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We present a stalistical analysis of a single integration delta modulation
system in which slope overload effects are negligible. In defining the della
modulation signal ensemble, we identify a binary phase parameter and
show that when this parameler 1s random, the signal statistics are stationary,
provided the input is stalionary. Thus the delta modulation correlation
functions depend on a single time variable and have Fourier transforms
that are the power spectra of the delta modulation signals.

After deriving the della modulation correlation statistics and power
density specira, we use these funclions to tnvestigate the properties of the
delta modulation granular quaniizing notse. We demonsirate the ratio of
input signal power to the quantizing noise power of three signals that
approximate the system input. These signals are the inlegraled della
modulation signal, the signal at the output of the ideal low-pass interpola-
tion filler usually considered in delia modulation studies, and the signal at
the output of the optimum interpolation filter. We determine the properties
of this filter by referring lo the derived spectral density functions.

I. BACKGROUND

Delta modulation (AM) systems are subject to two types of quan-
tizing distortion, generally referred to as granular quantizing noise
and slope overload noise. The overload noise arises when the analog
input to the delta modulator changes at a rate greater than the maxi-
mum average slope of the signal generated in the delta modulator
feedback loop. The granular noise is analogous to pulse code modula-
tion (PCM) quantizing noise; it arises because the AM signal is a
diserete-time diserete-amplitude representation of a continuous-am-
plitude process.

After the discovery of AM in the early 1950s, two statistical analy-
ses of distortion effects appeared.* Van de Weg considered a delta

1197



1198  THE BELL SYSTEM TECHNICAL JOURNAL, MAY—JUNE 1969

modulator, constrained so that slope overload effects are negligible,
and analyzed the effects of granular quantizing noise in a manner that
paralleled Bennett's analysis of quantizing noise effects in a pulse code
modulation (PCM) system constrained to be free of overload.** Zet-
terberg, in 1955, published a study of both types of distortion as part
of an extensive mathematical analysis of the AM process.* Zetterberg’s
expression for granular noise power is less precise than van de Weg’s.
His results pertaining to slope overload have recently been revised.®

Eleven years after the appearance of Zetterberg’s paper an in-
dependent analysis of slope overload noise was published by O’Neal
whose effort was supported by S. O. Rice.® O’Neal used van de Weg’s
formula to predict the granular noise power but obtained slope over-
load characteristics that differed from those derived by Zetterberg.
The reason for the two solutions to the same problem is investigated
in a recent paper by Protonotarios.® This paper gives new expressions
for the slope overload noise that are more accurate than any previ-
ously obtained. Like O’Neal, Protonotarios uses van de Weg's char-
acterization of the granular quantization effects.

Although van de Weg’s formula for granular quantizing noise power
has been experimentally verified over an important range of operat-
ing conditions, his statistical characterization is inadequate for cer-
tain analytical purposes. A principal difficulty in this characterization
is the nonstationarity of the AM signal ensemble. Because the sta-
tistics are nonstationary it is not possible to calculate correlation co-
efficients by Fourier transformation of the power spectral density
function, derived by van de Weg as a mean square amplitude spee-
trum.

To admit the techniques of stationary time series analysis to the
study of AM signals, we generalize the signal ensemble by defining a
binary phase parameter. We derive correlation statistics directly as
average products and show that if the phase is random with both
values equiprobable, the ensemble is stationary. Thus we are able to
compute power density spectra as Fourier transforms of the correla-
tion functions and to compare the new formula for granular quantiz-
ing noise with that given by van de Weg. We find that over the range
of operating speeds considered by van de Weg and O'Neal that van de
Weg’'s formula is a good approximation to the one presented here. For
very low speeds van de Weg's approximations break down while the
formulas we present in this paper are applicable to all AM sampling
rates.

An additional advantage of this analysis is the presentation of
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cross-correlation statistics and the cross-power spectrum of the AM
signal and the analog waveform it represents. We use the cross-power
spectrum to derive the transfer function of the optimal interpolation
filter for AM. We compare the output noise power of this filter with
that of the ideal low-pass filter usually considered in AM studies.
The correlation statistics presented here have also been used in the
synthesis of optimal digital filters.”

