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Analytical, experimental, and compuler simulation results are given for
the error spectrum of a della modulalor when probed by stationary, band
limited, gaussian noise. These three complementary methods are used to
increase our quantilative understanding of the nonlinear system with mem-
ory. The error is convenienlly split into two components: one linearly
dependent on the input signal and one linearly independent of the input
signal. In order lo isolate these two types of errors we use two measuremeni
techniques. For purposes of analysis we show that the delta modulator can
be replaced by an equivalent linear system with additive noise at its output
which is linearly uncorrelated with the input. The equivalent linear system
may be approximated by using methods involving statistical linearizalion
or the deterministic describing function. Alternately, the equivalent linear
system may be obtained from computer simulation.

I. INTRODUCTION

1.1 General Background and Broad Objectives

Delta modulation (DM) has been known for almost two decades;
yet, little has been published comparing experiment with theory par-
ticularly for random inputs.f On the surface this might seem strange
because of the apparent simplicity of the delta modulation system
blocked out in Fig. 1(a). The waveforms depicted in Fig. 1(b) and
the mathematical model in Fig. 1(¢) should suffice to explain how the
system operates. The principal difficulty of the analysis is the ab-
sence of general tools for handling random processes in nonlinear sys-
tems with memory. From this viewpoint the simplicity of the delta

t The first reference to delta modulation appeared in French patent literature
(see Ref. 1) in 1946, but the first readily available description in English ap-
peared in 1952 (see Ref. 2).
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modulator is deceptive. However, if we make some inroads into the
quantitative understanding of this seemingly simple case, it may give
us courage to go on to more complicated situations.

In this paper we concentrate on the development and exploitation
of analytical, experimental, and eomputational techniques to enhance
our understanding of the objective performance of delta modulation.
We do not consider the correlation of objective measures with sub-
jective effects for applications to either voice or video; rather, our
main aim is to correlate what is known in theory, including our own
developments with what has been achieved experimentally.

Renewed interest has come from at least two sources. First, differ-
ential systems of which delta modulation is the simplest member,
have long been known to be well suited to handling signals whose
spectra fall off at high frequencies.®® This is particularly true of
black and white video; there is substantial interest in transmitting
such signals digitally.® Interest also has been generated by the desire
to produce inexpensive time division switching and transmission sys-
tems for voice.” In this application, delta modulation is attractive be-
cause of its simplicity and great compatibility with the emerging in-
tegrated circuit technology.

1.2 Use of the Random Notise Probe

Reasons for characterizing a delta modulator with a random noise
probe are twofold. First, the envelope of a scanned video signal has
a power spectral density that is close to that obtained by passing gaus-
sian noise through an RC filter.t Therefore objective performance
measures obtained in response to this signal bear some relationship to
subjective performance. Second, use of the established noise-loading
procedure for determining the spectrum of the noise in a nonlinear
system yields a “signature” that is useful for verifying that the delta
modulator is performing as designed. Verification of prescribed per-
formance is an essential prelude to careful subjective testing as well
as an absolute necessity for produetion control. To avoid measure-
ment problems that result from the low spectral density of the RC
noise source at the upper end of the band, we deal with flat band-
limited white noise almost exclusively.

1.3 Chronology and Summary

At the start of our work the signal-to-noise ratios obtained hy
computer, experiment, and analysis disagreed substantially, partie-

+ We use the terms power spectral density, power spectrum, and spectrum in-
terchangeably throughout.
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ularly when the signal was changing more rapidly than the delta
modulator could follow. In this region, known as the region of slope
overload, two methods of computing slope overload noise differed
markedly.® Reference 9 gives a reconciliation of the differences and
the development of an analytical expression for the mean square
value of the slope overload noise. By using the best features of the
previous conflicting theories, an analytical result was obtained that
yielded good agreement with computer results.® Granular noise, as
computed from Van de Weg's approach, agreed with both simula-
tion and experiments.’® Results obtained by noise-loading experi-
ments continued to disagree with both theory and simulation in the
slope overload region. It quickly beecame apparent that the differ-
ence resulted from the fact that this measurement procedure did not
measure the noise as defined by theory.

To clarify the differences it is desirable to consider the spectrum of
the noise introduced by the delta modulator. Two definitions of noise
are possible; the simplest is that the noise is the error, that is, the
difference [x(t) — y(t)] between the input signal and the local out-
put signal as defined in Fig. 1. This error is correlated statistically
with the input signal. In other words, the error may be considered to
be made up of two components, one linearly dependent on the input
signal and one linearly independent of the input signal. The linearly
dependent component may be regarded as being caused by passing
the signal through a noise-free linear filter.

