

With the definitions and inverse relations (36) to (39),

r +

:-Tpl E=T_Py

(128)
r’ ’

5 £

1=n+§ pP=1=5,
(129)

T T

r=y+3, =Yy

the kernel is

exp [tk n—y+3E—2)| — |n—y—3E— 2]
ry [n—y+3E =] [1—y—3C— ) (130)

The far-field (Fraunhofer) approximation arises from the series
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expansions (42)

— 1 — — .
|9 —y+3¢—2)=|2— y|+2|m y|(E z) + ,

(131)
1 —
n—y— - =yl -y -9+
and the approximation kernel (44) is
exp ik [l——l (&t — a:)]
Y (132)

@) [n—y [’
A usual condition for the validity of a far-field approximation is

2
In—y]»éa (133)

where L, is an outer scale of the scatering medium. This condition is
relative to approximation of the field. But relative to approximation
of the covariance of the field, the condition of validity is

2 —y|> L(LT)a (134)

In the case L, 3> A, condition (134) is considerably less restrictive than
condition (133). The reason for this improved state of affairs is that,
rather than approximating Green’s function @, we are approximating
the kernal GG*. In the computation of the phase of this kernel with
expansion (131), there is cancellation of terms that ordinarily remain
when computing the phase of @ itself. Overbounding the effect of all
neglected terms, not just the first one, leads to condition (134).

Our task is to approximate the phase in (130), namely, the argu-
ment of the exponential. We put

Y=9—y X=ft-z (135)
so that
p—— E— 1
|f‘ rl |Y+2XIJ (136)
lp—p'|=1Y —3X|

Then, we observe

V-X Jt?)* (137)

vetl= v (= G



POINT SOURCE PROPAGATION 1161

Next we put
Y-X X
a = Yﬂ ] 16 4y2 ] (138)
so that
— | = ki
lp—p | =170 —a+a

The next step is to assume | = « + 8| < 1 and expand | r—" | and
| p—p’ | with a binomial series. Then,

<1ia+3>*=1+%(a:a+m—ﬁ(ia+m”

1-1-3 3 1-1-3 4

In the above expression, only terms with differing signs contributed to
the difference | r—1" | — | p—p" |. Thus,

Q+a+p—010—a+p)?

11 1.1-3 , 113,
—a =252+ 25 cd + 2536 + R, (14])

where the remainder R has the series expansion

1.1-3:5 ) 4
R = _2-4-68[(a+ﬁ) — (—a+ 8)7]
+ BT g — (et B = (4D)

The series is readily “majorized,” with the result

1-1-3-5 \
| R | <2’2_4,6,8(1a|+ |81
1-1-3-5-7 \
+51esgldel 18D+ - ’ . (143)
or,withy = |« |+ |B|and0 <y <1,

i ]
<128 1+10‘Y+10 12"Y+ (144)
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But the series in brackets is overbounded by

Tl (145)
Thus, y < } implies
IR|<—27—32(IHI+H3|) (146)
The above calculations show that
’ ’ Y- X ,1. Y‘X‘Kﬁ
[r=r"|=|p—0»p"|= |Y|[ 8 7" 77
1/7-x\? 3 Y-X (X*\
+ 3 (5 + s m () + R] (4D
where
5 Y-X X\
[B| < (l 72 +4Yz). (148)
The conditions
vy.x  X*
l B + e <1 (149)
and
Y-X x? 1
5 + 7 <3 (150)

have been imposed. Since condition (150) implies (149) it is clear
that both are met when

x| _1
Y1

The far-field approximation of the kernel employs the leading term
of (147); that is to say, the Fraunhofer phase is

(151)

k Y Y — 2r 9 —y
1Y - y
The phase error is then

| (£ — 2). (152)

_k{|X|. vrx Xx
s Y[lx|Y

.[1 _ (I_YYI_IX_X_T) - 1%%;] Y IR}- (153)
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Our task now is to overbound the magnitude of the phase error.
We impose | X | = L, , an outer scale of the refractive-index correlation
funetion T'. This is appropriate for zero receiver separation, |£| = 0;
later, L, could be replaced by | £ | 4+ L, for nonzero receiver separation.
Apart from the remainder, (153) is seen to be a function of the cosine
w-v, withu = X/| X |andv = Y/| Y |, and of theratiow = | X [/| Y |.
~ We overbound the product in (153) by a product of overbounds in which
u-v has distinet values, and overbound the second factor by unity (unity
is greater than both the largest positive value 1 — w” and the largest
magnitude, %w’, of negative values, since w < 1). It follows that the
magnitude of the phase error is overbounded by

w(Ea 171 1R)) (154)

We now overbound our previous estimate of | R |. We assume | Y |
> L, , even though tighter overbounds ean be obtained under | Y | >
3L, as previously assumed. Then, (148) yields

Q(L,, LE)" 3(5140 )“
El<zm\[y1ta) <sz\av) (185)
or
1 (25\( L, \' L, \*
— = -] ‘) a
RARNT (16) (| Y \) < 0'38‘(| Y |) : (156)
We use
2 (L, )
|R|<5(H, . (157)
The above phase-error bound (154) is less than
. L ( 16 L, )
,°°8Y2 1+ 5171 (158)
which is less then
LT3 = 7. 73
kL, 21 _5k,L; (159)

ST 5 8 Y
All of the above calculations required | Y | > L,. With the stronger
condition | Y| > 4L,, the next -to-last calculation becomes

Lﬂ( @L.,) k.Ly 9
Fogyi\l T3 | Y| 8Y*5

(160)
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This overbound is less than
k,Ly_
4Y*
Suppose we impose the condition that the phase error be less than

7/32 and we ask what value of | ¥ |, the scattering range, is required.
The last overbound yields

(161)

3
=yl =171>4(%)L.. (162)
This is a less restrictive condition than one specifying the far-field range
to be much greater than L?/\. When L, >> ), it is a considerably weaker
condition. On the other hand, with L, > X\ (but now L, & \), the con-
dition (162) still implies the assumption | ¥ | < 4L, under which it was
obtained. When I, < A, the results are valid but vacuous, since the
pertinent condition is then | Y | > 4L, .

We turn to the approximation of the coherent-field function (46),

PR TSR

(4m)*
in which k is a weak function of position. With the identification y =
Y, 2 = X, the previous analysis is applicable. The approximation (48)
to (50) is

xr

—C* —
K i 5

, (163)
xr

¥~ 3

y+5

)
exp(—2Imk|y|) exp [i(RB k) %m]

@ Tvl ! {16
with a phase error less than
Re kL;
4Tyl e

In view of the interchangeability of & and k,, the phase error (165)
is comparable to
kL3 )
4]yl
Then, a phase error in (164) less than /32 requires that the source-
to-scattering distance | y | satisfy

|y | > 4L (L./N. (167)

(166)
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Our calculation is similar to one by Lahti and Ishimaru, but the

caleulation (and result) is simpler and the final conditions are less
restrictive.? Simplicity is obtained in part because we use variables
with symmetric form, (128) and (129), and we overbound a quartic
remainder rather than modify a cubic remainder. Our quartic-re-
mainder overbound also yields less restrictive conditions, say | Y | >
4L,(L,/A)* implying a phase error less than /32 in comparison with
| Y| > 7L,(L,/))? yielding an error less than =/10.
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