II. THE AM SYSTEM

The delta modulator shown in Fig. 1 transforms the continuous signal
y(t) to the binary sequence

,b_-1,bu,b1, e

in which b, may have the value 41 or —1. The modulator generates
binary symbols at r second intervals according to the sign of e(t), the
error signal. This error is the difference of y(f) and x(f), the integrated
AM signal generated in the modulator feedback loop. The term z(f) is
the integral of the binary impulses weighted by the “step size,” 8. Thus
x(f) has a step of 45 or —§ at each sampling instant and is otherwise
constant. At the AM receiver, this integrated AM signal is recovered
by a replica of the modulator feedback loop and an analog signal, #(¢),
is generated by means of the interpolating filter with impulse response
R(-). The signal §(¢) is an approximation to the system input, and in this
paper the fidelity of the AM system will be measured by the mean square
error,

= E{ly(t) — 90T}, oy
in which E{-} is the expectation operator. We assume that the binary
signal processed by the receiver is identical to the one generated at
the modulator. The effects of transmission errors are not considered.

The two AM parameters are 7, the sampling interval, and §, the step
size. The quantizing distortion decreases monotonieally with inereasing
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Fig. 1 —The delta modulation system.
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sampling rate, f, = 1/r, while for a fixed rate the value of the step size
determines the mix of granular quantizing noise and slope overload noise
in the quantizing noise signal, y(f) — #(f). In this paper we consider only
the granular quantizing noise; thus we postulate a system in which &
is set such that §/7, the maximum average slope of z(t), is exceeded by
the slope of y(f) with very low probability. To serve this aim we follow
van de Weg and establish the condition that &§/7 is four times the
root mean square slope of y(f). This condition is analogous to the “4c
loading” assumed by Bennett in his analysis of a PCM system with
negligible overload effects.” For gaussian signals, the probability that the
slope of y(f) is greater than §/7 is less than 4 X 107°.

If y(t) is a sample function of a stationary stochastic process, the
stated design condition may be expressed in terms of S,, (f), the power
spectral density of the process. The important parameters of S,,(f)
are its average,

= [ 8up af = BloP), @

the mean square signal, and its effective bandwidth,®

w i
[ r8u @
fo=|==——1. 3)

[ s a

The rms slope of y(t) is 2rof,. Thus the condition that the maximum
average slope of z(t) equal four times the rms slope of y(f) may be
expressed as

8/7 = 8maf,
or
8 = é/c = 8af,r = 8x/F 4)

in which we have related the AM parameters to the iraportant signal
parameters. Thus, 3 is the step size as a multiple of the rms signal and
F = f,/f. is the sampling rate as a multiple of the effective bandwidth.

Equation (4) establishes g8 for each sampling rate; in the analysis
of granular quantizing noise to be presented, it is the sampling rate
that is considered to be the independent variable of the AM system.
Studies of slope overload indicate that for minimal total quantizing
noise, BF, instead of remaining constant as it does here, should in-
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crease with increasing F.%¢ In the numerical examples given by O’Neal
and by Protonotarios, the value of BF that results in minimal total
quantizing noise approximates 8= for the highest sampling rate con-
sidered.

III. THE SCOPE OF THE ANALYSIS

The signals processed in the AM system have been analyzed as realiza-
tions of discrete-time (sampled-data) random processes. The transmitted
binary sequence, {b,}, the integrated AM signal, z(t), and the analog
output, §(t), are all determined by the values of the analog input at the
sampling instants, nr (n = ---, —1, 0, 1, «-+ ). Thus the analysis
reported here consists of derivations of the statistical properties of
{z.} = [z(n7)}, the integrated AM sequence and {e,} = f{e(nr)}, the
error sequence, from the statisties of {y,} = {y(nr)}, the input signal
sequence.

If y(t) is drawn from a stationary process with auto-covariance
function ¢%p(-) [the Fourier transform of S,,(f)], the covariance
coefficients of the AM signals may be expressed as functions of the
statistics, p, = p(nr). The derived covariance functions are E{zz;},
the autocovariance of the integrated AM signal, and E{yi;}, the
cross-covariance of this signal and the analog input. A property of the
definition (in Section 5.1) of the ensemble of sequences {z,} is its
stationarity in the wide sense. (Van de Weg considers a somewhat
different ensemble, one that has nonstationary statistics.) Thus the
covariances are functions of the single time variable, p = j — 1, and we
denote them 7, (the autocovariance) and ¢, (the cross-covariance) re-
spectively. Also of interest is @, the error covariance function given by

Q. = E{e,.e,,+,,} = G'zpu +ry— b — Py

It is shown in Section 5.4 that the covariance statisties, ¢,, are pro-
portional to ¢2p,, the autocovariance of the continuous input. Thus ¢,
= ¢, and the error covariance function is given by

Q.= 'p, + 1. — 20,. (5)

Because the processes under consideration are stationary, their
power density spectra are Fourier cosine series with coefficients given
by the covariance statistics defined above. The spectra are periodic
in frequency over intervals of 1/r Hz; they are denoted with asterisks
in keeping with conventions of sampled data analysis. We apply the
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Fourier series representation:

A¥) = a, + 2 i a, cos 2mnfr

n=1

so that

fa/2
a, = 2r f AX(f) cos 2mnfr df. (6)
(1]

In the sequel we will denote these Fourier transform relationships be-
tween A* (f) and a, by A* (f) «<— a,.