This equivalent linear filter does not introduce noise but merely
introduces frequency distortion, as for example in producing selective
attenuation and phase shift, particularly for the higher frequency
components of the signal that the delta modulator cannot follow. The
noise component linearly independent of the signal may be viewed as
equivalent to additive uncorrelated noise just as in the case of a non-
feedback type of pulse code modulation quantizer.!* When the noise
is split up this way, the components have distinetly different subjec-
tive effects and are thus meaningfully studied separately. In fact the
spectrum of the uncorrelated component of the noise is measured by
the noise-loading test pictured schematically in Fig. 2. This test
procedure is commonly used to test transmission systems, primarily
for nonlinear distortion, in this manner.’* With the switeh in the
upper position, the colored gaussian noise is passed through a narrow-
band elimination filter prior to exciting the system under test. At the
system output, noise generated by system nonlinearities is measured
by the bandpass filter in the receiver of the noise-loading set. This
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Fig. 1 — Delta modulation: (a) delta modulation system, (b) waveforms, (c¢)
mathematical model.

filter passes only those frequency components eliminated from the
input signal. This differs from the total noise as computed by analysis
and simulation.

Two approaches were taken to reconcile measurements with the
paper and pencil results. First, we used a straight-forward, but tedious,
measurement procedure called the cancellation test to measure the
total noise as defined by theory, that is, the difference between output
and input. The results achieved substantiated the theoretical results.
Unfortunately the cancellation or “feed-around” technique, as dis-
cussed in detail in Section IV, is tedious and difficult to perform ac-
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curately. This made it necessary to rely on the more convenient noise
loading measurements. To compare theory and experiment it became
necessary to remove the correlated components of the noise as ob-
tained from theory and simulation. It was not possible to do so for
the purely theoretical approach, but the results of the simulation were
modified, as described in Section IIT, to agree with the measurement
made with the noise-loading technique.

The equivalent linear filter, defined in Section 1.4, cannot be ob-
tained analytieally, but it may be determined using computer simula-
tion. An approximate analytieal method for arriving at the equivalent
linear filter is statistical linearization to replace the quantizer (signum
function, threshold circuit) of Fig. 1 with a “suitable” linear gain.
This approach is discussed in Section 2.2 where comparisons are made
of the equivalent linear filters obtained by the statistical linearization
and simulation approaches. Most of the manipulations regarding the
statistical linearization are relegated to Appendix A. Section 2.3 is
concerned with harmonic analysis useful in its own right as well as
a part of the cancellation test. The prelude to the Fourier analysis
relevant to the sinusoidal response in the overload region is given in
Appendix B.

In Section ITI we cover the highlights of the simulation program
with emphasis on the spectral ealeulations. Estimates of accuracy are
given in Section 3.2. Section IV is devoted to a discussion of the
techniques used for measuring the spectrum of the error. We also show
how the delta modulator parameters are measured and discuss the
realization of a laboratory model delta modulator. Throughout the
paper we compare experiment with theory and simulation. In Section
V we make some general comments about the various sets of results.

1.4 System Definition, Terminology, and Symbols

The following are the terms and symbols used. Our input signal
() in Fig. 1 is chosen from a stationary, zero mean, gaussian random
process, band-limited to f, . Its correlation function is R..(r) and cor-
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Tig. 2 — Noise loading test: When the switch is at A the uncorrelated noise is
measured ; when at B the signal plus total noise is measured.



1172 THE BELL SYSTEM TECHNICAL JOURNAL, MAY—JUNE 1969

responding spectral density S..(w). The delta modulator is characterized
by the step size k of the quantizer, sampling frequency f, , or normalized
sampling frequency f,/f, = F,, and an ideal integrator with transfer
function 1/s.t Clearly the maximum slope that the delta modulator
can follow is kf, = z/, which eorresponds to a string of one’s at its out-
put. As k approaches zero with z/ fixed, the granular noise tends to zero
and the noise primarily results from slope overload. Under these con-
ditions it will be convenient and quite accurate to represent the delta
modulator as a continuous feedback loop with a step size x’ . We make
this assumption in much of the analysis to follow.

Throughout we use e(t) for the total noise, n(¢) for that component
of the noise uncorrelated with the input signal, z(¢) for the unsampled
output of the threshold circuit, and y(#) for the output of both the
local integrator and the remote integrator (error free transmission).
Other symbols are defined as needed.

II. DEFINITION OF THE UNCORRELATED NOISE—AN EQUIVALENT
LINEAR SYSTEM

2.1 General

In this section we define an equivalent linear system and an addi-
tive uncorrelated noise which produce statistical hehavior identical
with that of the delta modulator up to second moments. Notice that
any time invariant linear transformation of the input signal contained
in the output may be considered as useful signal because, at least in
principle, the input may be recovered by passing it through a fixed
linear filter corresponding to the inverse linear transformation.

