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In a system designed to quantize the output of an analog data source and
to transmit this information over a digital channel, errors are introduced by
the quantization and lransmission processes. Quantization resolution can be
improved by using all positions available in a data stream to carry informa-
lion, or transmission accuracy can be improved if some of the positions are
used for redundancy with error-correcting codes. The problem 1is to deter-
mine, from a system viewpoint, the proper allocation of the available posi-
tions in order to reduce the average system error rather than concentrate
exclusively on either the quantization problem or the transmission problem.

We develop a eriterion for the performance of data transmission systems
based upon the numerical error that occurs between the analog source and
the destination. The criterion, termed the average system error, is used to
evaluate and compare possible system configurations. Significant-bit packed
codes are defined. These codes are useful because their protection can be
matched to the numerical significance of the data and their redundancy can be
sufficiently small to maintain good quantization resolution. The average sys-
tem error resulting from represeniative system designs is numerically
evaluated and compared.

I. INTRODUCTION

When designing a system to sample the output of an analog data
source and to transmit the samples over a digital channel, the usual
approach is to consider the errors introduced by quantization and
transmission as separate problems. However, from a system view-
point, a conflict arises. On the one hand, the quantization resolution
can be improved by using all of the available positions in a data
stream to carry information. Alternatively, the transmission accuracy
can be improved if redundancy and error-correcting codes are intro-
duced by converting some of the information positions into parity
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check positions. The problem then is to determine the proper alloca-
tion of the available symbols in order to reduce the average system
error rather than concentrate exclusively on either the quantization
problem or the transmission problem.

We consider a data transmission system with uniform quantization.
The average absolute error that occurs between the analog source
and the destination is used as the criterion of system performance.
The criterion, termed the average system error (asg), is used to evalu-
ate and compare the effectiveness of various systems.

Some work has been done on the design of error-correcting codes
which provide different amounts of protection for different positions
within a code word. In Ref. 1, the general algebraic properties of these
codes, referred to as unequal error protection codes, were investigated.
In Ref. 2, significant-bit codes (which turn out to be a subclass of un-
equal error protection codes) and a criterion for evaluating the per-
formance of codes for the transmission of numerical data were devel-
oped.

In this paper, we define packed codes and significant-bit packed
codes, we analyze their performance, and we numerically evaluate the
average system error resulting from the use of representative quatiza-
tion resolutions and coding schemes.

II, PRELIMINARIES

We consider a binary symmetric channel in which the errors are
independent of the symbols actually transmitted. In the numerical
examples, we further assume that the errors occur independently
with probability p = 1 — g. The error-correcting codes to be discussed
are binary block codes in which the code vectors form a group under
component, by component modulo 2 addition. Let » denote the block
length and k denote the number of information positions per code
vector. The notation (n, k) is used to denote such a code. A complete
discussion of these codes is contained in Ref. 3.

The encoder receives k& binary information symbols [called a mes-
gage and denoted by (vy, vp—1, **+ , v1)] as an input and deter-
mines from the message (n — k) binary parity check symbols. The
decoder operates upon the blocks of n binary symbols coming from the
channel in an attempt to correct transmission errors and provides k
binary symbols at its output.

Let H denote the parity check matrix for such a code. An n-tuple u
is a code vector if and only if
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ul =0 (1)
where [T is the transpose of H. The matrix H can be written in the form
H = (Ck ) Cia y T ClIngk)

where C;(1 < 7 £ k) is the column of H in the position corresponding
to information position », in a eode vector and I, is the (n — k) X
(n — k) identity matrix.

When the integer s is to be sent, the message used is By (s) such that*

Bk(s) = (vk s Uk—1, """ vl)
where

k
§ = Z 2‘-_11)" .
i=1
The parity check symbols E(s) are chosen so that the code vector
C(s) = By (s) | E(s) satisfies equation (1) where the symbol | indi-
cates that C(s) can be partitioned into Bx(s) and E(s).