The power density spectrum, S#(f), of the samples of the analog
input is related to S,,(f), the power speetrum of the econtinuous input
signal, by

a’p HS*(f}— ESw(f-i-nf) @

n=-o0

It follows that if y(t) is bandlimited to W < f,/2 Hz, there is no
aliasing distortion and

S&0) = 2 Su(D, for |1 < 1./2. ®)

The other transform pairs of interest are Sx(f) < r., S*(f) « Q,,
and SE(f) < ¢, . SX(f) and S*(f) are the power spectral density fune-
tions of the integrated AM signal and the error signal, respectively.
SX(f) is the cross-power spectrum of the integrated AM signal and the
analog input. Equation (5) implies that the four power density spectra
are related by

S&L(D = SE() + SL() — 285()- 9)

These spectral density functions and H (f), the transfer function of

the interpolating filter, determine the value of the output quantizing
noise power defined in equation (1).7 Thus,

n=2r fn " SH() — 2Re (HNS5(M] + | HY) | S2() df  (10)

so that the transfer function of the optimal interpolation filter, that is,
that which minimizes 5, is the (nonrealizable) Wiener filter,®°

7 It is assumed here that H(f) processes a sequence of ideal impulses. In Fig. 1
the filter input is a sequence of flat pulses of = second duration so that when a
filter described in this analysis is te be included in a real system, its transfer
function should be weighted to compensate for the aperture effect.?
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S50 ¢

Hopt(ﬁ = Y Y r ]fl §f|/2
=0, for |f]| > f./2.
The associated minimal quantizing noise power is
fa/2 * 2
e = 2 [ {20 — EBOT} . (12)

In previous AM studies it was assumed that y(t) is bandlimited
to W Hz and that the interpolation is performed by a perfect low pass
filter with transfer function

Hy(f) =1, for |[f|=W
=0, for |f|>W.

Equation (10) indicates that the quantizing noise power associated
with this filter is

Il

2r f 1S5() + S&() — 285 df

Mips

2 | " S5 df. 13)

Thus the quantizing noise power associated with the low-pass filter
is the portion of the power of the error signal that lies within the band
of the analog input. By substituting the Fourier series with coefficients
@, into equation (13) we arrive at the formula for the low pass filter
quantizing noise in terms of the error covariance coefficients:

sin (7)
(&)

in which R = f,/2W is the bandwidth expansion ratio of the AM sys-
tem. It is the ratio of the AM sampling rate to the Nyquist sampling
rate of the input signal. The ratio, F/R, of the two normalized sam-

pling rates is 2W /f,, twice the ratio of the highest frequency spectral
component of % (t) to the effective bandwidth.

Mipr = ;3_ Qn + 2 ; Qn (14)

IV. PRINCIPAL RESULTS

4.1 Covariance Coefficients

By means of the formulas of the preceding sections, the charac-
teristics of granular quantizing noise may be expressed in terms of
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the correlation statisties py, 7., and ¢,. These quantities depend on
the nature of the analog input and on the normalized sampling rate,
F. Details of the derivations of r, and ¢,, when the input is drawn
from a stationary gaussian process, are given in the subsequent sec-
tions of this paper. Here we present the covariance formulas and use
them to investigate the quantizing noise properties.

As multiples of the mean square input, the autocovariance coef-
ficients of the integrated AM signal are

’_l w0 . szz] 641r2 {l w L [ szz]}
z 1+4§exp[ 2 |t Bt 2P| R

o

O P S [ 5 o o

m=1 k=1 M
_ P+ m — 2mkpp)] B [_F (k* + m® + 2mkpp)j|}
{e"p [ 128 &P 128
for u even,
Ta = p,,{l + 4 Zexp‘: #]}+1—2§ > Eﬁ(—l)"’
k=1 m=1 k=1
{ N [ k" + m® — 2mi(‘p“} B [ P 4 m* + 2m1.:p,g]}
P 128 128

for u odd. (15)

The cross-covariance function of {x,} and {y,} is proportional to
a®py, the autocovariance function of {y,}. Thus