Definition 1: Equivalent Linear System. We compare the output
of the delta modulator y(¢) with the output of an “equivalent linear
system,” defined by Figure 3, whose impulse response g(¢) is defined
such that the difference

y(t) — g(t)*x(t) & n(t) ey
is uncorrelated with the input x(¢) ; that is,
B..(r) = @+ () = @@+ Dy@) — gO)*2()]) = 0 )
where * denotes convolution.

Definition 2: Additive Uncorrelated Noise. The difference n(t)

T In Section 2.2 we consider the more practical case of a leaky integrator with
transfer function 1/(s 4 a).
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given in equation (1), with equation (2) satisfied, is defined as the
additive uncorrelated noise. Equation (2) is satisfied when

R..(r)*g(—1) = R.,(7). (3)

Taking the Fourier transforms of both sides of this equation and then
the complex conjugates we get
N () I |
C) = 5o@ =~ 5@
We remark here that the transfer function G (jw) does not have to be
causal; that is, g(¢) may be nonzero for ¢ < 0.

Applying the orthogonality principle we can see that g(t), thus
found, also satisfiest

{Re [S;.@)] — j Im [S.@]}. (@

(ly(®) — g®*z()])s = minimum.
Notice that from Fig. 3, we can write

Su) = | G(iw) | 8e(w) + Sunlw). &)
If the input process [z(t)] has a spectrum S,,(w) such that
S.:w) =0 for we {co., -

?,w,+7 (6)

where w, is a given radian frequency and Aw a small radian frequency
slot, then applying (5) we get

Aw Aw}

Sun(‘l’) = S“,(LU) fOI' we {mu —_— % ) Wo + __422}- (7)
So that for the noise power in this frequency slot we will have
]. watBu/2 1 wotAw/2
2_7" wo—Aw/2 S,m(w) dw = 2_71'- wo—Aw/2 S,,,,(w) do. (8)

The noise-loading measurement described in Section I applies the
technique mentioned here. Thus the noise spectrum and noise power
measured are Sp,(w) and (n2(t)),r. In order to compare experiment
and analysis we have to find G (ju) and (n*(t))ay. When we are slightly
in slope overload, G (jw) is practically equal to 1 and all noise defini-
tions so far used are equivalent. When well into slope overload,

T Kazakov used this approach to obtain g(¢) or equivalently G(jw) in equation
(4) in 196012 We were unaware of his work at the time we conceived of the
additive uncorrelated noise approach which for our purposes has real physical
appeal.
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Fig. 3— Equivalent linear system.

G (ju) deviates markedly from unity, thus accounting for the differ-
ences between experiment and analysis. To find G (jo) we need the
cross-spectrum S,;(w) which is not presently available analytically.
We can find S,,(w) using computer simulation; this is what is done
in Section ITI.

2.2 The Method of Statistical Linearization

Even though the equivalent transfer function G (jw) cannot be
found analytically, it may be approximated through the method of
statistical linearization* Statistical linearization can be applied to
the corresponding continuous system (without sampling) as shown in
Fig. 4. The study of the slope overload noise corresponds to the
study of this feedback loop, with the nonlinear element in the forward
path being a hard limiter with saturation levels +2’, = ==kf,. The use
of the continuous system is not a substantial limitation since the cor-
related component of the overall noise e(£) is conjectured to be mainly
overload noise.

The nonlinearity in the loop will be replaced by a linear gain K
chosen according to criteria given in this section and in Appendix A.
Independent of the choice of criterion, the equivalent linear system
will have the form,

*o
LOW x(t) e(t) I_ z(t) v oylt)
o PASS 5 =
FILTER +N A _l
~Xxo INTEGRATOR
y'(t)
L
y(t) S
INTEGRATOR

Fig. 4 — Continuous feedback system for the study of slope overload noise.
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H{f) = 4/(s + 4) (9)
or

1
B = 1375670
where f, is the corner frequency (3dB frequency) of the filter (fo =
K/2x).
In a real system, we generally have a leaky integrator whose trans-
fer function is of the form 1/(s + a). Then it is easy to show that

(10)

ap = 20~ (1)
1+
where

The variety of ways by which one can determine the equivalent
gain K, are presented in detail in Appendix I Let us call K; the
equivalent gain found with the assumption that the input to the non-
linearity is gaussian with variance o® equal to the overload noise
power. Denote by K the equivalent linear gain when the gaussian
assumption is removed. Let Ky be the equivalent gain determined
under the requirement that the difference between the overload error
and the input to the linearized element be uncorrelated (for r = 0)
with the input signal. In order to compare the equivalent linear filter
transfer functions with the computer simulation results we plot the
magnitude | G (jw) | of the transfer function [calculated using equa-
tion (4) and the computer generated cross-spectra] for kf./fy = kF, =
2 and 4 in Fig. 5. From these figures we find that the equivalent linear
system may be approximated by a one-pole tranfer function with
corner frequency, fo = 0.358 f, and 0.94 f,, respectively, and cor-
responding de gains (caused by the small leak in the integrators)
H(0) = 0.89 and 0.98. The results of the comparison are summarized
in Table I. Thus there is reasonable agreement between the equivalent
linear system transfer function obtained from computer simulation
and all the approximate statistical linearization methods.