III. PACKED CODES

A model of the data transmission system is shown in Fig. 1. Let us
assume that each quantization step is of equal size and that there are 2'
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Fig. 1 — System model.

quantization levels. For many applications, the quantizer uses a rel-
atively small I (perhaps 15 or less). In addition, coding schemes must
have low redundancy; otherwise so many information positions are
converted into check positions that the quantization error becomes too
large. These requirements lead us to define “packed” codes in the follow-

‘*B¢ (7) denotes the #-bit binary representation of the integer j where 0 = j =
2 — 1.
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ing manner. Consider an (n, k) binary group code in which « samples
are packed into each code vector. If each sample consists of ! bits, then
k = al. Let s,, denote the integer that is transmitted for the mth sample
in a code vector where 0 £ s, £ 2' — land 1 £ m £ a. Accordingly,
the code veetor actually transmitted is

C(S) = Bi(sa) | Bi(s4-1) ] T |Br(31) !E(s)
where

s = Z gim-ig (2)

m=1
A packed code vector is shown schematically in Fig. 2. _
Two examples are in order. In the first, a (7, 4) perfect single error-
correcting code is used to form a packed code with « = 2 and [ = 2.
1110
H=111011I,-
1011

—
8, positions_T T—sl positions

In the second example, the idea behind significant-bit codes is applied
to packed codes and results in what will be referred to as a signifi-
cant-bit packed code.? Specifically, the basic (7, 4) code can have its
protection capabilities arranged to match the numerical significance of
the bit positions; that is, to protect the most significant bit of each of
four samples (e = 4 and [ = 2).

10101000
H=1]110100010 1, -
10001010

84 posit-ions——T T—-S, positions

s, positions

s positions

Notice that the significant-bit packed code requires only half as many
parity check positions per sample as the packed code.



TRANSMISSION ERROR 1223
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Fig. 2— Packed code vector.

Many packed codes can be designed to provide desired levels of
protection and redundancy. Numerical data concerning the effective-
ness of representative packed codes are presented in Sections VI and
VII.

IV. FORMULATION OF A CRITERION OF SYSTEM FIDELITY

In this section, we develop a eriterion of system fidelity as a func-
tion of the number of quantization levels and the capability of the
error-correcting code. This is done for packed codes because of their
generality.

Let z, denote the output of the analog source that results in s,
being transmitted. It is assumed that z,, is a random variable that is
uniformly distributed on the interval (X;, X»). The probability den-
sity funetion for z,, is

1

f@n) = v— for Xi £2,=X,
X = 4 ®)

=0 for x, < X, or z,>X,.

IA

If
X+ a(B5X) <o, <X+ 6+ D(Tg X
then the output of the quantizer is

X, + (sm + )(éht—)

The “source scale to binary eonverter’”’ receives

ot o {55 5)

from the quantizer and delivers B,(s,) to the encoder. After a samples
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are received by the encoder, the message

Bk(s) = Bl(sa) |Bl(sa:—1) | e |Bl(sl)

is encoded to form the code vector C(s) = Bi(s) | E(s) where the
value of s is determined from equation (2). At the destination, the
decoder attempts to correct errors and provides the message

Bi(r) = Bi(r.) | Bi(ra—y) | -+ | Bi(ry)

at its output where0 < r, < 2' — 1forl £ m £ @ and

po 3 gy @)

m=1

The “binary to source scale converter” receives B;(r,) and delivers

X, + (0 + 2)( - Xl)

to the destination. Because uniform quantization is used, a useful
measure of the numerical error that occurs as a result of the quantiza-
tion and transmission of x,, is

~[x+ e (F5 ]|

where y > 0. The appropriate value of y will depend upon the nature
and use of the signal. For this paper, let y = 1.