% — cp, (16)
z

where

c=1+22exp[— ’;2’“] 17
k=1

Q., the autocovariance of the error signal, is related to p,, 7., and
¢, through equation (5). Therefore
F?ch]}

%_54«{_ = k exp
____4§iL i+ (- 1)m+k{ 1: F(k* 4 m’ —kap,,)]

(=7]

o
& = omk 128

=y
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2 2 2
— exp |:— F& +m + kap‘,):l} , for ueven,

128
Q _ 1283 1 m P 4 m® — 2mkpu)]
N MX; Emk (=1) {(""p [“ 128
2
— exp l: P + T28+ kap,‘)]} for p odd. (19)

4.2 The Minimal Output Quantizing Noise Power

The proportionality of the autocovariance of the input signal and the
cross-covariance of the input and the integrated AM signal implies that
the related spectra are also proportional: SX(f) = ¢Sx(f). When this
relationship is substituted into equation (12), the formula. for the quan-
tizing noise power at the output of an optimal interpolation filter, the

result is
e ¢85
in = 27 [ S”"(f)[l @ — DL + S (f)] a - @0

in which equation (9) has been used to substitute for SX(f). By algebraic
manipulation equation (20) may be shown to be identical to

) [SLO) }
Toin = 35— I {21’ f Sx(f) df — 27[ (gc —Dsa + Sap 4

2 fS () df (21)

in which the integrals are taken over the set of fin 0 = f = f, /2 for
which Sx(f) # 0. The third integral in equation (21) is ¢ */2r; if the
input is bandlimited to W Hz [with S(f) # 0 for | f| < W], the first
integral is that given in (13), ni,,/27. It follows that equation (21) may
be rewritten as

C

s 3 [SX(N]
Tmin = (55 — 1)° [”“’f 27 j; @2c — DSEH + 8P df]

2
el ey
Thus for a bandlimited signal, equation (22) relates the quantizing noise
power at the output of a low pass interpolation filter to the noise at the
output of an optimal filter. As the sampling rate increases, ¢ — 1 and
the integral in equation (22), of a quadratic form of the coefficients, Q, ,
becomes negligible relative to u;,r which is the integral of a linear form.
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Thus for high sampling rates, 7min & mi,r , indicating that the transfer
funetion of the optimal filter is nefLrEy flat over frequencies at which
Sx(f) # 0 and is zero where Sx(f) =

4.3 Approximations

The infinite series in the formulas for the covariance coefficients
converge rapidly, and in many cases of practical interest, entire series
contribute negligibly to the values of the coefficients. For example, if
the input possesses a flat power spectrum, cutoff at W Hz, the effec-
tive bandwidth is W/(3)* and the normalized sampling rate is related
to the bandwidth expansion ratio by F = 2(3)* R. Thus for B > 12
AM samples per Nyquist interval, the single summations in equations
(15), (17), (18) and (19) consist of powers of a e or less. These
summations are added to (.25 or to #2/3 and thus have negligible ef-
fect on the values of the covariance coefficients. In the double sum-
mations, only the terms obtained with the two indices equal contribute
significantly to the total when F is high. These double summations
may, therefore, be replaced by single sums and we have the following
approximations:

~14+ 37:‘
cr1, ‘fi ~ s (24)
&~ g?;f = p°/3
% R 2526 Z,‘ (=10 ”Fh (~ I;f) sinh (56%”—) (25)

If in equation (25) we approximate sinh by ¢’/2} and substitute the
result in equation (14) for »;,, , we obtain van de Weg’s formula for the
granular noise power. Van de Weg claims its validity for B = 2 samples
per Nyquist interval. Qur precise formula for @, , equation (19), leads
to noise power characteristics that are valid for all sampling rates.

T This Iea,ds to a small but nonzero value of Qu as p — and p. —> 0. Reten-
tion of the e™ term in the approximate formula for Q. results in Q» = 0 and thus
avoids an anomaly and a source of numerical error in van de Weg’s noise power
formula.
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4.4 Signal-to-Noise Ratio Characteristics

In this section we demonstrate the nature of the derived quantizing
noise characteristics by illustrating the effect of the AM sampling rate
on the quantizing noise powers, np; and gmm, and on Qo, the mean
square error at the input to the interpolation filter. In particular, Fig.
2 shows on a dB scale, S,;; = 0/7mm, the output signal-to-noise ratio
of an optimal interpolation filter; S;,; = o®/ny, the signal-to-noise
ratio of a low pass filter; and S, = 02/Qp the signal-to-noise ratio
prior to interpolation. The data in Fig. 2 pertain to the case of a zero-
mean stationary gaussian input with a flat bandlimited power spec-
trum. The signal-to-noise ratios are shown as functions of E, the num-
ber of AM samples per Nyquist interval.