2.3 Describing Function Method

In Appendix B a method is outlined for obtaining an equivalent
frequency dependent complex gain for a delta modulation system with
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a leaky integrator, subject to a sinusoidal input of amplitude X, and
frequency w, , under pure slope overload conditions. This complex gain
is defined to be the ratio of the complex amplitude of the fundamental
of the output to the complex amplitude of the input sinusoid. This deter-
ministic equivalent linearization method is well known as the describing

TABLE [ —PARAMETERS OF EQUIVALENT LINEAR SYSTEMS

kF:s =2 kF, = 4
K/fs felfo K/fs Jelfo
Equivalent Corner Equivalent Corner
linear gain frequency linear gain frequency
Computer K, =2.10 0.358 K, = 5.90 0.94
Gaussian assumption K, =2.34 0.398 K, =7.13 1.13
Without gaussian
assumption K, =1.48 0.262 K; =4.00 0.64
Correlated noisef
Approach K; =2.70 0.43 K; = 5.90 0.94

t The leaky integrator effect is neglected; if taken into account the results would
be somewhat smaller. For kF, = 4, the effect of leak is negligible.
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function method. The corresponding magnitude of the equivalent gain
is given as a function of “normalized” frequency (w,X,/2!) In Fig. 6 when
the leak in the integrator goes to zero. For z, = kF, = 2 the 3 dB point
(corner frequency) is at f, = 0.4 f, , which is in good agreement with the
results in Table I. Measured values of equivalent gain shown on Fig.
6 agree well with theoretical predictions.

III. COMPUTER SIMULATION TECHNIQUE

3.1 Basic Concepls

Computer simulation provides a convenient method of studying the
characteristics of delta modulation systems without actually building
them. The computer can also provide accurate numerical results
against which to compare experimental results from laboratory or
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Tig. 6 — Harmonic response equivalent gain of a single integration AM.
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production models. Computer simulation is a compromise between
laboratory techniques and analytical techniques in that it is easy to
change the program in order to study a variety of system parameters
or to introduce defects similar to those expected in praectical systems.
On the other hand, the simulated system is an idealized abstraction
which does not represent the practical system in full detail.

The pLgDI programming system, used for the simulation, results in
a program which processes a sequence of samples by whatever set of
mathematical operations may be specified by a block diagram.'® BL@DI
flexibility allows the use of ForTRAN for such things as computing
estimates of signal statistics, for which FORTRAN is more efficient. Fig-
ure 7 indicates the basic philosophy: a FORTRAN program supervises
the entire operation calling the various subprograms as needed. By
structuring the simulation programs as a hierarchy of modules,
changes in one area of the model could be effected without involving
the entire program. The program was purposely written with exten-
sive use of subroutines. This for example, makes it applicable to dif-
ferential pulse code modulation (DPCM) by simply changing the
subroutine for the quantizer. The actual programs are of interest to
only a few people, and are not listed here. Appendix C gives a discus-
sion of the computational formulas used to estimate correlation func-

tions and spectra.

3.2 Accuracy of Computer Estimates of Spectrum of Error

In order to estimate the expected accuracy of the spectrum esti-
mates from the computer simulation, the following example is given:
In the simulation the estimate S,(k) is made on the basis of 10,000
input samples. Here k& is an integer index related to frequency, and

CONTROLLING
FORTRAN
PROGRAM
Y
i
r======%=====" r——""""""""" D SO
{ 1 { t
PSEUDO DELTA MODULATOR OR ARRAYS: FORTRAN
RANDOM e REN AL PULSE L« INPUT, CORRELATION
SOURCE et ERROR COMPUTATION

PRINTED
QUTPUT

Fig. 7— Computer simulation.
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the subscript e refers to the total noise e(t). In one particular run,
ten intermediate estimates based on 1,000 input samples each were
made. Using the notation Sy (k) through Seio (k) for these we have

8,(k) = 5 [Sa(®) + -+ + Suo(k)] (12)
E[8.(k)] = n,

sample mean

sample variance = var = 75{[S.(k) — S,(k)])* + ---

+ [Saol®) — 8.}  (13)
One can then show that the variance of the estimate S,(k) relative
to p is estimated by

E{[S.(k) — u]’} = & var. (14)
For the cancellation technique and one particular value of k, rep-
resenting a low frequency point in the spectrum, a numerical computa-
tion yielded:

(3 var)}
_S,(T) = 0.066.
Although the result may in general depend on k, spot checks at other
points yielded similar results,
Assuming the estimate is a gaussian random variable with 0.066 =
the ratio of standard deviation to mean, the result indicates that the
estimate is within =14 dB of the true mean with probability 0.9.