For high sampling rates, equation (25) indicates that Qo is ap-
proximately $2/3, the mean square value of a random variable dis-
tributed uniformly over an interval of length 28. Thus with increas-
ing R, S, rises at the rate of 20 dB per decade. At high sampling rates
8,,r and S,,; are nearly identical. Their slope is 30 dB per decade as
indicated by equation (14) which is a linear combination of the error
covariance coefficients (proportional to R-2), weighted by 1/R.

At low sampling rates, Sy and S;,; become very low (—15 dB at the
Nyquist rate) while S,,: tends toward unity, corresponding to a filter
that generates zero output (the mean input), and thus has a mean
square error of o

V. DERIVATION OF COVARIANCE STATISTICS

Although the AM system considered in this paper is identical to
the one studied by van de Weg and the values obtained for granular
noise power are virtually the same as his over a wide range of trans-
mission speeds, the method of analysis used in obtaining the present
results differs considerably from van de Weg's. Van de Weg formu-
lated the ensemble of integrated AM signals as a nonstationary proc-
ess; he was thus unable to compute spectral characteristics from
derived covariance statistics. Instead of considering correlation prop-
erties, van de Weg began with the amplitude spectrum of a sample
function of the integrated AM signal ensemble. He then calculated
the power density spectrum as the mean square amplitude spectrum.

In the work reported in this paper, the ensemble of integrated AM
signals is stationary in the wide sense, so that the power spectra are
Tourier transforms of the covariance functions whose derivations are
described in the remainder of this paper. The difference between van
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TFig. 2— Quantizing noise characteristics.

de Weg's signal ensemble and ours lies in the role of the binary phase
parameter defined in the Section 5.1.

6.1 The Integrated AM Signal Ensemble

The integrated AM signal, {z,}, is a discrete-time discrete-amplitude
function. The signal ranges over values k6 (¢ = 0, =1, £+2, ---), and
the absence of slope overload implies that x, takes on the value of the
allowed quantization level nearest to y,. (In overload conditions, z,
and y, may differ considerably.) At any sampling instant, the set of
allowed quantization levels of a given signal is either the odd-parity
subset of quantization levels,

45, +35, 55, - - - (26)
or the even-parity subset
0, 26, 45, --- . 27)

This restriction to a subset of the k8 follows from the AM mechanism
which constrains each sample of {x,} to differ by =8 from its predeces-
sor. Thus if zy = 2k8, z; = (2k = 1)3 and any sample that may be
written s, (m = 0, =1, =2, . . .) is constrained to an even-parity
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value. Similarly the subsequence {241} ranges over the odd-parity
set of quantization levels.

Thus in the absence of slope overload, x, is the result of processing
Y» With a uniform PCM quantizer with quantization intervals of
length 25. Either z, is the output of the even-parity quantizer, with
levels given by equation (27) or the output of the odd-parity quantizer
with levels given in equation (26). The input-output characteristies
of the two quantizers are shown in Fig. 3.

In defining the AM signal ensemble, van de Weg assumed that the
“initial condition,” zo = 2k8, applies to all sequences {x,}. In van de
Weg’s analysis, therefore, all samples in {an} are generated by the
even-parity quantizer and all samples in {22, 1} are generated by the
odd parity quantizer. Thus the probability functions of Tom and am+1
differ and the ensemble of sequences {z,} is nonstationary.

We now generalize van de Weg's formulation of the integrated AM
signal ensemble by observing that the AM system may also generate
signals with the initial condition, #y = (2k—1)8. In this event {2am}
is the output of the odd-parity quantizer of Fig. 3 and {om 1} 1s the
output of the even-parity quantizer. We shall refer to the initial con-
dition that applies to a given {z,} as the “phase” of the signal. Thus
we define the two phase states:

Ay {22n) generated by the even-parity quantizer
As: {xan) generated by the odd-parity quantizer.

A delay of a signal by r seconds results in a phase reversal from A4,
to As or from A, to A4;.

[ T ~ -
et : s
2 35 —
046— o
a8
28 s
-5§ -3§ -8 . . -48 -28 | | !
ro 8 38 56 T 528 a8 68
INPUT INPUT
—{-28
—4-368
—-48
—{-58
(a) - (b)

Fig. 3— Two uniform quantizers: (a) even-parity quantizer, (b) odd-parity
quantizer.
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If we admit signals with both phases to the AM ensemble, the
statistics of the ensemble of {,} depend on the relative frequency of
occurrence, that is, on the prior probability of the two phases. Van
de Weg's ensemble is a “coherent’” one for which the prior probability
function is

Pr{d,} =1, Pr{d,} = 0. (28)

In this paper we study the statisties of the noncoherent ensemble in
which

Pr{4,} = Pr{4,} = 3. (29)

The correlation analysis begins with the derivation of probability
functions conditioned on each of the two phases. Marginal proba-
bilities may be calculated on the basis of a prior probability func-
tion as

Pr {x, = ké} = Pr {A,} Pr {z, = k& | 4,}
+ Pr {4.} Pr {z, = k& | 4.}. (30)

When equation (29) is used in the computation of equation (30), the
result is independent of n. Similarly the joint marginal probability of
z, and z,y, is independent of n when equation (29) is accepted. When
equation (28) is accepted, as it is in van de Weg’s analysis, both the
single and joint probability functions depend on the parity of n and
the covariance statisties are functions of two time variables.

In prineiple, either equation (28) or (29) may be applicable to the
operation of a particular AM system. In practice, numerical results
based on the two phase conditions are usually quite similar. In analytic
work, there is a considerable advantage offered by equation (28), the
noneoherence assumption. It admits the techniques of stationary time
series analysis to the investigation of questions of interest.

5.2 The Probability Distribution of x,

Here we derive the probability function of a sample, z,, of the in-
tegrated AM signal. The probabilities conditioned on A; and A, de-
pend on whether n is even or odd, but the marginal probability func-
tion is independent of n when 4; and A, are equiprobable.

Under the condition 4;, the samples {2, } are outputs of the even-
parity quantizer so that s, = 2k8 when

2k — 1) < yan < (2k + 1)5.
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If {y.} is a sample function of a stationary zero-mean gaussian proc-
ess with variance ¢*, we have

1 (2k+1)5 w2
Pr {z,,, = 2ké i A} = a'-((_);)_é f(nk—na exp (— 5;) du

(31)
Pr {2, = 2k — 1) | 4,} = 0.

The samples {¥2,41} are generated by the odd parity quantizer so
that

Pr {x‘_)m+l = 2’66 1 .:1]} =0 (32)

1 2ké u2
Pr {ome: = 2k — 1)6 | A,} exp (— ﬁ) du.

B <T(2'ﬂ')i (2k=2)38

Under the condition A., the complementary probability function
applies:

Pr {2y, = 2k6 | As} = Pr {22m = @k — 1 | A2} =0,
Pr {xi'm = (2]5 —1)é I Az] = Pr {$2m+1 = (2k — 1)é 1 A:}: (33)
Pr {Zome = 266 | Ay} = Pr {2 = 2ké | A4},

By combining equations (30) to (33), one may demonstrate that
Pr{z, = k&) depends on n (in particular on whether n is even or odd)
for all prior probabilities of A4; and A except the equiprobable pair
given in equation (29). Thus equation (29) is a necessary condition
for stationarity. When this condition is imposed and g = §/e incor-
porated, the formula for the marginal probability of x, becomes

1 (k+1)8 w?
Pr{z, = ké} = W-/; exp (— 2—) du. (34)

k=1)8

From equation (34), the moments of x, may be caleulated. We have

5 ) (E+1)f8 u2
m%}=%%ﬁ§:k[ em(—;%mzo (35)

k=1)8

and

R v - gf _[_g 1
E{x,} =ry = 20 ka_:m k , exp 2 @+ k)7 | d, (36)
which is equivalent to the form of ry given in equation (15). The
derivation of equation (15) from (36) is demonstrated in Section A.2
of the appendix.
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5.3 The Joint Probability of x, and x,,,

For each phase condition, the expression of the joint conditional
probability of z, and x,., depends on the parity of » and the parity
of p. For phase A,, @, and z,, are both generated by the even-parity
quantizer when n and p are even numbers. Thus the conditional
probability that x, = 2k8 and x,,, = 28 is the probability that

@k — 1) £y, < 2k + 1) and (21 — 1)8 £ Yuuu < (21 + 1)6.
Thus for n and p both even,

Pr {z, = 2k, Zos, = 218 | Ay}

1 j-czhm f(21+m [ u? 40— 2p,.‘tw]
= —f T T o1 — 55
2ra’(1 — o)t J, ( exp 20" (1 — py) dudv

2k—1)3 2l-1)8

Il

Pr {z, = (2k — 1)8, 7nsp, = 18 | A4}

= Priz, = ké, 20, = 2l — D)5 | A,} = 0.  (37)