Other sources that could contribute errors in the results of the simula-
tion include: () random error in measurements caused by finite averaging
time constant, estimated as 43 dB, (¢7) round-off errors in computation,
which are most significant in the region of high noise, and (77) syste-
matie error resulting from differences between the spectral shape of the
simulated input and the output of the laboratory noise generator used
in the experiments.

IV. EXPERIMENTAL TECHNIQUES

The extensive analytical and computer work that has been presented
was undertaken to a large extent to gain a better understanding of an
actual laboratory delta modulation system.

4.1 Description of the Della Modulator
The delta modulator used for the measurements is a variable pa-
rameter system in which the step size, leak, and sampling rate are



1180 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1969

independently variable. Figure 8 is a block diagram of the encoder.
The difference between the input and the local integrator output is
amplified and presented to the threshold detector. This circuit con-
trols the output of the pulse generator.

The local integrator has circuit elements which can be changed to
vary the important parameters of the system. The capacitor C con-
trols the step size; since the amplifier has a high input impedance, the
resistor Ry, controls the leak.

The decoder consists of a regenerator for amplitude and phase re-
generation and a decoder integrator which is a duplicate of the local
integrator. The system was operated at a 12.5 MHz sampling rate.

Waveforms in a delta modulator are rather simple; nevertheless,
some are shown in Fig. 9 to illustrate the actual operation of the
system. Figure 9a indicates the output of the decoder and the pulse
output of the coder when no input is presented to the system. A delta
modulator should change state every clock period with no input; the
photograph illustrates this. This waveform can be used to measure
the step size.

Figure 9b illustrates the output of the system when it is in over-
load. The slope of the input sinusoidal signal is greater than the
slope that the delta modulator can follow. Therefore, the output is a
triangular wave whose slope is a measure of the normalized step size.
An interesting feature can be seen by observing the slopes of the flat
steps in this picture. In the lower half, they slant upward and in the
upper half they slant downward, illustrating the leaking off of the
capacitor voltage.

Figure 9c illustrates the response of the delta modulator to a sine
wave whose amplitude is below overload. The rather blurred trace

lCLOCK
ANALOG DIGITAL
INPUT | DIFFERENCE THRESHOLD PULSE OUTPUT
AMPLIFIER DETECTOR GENERATOR

HI VR
INPUT
z R
T

Tig. 8 — Delta modulator encoder.
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Fig. 9— (a) Analog output y(£) and digital output with no input (100 ns/cm);
(b) w(f) with system in overload (400 ns/ecm); (¢) y(t) with system not in
overload (2 ps/cm).
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results because the frequency of the sine wave is not a submultiple
of the sampling frequency.

4.2 Noise Loading Test

The use of the noise loading test to measure nonlinearities in a
transmission system has been mentioned in Section 1.3. In this test,
as shown in Fig. 2, a wideband of gaussian noise is applied to a low-
pass filter to band limit the input to the delta modulator. With the
switch in the upper position, a narrow band of noise can be elimi-
nated from the input signal. Several band elimination filters are
available to cover the input spectrum. This signal is fed into the sys-
tem and only that band from which signal has been eliminated is
allowed to pass to the tuned detector. With the switch in the upper
position, only noise introduced by nonlinearities in the delta modula-
tor and uncorrelated with the input is passed into the detector. The
power spectrum of the uncorrelated noise component n(f) can be
measured by changing the center frequency of the band elimination
and bandpass filters. With the switch in the lower position, the full
signal enters the system and the tuned detector reads signal and noise
within the passband.

4.3 Cancellation Technique

To measure the total noise output, e(t), and its spectrum, the ar-
rangement shown in Fig. 10 was set up. The signal is fed to the delta
modulator and the output of the delta modulator and the attenuated
and delayed input are compared, their difference being the noise in-
troduced by the system.

The immediate problem encountered in this technique is the ad-
justment of the variable attenuator and the delay to cancel the signal

NOISE LOW PASS SPLITTING DELTA
SOURCE FILTER PAD MODULATOR

—

VARIABLE VARIABLE DIFFERENTIAL LOW PASS
ATTENUATOR DELAY AMPLIFIER FILTER
TUNED

DETECTOR

Fig. 10 — Cancellation technique,
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component at the output of the delta modulator. The delay is not
the same for all frequencies and will have more of an effect at high
rather than low frequencies. A sine-wave input whose amplitude was
less than that required to overload the system was used to correctly
null the system, making the equivalent gain unity. The frequency was
chosen as high as conveniently possible (within the signal band) so
that the effects of delay could be observed on the nulling procedure.
Attenuation and delay were adjusted to produce a null at the input
frequency at the tuned detector. Then the noise source was used to
replace the sine wave and the output noise measured as a function of
frequency by the tuned detector. The gain and delay should be ad-
justed at each frequency where the noise spectrum is measured. The
rather broad null, particularly at the lower frequencies, makes this
measurement both tedious and inaccurate. Consequently only the
high-frequency approach was used.