Similarly we derive conditional probability expressions for the
eight cases listed under step 1 in Table I. The four marginal proba-
bilities indicated under step 2 are calculated as

Pr {z, = kb, Tne, = 18} = 1 Pr {z, = k6, 2,0, = 16 | 4,}
+ 1 Pr{z, = kb, T = 18| A}, (38)

Among the four cases there are only two different formulas. One is
applicable to even values of p and the other to odd values of u. When
u is even, x, and z,,, are generated by the same quantizer and when
p is odd they are generated by different quantizers. The marginal
joint probability function is independent of n. It may be expressed in
terms of the double integral expression

o) = g [ oo (-9

k-1)8

(I+1f8
) (u — vp,)” ] .
j;t_”ﬂ exp |: 20 — du dv (39)

Priz, = ké, 2,4, = 18} =pk, I, ) for k4 1+ peven
=0 for &k + I+ p odd.

as

(40)
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TaBLE I—StEPS IN DERIVING Pr {2, = kb, 2.0, = 16}

Step 1 Step 2 Step 3
Conditional Identical
probabilities Marginal expressions except

obtained for cases probabilities for cases

n even, u even A,
n even, u even
n even, u even A,

u even
n odd, p even A,
n odd, u even
n odd, u even A,
n even, g odd A,
n even, u odd
n even, u odd A,
r odd

n odd, u odd A,
n odd, x odd A4,

n odd, p odd

The autocovariance coefficient, r,, is the expected product of z, and
ﬁ:n..l_;,;:
Z Z (k8)(18) Pr {z. = kb, xasu = l8}. (41)
k=—0w I=—0

Substitution of equation (40) into (41) results in

r,= 08 Z E (2k)20p(2k, 21, 1)

k=—cw0 l=—mm

+ & f: i 2k — 1)(21 — Dp(2k — 1,21 — 1, p) for p even

k=—w l=—w
=28 3 S @RQL— Dp@k, 20 — 1, ) for 4 odd.
k=—co l=—co
(42)

Section A.3 of the appendix outlines the derivation of equation (15)
from (42) and (39).

5.4 The Joint Distribution of y. and X,

Here we consider the joint probability function of a discrete random
variable, x,, and a continuous random variable y,. Once again the
marginal distributions are independent of n when the two phases are
equiprobable. For p = 0, the marginal probability function is
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1 2
Pri{y, = u, z. = kd) =WBXD(— %)du

for (k—1Dé=u<k+1s

= 0 for other values of u.

(43)

The expected value of x,y, may be computed as

PO (k+1)8 ( ug)
Elzy,} = ¢o = W k_Z_mkj; wexp | — 5 du (44)
which is shown in Section A.4 of appendix to be ca”, with ¢ given by equa-
tion (17).

For other values of g, the conditional probability function of % and
kd is the probability that v, = w and (k — 1)6 = ¥ < (B + 1)3,
provided %6 is an output level of the quantizer that processes y,., . The
marginal probability function may be written as

k—-1)8

PI' {yn = Uy Tpvp = ka}

(k+1)8 2 2 _
exp [_ U -|—2v 2?21.?);),,
2751 — p})

from which eross-covariance coefficient ¢, may be calculated as

1
_ mﬂ :ldv du  (45)

k—1)3

b= 3 kaf WPr (Yo = U, Tary = k) . (46)

k=—c0

If equation (45) is substituted into (46) and the integration with
respect to u is performed first, the result is

p aa_ . (k+1)8 1}2
¢, = 2("211_4 > kj; v exp (— E) dv (47)

k=—c0 k-1)8

which is equation (44) multiplied by p,.

APPENDIX

Applications of the Poisson Sum Formula to the Derivation of
Covariance Coefficients

Al Basic Formula'

fz, ) = 2 exp [~z + n)’]. (48)

n=-—o0

flx, 1) = (’—‘[)*[1 +23 exp (— ”2:”’2) cos Zwka:]- (49)

k=1
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A.11 Fven Terms

glx, 1) = i exp [—i(z + 2n)"] = 1’(925 . 45) (50)

n=—o0

glz, 1) = L (E)i[l + 2 i exp (-—- Trzka) cos rkx]- (61)
' 2\¢ = 44
A12 Odd Terms

@

hz, 1) = Y exp [—iz + 2n — 1)) = f(z, 1) — g(z, ) (52)

fi=m—co

27.2

h(z, 1) = % (1;)*[1 + 2 g} (=1)* exp (— 1'—4? ) cos rk:v]- (53)