The noise-free output signal is measured by removing that input
to the difference amplifier that comes from the delta modulator.

4.4 Accuracy of the Measurements

The tuned detector used to measure the noise in these experiments
was a 37B transmission measuring set. It has a frequency window of
about 400 Hz. Therefore, when the noise is measured at a particular
frequency, a 400 Hz band is actually measured and the meter reading
must be averaged, ignoring peaks. It is estimated that the readings are
accurate to about =4-0.5 dB.

Another source of error arises in the determination of the normalized
step size kF,. As mentioned above kF, can be found from direct meas-
urement, on an oscilloscope, or by using a square wave input that over-
loads the system. A small error in this measurement is equivalent to
a displacement in the noise curve (or signal-to-noise ratio) when
plotted against kF,. The noise changes in the overload and granular
regions about 1 dB for every dB change in kF,. Furthermore, the
spectrum in overload also changes very rapidly with kF,.

Therefore, it is fair to conclude that the experimental results in Section
V are accurate to about 1 dB.

V. RESULTS

5.1 Noise Loading Resulls—Uncorrelated Notse Component
In Fig. 11 we have plotted the spectrum of the signal uncorrelated
component of the noise as obtained by the noise loading test for three
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Fig. 11 — A-mod uncorrelated noise spectrum, ¥, = 8.

O kF, = 2
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O kF, = 16

— computer results.

values of kF,. For kF, = 8 and 16 notice that the noise spectrum is
flat, as expected, since granular noise is predominant. When kF, = 2,
overload noise is controlling, and the noise spectrum is largest at low
frequencies. Agreement between the computer generated spectrum
and the measured spectrum is good except where the granular noise is
small. In this region, it is believed that round-off errors in the com-
puter simulation account for the discrepancy. Integration of the noise
spectrum yields the signal to noise curve of Fig. 12 plotted as a func-
tion of kF,.

5.2 Cancellation Technigue—Total Noise

Noise spectrum measurements obtained by the cancellation tech-
nique are compared with computer results in Fig. 13. As before, for
kF, = 8 and 16 the spectrum is flat and nearly identical in level with
the noise loading results. When well into overload (kF, = 2), the total
noise spectrum peaks at the high frequency end. This behavior is
readily explained in terms of our equivalent linear system. Consider
the difference e(#) between the input signal and the output of the
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Fig. 12— A-mod signal to uncorrelated noise ratio, F, = 8.

equivalent linear system of Fig. 3

e(d) = z(t) — y(® = z(t) —n(d) — j:w g(t — Dz(r) dr (15)

or

oty = [ : (50t — 1) — gt — Do) dr — n(l). (16)

Since n(t) and z(¢) are uncorrelated by definition, it is an easy mat-
ter to show that the error speetrum of the total noise is

8, (@) = Sum(@) + |1 — Qo) |*S..(w). (17)
Substituting H (jw), obtained by statistical linearization and given in
equation (10) for the equivalent linear system function G (jw) in equa-
tion (17), we get

[S]

w
2
8.(@) = Su(w) + == S..(). (18)
1+ %
wc
From either equation (17) or (18) we can see that when G'(jw) is es-
sentially unity (in the granular region) that the total noise is given
by Spn(w). On the other hand, when well into overload, the low fre-
quency portion of the total noise is determined by Sy.(w) and the
noise at high frequencies increases due to the second term in equation
(18), the term linearly dependent on the input. Indeed, we can use

the measured noise spectrum in Fig. 13 for kF, = 2 along with equa-
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Ok-Fe=2
OkF, =8
D kF, = 16

— computer results.

tion (18) to determine the corner frequency for the equivalent linear
system. The f, so obtained is about 0.4 f, in agreement with the
analysis.

For completeness, we present in Iig. 14 the signal-to-total-noise
ratio obtained by integrating the curves of Fig. 13. In addition, we
have noted the corresponding analytical results obtained by using the

18
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Fig. 14— A-mod signal to error ratio, cancellation technique, F, = 8.



UNDERSTANDING DELTA MODULATION 1187

results of Refs. 9 and 10. Agreement is good except when far into the
overload region where it is known that the mean square value of the
total noise obtained analytically is a coarse upper bound.
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APPENDIX A

Statistical Linearization

A.1 General

In this appendix we consider the delta modulation system under
pure slope overload conditions. Our objective is to replace the hard
limiter in the encoder loop with a linear amplifier. We give three
methods for the determination of the gain in this linear approxima-
tion.

A.2 Conventional Statistical Linearization—Gaussian Assumption

First, we use the statistical linearization method attributed to
Booton.'* We isolate the hard-limiter in Fig. 4 with input e(f) and
output z[e(t)] in order to replace it with an ideal linear amplifier of
gain K,,. This gain factor is chosen such that K.e(t) differs least in
the mean square sense from z[e(¢)]. It is readily shown the optimum
K, satisfies

Kce = ez}nv' 19

<82)nv ( )
For the hard limiter, under the assumption that e(f) is gaussian, we
get the well known result!#

K, = x:(ﬁ)i =K,. (20)

A.3 Removal of Gaussian Assumption

In general, e(t) will not be gaussian; though this is commonly as-
sumed in all references to the statistical linearization method. We
remove this assumption in this section since we can determine both
(€2)ay aNd (€%)yy using the approach given in Ref. 9. Since (¢%).y was
found in that reference, we need only consider (ez),y = R:(0).
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Notice that when
e(t) >0, 2() =z } e
and where e(f) <0, 2(f) = —z!
Hence
(EZ)“ = :l’,'é(l e(t) |>nv = x; ave [B(t)] |n.h. (22)

that is, the average of e(t) over the positive bursts (p.b.) only of the

slope overload noise.
Following the procedure developed in Ref. 9, we obtain

o) Do = 18 [ op [~ Eogy  ea
where
zhv/2
X730}
A0 = 1 — (1 = x) e (= X) — g o
a0 = [ oxp (— 2) az

fo
b, = f w8, (w) df.

—fo

In Ref. 9 it was found that

€O = g () e ([ [aw e

where A (x) is given in equation (66) of Ref. 9. Hence

= 1C) G GE) 25+ 2 @

A 4 Equivalent Gain from Definition of Equivalent Linear System

Among the many other viewpoints that might be adopted to find
K., we single out one that makes use of the definition of the equi-
valent linear system given in the text. Recall that

Ol) = R - 1 — £el) (27)
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or
Sez(w) = S.o(w) — G(jw)S..(w). (28)

If we integrate equation (27) over (—2xf, to 4+2=f,) and choose G(jw) =
K./K, + jw, we obtain the following equation defining K.

27 fo
<wwm=am=@mm—§ﬂ”ﬁ#%@.(m
1 +JE

Noticing that S, (w) is an even function of v, using

F(f) = 28..2xf) for f>0, (30)
and defining f, = K3/2w, we get

fo
niy = [ TP~ @) — e . (3D
" (f)
fe

The left side of equation (31) is a function of f. only, and hence of K, ,
while the right side of equation (30) is known; a formula for (x(f)e(t) ).
has been found.'” Equation (31) can be shown to always have a solution.
A little reflection will convince the reader that equation (31) could
have been obtained from serateh by preselecting the form of the equiva-
lent linear system, and requiring that z(f} be uncorrelated with n(?)
at 7 = 0. The approach we have taken could be generalized to match
various spectral moments of the processes under consideration. This
would entail multiplying equation (28) by w® prior to integration and
choosing the number of parameters in G(jw) equal to the number of
moments matched. In general a set of simultaneous nonlinear equations
would have to be solved and quantities such as {d"z(t) /dt"e(?) ).. obtained
using the techniques of Ref. 9. Fortunately, no such generalization is
required. As we see below and from Table I all of the techniques used in

this Appendix give good agreement with computer simulation.
Example: Application of equation (31) to flat band limited signals

(@) = 1,1, = 1 gives

h(f) = f 1 l—fi@ = . tan™ (fl) —1— @ . (32
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APPENDIX B

Harmonic Response of a Delta Modulator with a Leaky Integrator
Under Pure Slope Overload Conditions

B.1 Introduction

Consider the single-integration delta modulator with a leaky in-
tegrator under pure slope overload conditions. The problem is to find
the steady-state response of this nonlinear system to a sinusoidal
input. The analysis is applicable to differential pulse code modulation
and delta modulation with a more complicated linear network in the
feedback path.

Consider a sinusoidal input signal:

z(t) = X, cos w,t (33)
with
w, = 2uf,. (34)

In the steady-state the output y(¢) will be a periodic function of ¢
with period 1/fs. The maximum value of the magnitude of the slope
of the input sinusoidal signal is clearly equal to w,X, so that if

w, X,
7

To

<1 (35)

the output will follow the input and we will have
y(t) = z(t) = X, cos w,l. (36)

Suppose now that =, < w,X,. In this case slope overload occurs.
Call ¢ the value of w,t—2nm (where n is a positive integer) for which slope
overload occurs for the first time after the beginning of the nth period.
Assuming that we have reached the steady-state, the value of ¢ will
be the same for all periods.