A2 Mean Square Value of x,

Equation (36) may be developed in terms of the partial derivatives
of equation (48):

fulz, 1) = — i (x + n)® exp [— iz + n)*) (54)
and
f.(x, ) = =21 _Zi: (x + n) exp [— iz + n)*1. (55)

Equations (54) and (55) may be combined to form

> ot exp [—te + ] = (e, 0+ F 1, ) = fule, ). (56)

n=—og

If the order of summation and integration in equation (36) is reversed,
the resulting integrand is identical in form to the left side of equation
(56). Thus equation (49) may be substituted into the right side of equa-
tion (56) and the three terms integrated over 0 = z = 1. The result is

ful iﬂ n® exp [—{(z + n)°] dz
-5 @[ +1 S (=)

+(l S ()] e

The variable, ¢, in equation (57) is related to equation (36) by ¢ =
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B?/2 = 32x*/F*; when this latter form is substituted for ¢, the form
of rp given in equation (15) results.

A3 Autocovariance Coefficients

In order to illustrate the derivation of equation (15) for r, from
equation (42), we consider odd values of u. By substituting into equa-
tion (42) the form of p(k, [, u) given in equation (39) we write

(26+1)8 2
r, = 4_”(1 p,.)* E 2k j{ exp (— E)G’(v) dv, (58)

k=—co0 2k-1)8

in which we have defined

l=vpu/B 0 2 _ 2
e =8 "~ ¥ @-Dew [— @%g—fl—?)—”—] de.  (59)

The integrand in equation (59) is related to the infinite series in equa-
tion (52) and its partial derivative with respect to x by

> @n =1 exp [~ + 20 — '] = —ah@, ) — o Wi, ),

(60)
in which the variable ¢ = 5°/2(1 — p?%). Into equation (60) we substitute
the form of Az, {) given in equation (53) and perform the integration
required in equation (59). The integral of the second term is zero so
that ('(v) is B times the integral of the first term of equation (60). Thus
equation (58) may be written in the form

G@) = [2r(1 — P21}
Py 1 am’(l — o) | . TMPY
{;3 +2’§ exp[ 257 ]sm 5 }, (61)

which must be weighted by exp(—v?/2) and integrated according to
equation (58).

Equations (58) and (61) thus show 7, to be the sum of two terms.
The first term consists of a constant, p,e8/(2=)%, multiplying the sum

(2k+1)8 vz 0 Bz .
szf vexp(—~)dv=22exp — =2k — 1)* |
k=—co (26-1)8 2 ke 2

(62)

This latter summation is in the form of equation (52) withz =0, ¢ =
B%/2 so that with the application of equation (53), (62) becomes
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h(O,z) (2;) [1+ Z( * exp( 2;"’ )} 63)

The second term in the expression for 7, may be written in the form,

o(@) £ L oo - 0]

® (2k+1)3 2
) f (— "5) sin ™2 dy. (64)
(

k=—co 2k-1)8

If the sine in this expression is developed in exponential form, the
summation, ranging over k, in the above expression, has a form
similar to the integral and sum in equation (59). If it is analyzed in
the manner that G(v) was reduced the following identity may be
demonstrated:

w0 (2k+1)8 v2 Mo
Sk exp (— E)sin P iy

k==og (2k=1)8 ﬁ
r\! ( rzmzpﬂ)[wmp! = (=1
=(§) P\ Top? [k +2;rk
27.2 2
X exp (— X ) sinh (“———’;’;”“’")]- (65)

Thus equation (64) becomes

200" 35 e (- D) 4 25t 3 35 (G

me1 213 k=1 m=1T . i
. exp [_ T (k 2;;‘ m )] BiII.h ('ﬂ' ]'CBTPJLI) (66)

so that r, for p odd, the sum of (66) and p,od/(2x)Y* times (63), may
be expressed as

=pua”[1+4§exp( 2”k)]+262ii( 1

k=1 m=1

- [— ok + m) 2;; m )] sinh (”—’;T"")- 67)

If 8x/F = p* is substituted in equation (67) the result is equation (15).

Similarly the formula given in equation (42) for r, when p is even
may be developed to demonstrate its identity to the formula in equa-
tion (15).
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A4 (Cross-Covariance
Performing the integration indicated in equation (44) we have

@0 k_E_w k{exp [ g =k — 1)”] — exp [— %2(16 + 1)2]}

_ % 3 ew[-Zx], (©8)

which is equivalent to equation (48) with x = 0, ¢t = 8*/2 = [32 =%/
F?]. Thus equation (49) may be substituted with the result given in

equation (16):
¢ [1+2Eexp( 2’;"’)]-
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