Clearly 0 < ¢ < w/2. The slope of the input signal at the transition
point 4 (Fig. 15) will be negative and equal to — X ,w, sin ¢. (The second
derivative at A is also negative and equal to —X,w? cos ¢.)

For slope overload to begin at A we should have;} —w,X,sin¢ = —=z,
so that
. Zq
s ¢ = o.X, (37)

T A similar_analysis may be made in the asymmetric case, that is, when the
positive overloading slope is not equal to the negative overloading slope.
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At this transition point the output signal begins to follow an exponential
curve such that

w,t — ¢ —nr)

Wo

1 — exp (-—a

y(f) = X, cos ¢ — T,y (38)

a

as long as y(t) exceeds z(t). The exponential segment ends when
y(t) and z(t) once again become equal as shown in Fig. 15. For small
leak, the response in overload is clearly linear in time. As long as | 6 |
< ¢ we have for alln

X, cosw,t for 8+ nr £ wi £ ¢+ nr

wl — ¢ — 'n‘rr)

Wy

1 — exp (—a
y() = |(=1)°X, cos ¢ + (—1)" ']

a

for ¢ +nr 2wl =264 (n+

(39)

It it easy to show that the region where equation (39) is true may
be translated to the condition

ar\ |?]}
x| e[t (-m)]

(40)

Fig. 15—Slope overload for

1 < 9P < {1 + \:1 — exp {_a’r/"’ﬂ)]z}*
xq’ - 4 ar/mn

(leaky integrator).
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In the limit when a goes to zero (no leak) equations (39) and (40)
reduce to results obtained previously by Baikovskii.’* The quantities
6§ and ¢ coalesce when

x| e[t
J

2T+% p

w (41)
W

and the output is made up of segments of an exponential curve as
shown in Fig. 16. From Fig. 16 we see that

e

cos ¢, = . oaX e (42)
and for all n
h—ew (%)
y(t) = (—1)":1:;1 oa .
a |
1 — exp l:— w—(wat — ¢, — nqr)]
— 0 . (43)

a

Notice that in this case the magnitude of the output depends only
on the frequency of the input sinusoidal waveform and not on its

Fig. 16 — Slope overload for
oz o [y 7w [ 1= e (—ar/w) 1V
Tg 4 an fwy

(leaky integrator).
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amplitude. Only the phase of y(¢) depends on X,. Clearly when the
leak goes to zero (a = 0) the response is triangular.

B.2 Harmonic Analysis of y(t)

In all three regions above the output y(t) is a periodie function of
t with period 2x/w, such that

y(t + :T) = —y(t). (44)

Hence 7 (t) contains only odd harmonics; it is a straight-forward
matter to compute the Fourier coefficients. The complex equivalent
gain is given by the ratio of the coefficient of the fundamental in the
output to X,. We leave this manipulation to the interested reader
and merely provide a curve of equivalent gain computed for the case
of a perfect integrator (a = 0), in Fig. 6. Experimental points on the
curve are seen to be in close agreement with the analysis.

APPENDIX C

Computational Formulas to Estimate Correlation Function and
Spectra

From the sample sequences x; and e; for signal and error pro-
duced by the simulator, autocorrelation and cross-correlation functions
Ro(j),Ra(j) ,Rees (7), and R (j) were estimated as the arithmetic
means of €mem 1 iy TnTm i iy EnTms; A0d €,Tm—;, Tespectively. In the com-
putations, sample sequences of length 10,000 were used. Correlations
were computed up to j = 30. It is easy to show that spectrum estimates
may be obtained by using the correlation estimates as coefficients of
a Fourier series. In the case of the eross spectrum, real and imaginary
parts must be computed, For clarity, the formulas are listed below.
Using the relationship derived in Section 2.1, the uncorrelated noise
spectrum may be estimated by:

S = 8.0 — g5 (Re (LGN + (Im [SLGN).  49)
To smooth possible ripples in the spectrum estimates due to time
truncation of the correlation functions, a hanning window function
was used.”® This smoothing amounts to replacing each spectrum
estimate by a linear sum of the estimate and the two adjacent esti-
mates, with weights 1, 4, and .
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Error spectrum:

Si

S.0) = RO) +2 2 B.() cos 5 o+ RV = 1) cosr. (40

gnal spectrum:

S.0) = RO + 2 2 BD cos 7 + RN — D cosr. (40

Cross spectrum:

Re {S..(5)} = R..(0) + g} [R...() + R..-(D)] cos Nljf 1

+ #Reee(N — 1) + Ree (N — D] cos jm  (48)

ljr

: (49)

I

I (Su(@)} = 2 [Rere() = Bea(D] 08 ;

1
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