For the mth sample position in a packed code, let Prn{rm |s.}
denote the probability that r,, is received when s,, is sent. Accordingly,
the average system error for the mth sample (asm,) is

2'—1 2I —1 pXi+(am+1) (Xa—X1)/20 Xz_Xl
ASE,, = f Im—Xl - (rm+%)( 2! )

r-—O am=0 YX1+em(X,—X;)/2¢0

'Pl‘m {1‘,,, [smlf(x"‘) dxm . (5)

It is desirable to express Pr,,{r, | s»} in terms of the properties of
the error-correcting code. Let Pr{r |s} denote the probability that r
occurs at the output of the decoder when s is the input to the encoder.
As shown in Appendix A, for a channel in which the errors are inde-
pendent of the symbols actually transmitted,

o

2l-1 al—3 a
Pr, [T | 8} = E - E PI'{ Z gim =1y
m'=1

ta=0 t1=0
excluding £,
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where B,(t,) = B;(r,) ® B;(sy,).* This expression is interesting be-
cause it permits us to compute Pr,{r, | s} from the properties of the
code. Specifieally, it is necessary to determine the probability that
each possible sequence of « samples, in which the mth position equals
tm, is received, given that zero is transmitted for each sample, and
then to sum these probabilities.

For the case in which one sample is transmitted per code word (that
is, « = 1 and | = k) and all samples are equally likely to be trans-
mitted, the average numerical error (ANE) that occurs during trans-
mission has been defined as®

2k—1 2k—1

AN‘E—I > > |r—s|Prir]s}.

r=0 a=0
The average numerical error is the average magnitude by which the
output of the decoder differs numerically from the input to the en-
coder and thus provides a measure of the performance of the channel
and the code. This concept can be generalized by defining the average
numerical error for the mth sample as

2i—1 2f-1

NE,, E 2 |7 = 8n | Prn {rm | sa}. (6)

rm=0 am=0
By reasoning analogous to that in Theorem 1 of Ref. 2, for a binary
group code used with a binary symmetric channel, equation (6) can
be reduced to

1

ANE, = 22" EiEﬂ Pr, {r. | 0}.

i=1 rm=21"1

With this definition of ANE,, the probability density function in
equation (3), and the steps shown in Appendix B, the average system
error for the mth sample, as given in equation (5), can be expressed as

ASE,, = (&—2_—:&)(1&1@.. + 1 Pr,. {0 ]0}).

One feature of packed codes is that the protection afforded various
samples against transmission errors can be unequal. If this occurs,
different positions will have different system error. Therefore, in
general, the average system error per sample (AsE) is

1 a
ASE = = J_ ASE,

* The symbol @ denotes component by component modulo 2 addition of vectors.
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The range of the analog source is specified by X; and X2. When con-
sidering system design, it is convenient to let X» — X; = 1 (or to con-
sider a normalized average system error). Accordingly, in the re-
mainder of this paper, we shall be concerned with the expression in
equation (7).

ASH = = ,,. [Elf (ANE,, + 1 Pr,, {0 | 0})]- )

For a system in which one sample is transmitted per code word (that
is,a=1landl=k),

ase = o (axm + 1 Pr (0| 0)) ®)

where ANE and Pr{0 | 0} are for the entire code.

For error-free transmission, Pr,{0|0} = 1 and ANE, = 0 for all
coding schemes including uncoded transmission. In this case, AsE =
2-(+2) Thus, the system error is independent of the particular code,
is minimized by maximizing I, and cannot be reduced to zero but is

bounded by the quantization error.

V. THE AVERAGE SYSTEM ERROR TFOR UNCODED TRANSMISSION

Before examining the role that error-correcting codes can play in
reducing the average system error, it is advantageous to consider sys-
tem effectiveness when uncoded transmission is used with a memory-
less channel. In the system model, uncoded transmission is charac-
terized by « = 1 and I = k& = n. Let asNpe denote the average system
error for uncoded transmission. From Theorem 2 and the comment
following the proof of the theorem in Ref. 2 (these are summarized
in Appendix C), the average numerical error for uncoded transmis-

sion is

I
ANBye = p 2,27 '¢7 =2 p ————
14

The probability of correct transmission is g'. Therefore, from equa-
tion (8)

1 1
ASEpg = % (p > 27 4+ i—)- 9)
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Figures 3 and 4 present the average system error for uncoded trans-
mission for representative values of I and p.

For each value of [, notice that as p — 0, AsEgg = 2-0+2) which is
the limitation imposed by the quantization error. Also, ASEgg inereases
monotonically with p for 0 < p < 1% (see Appendix D). For a given
value of I, how large must p become so that AsEye deviates appreci-
ably from 2-0+2) (that is, for what values of p does the transmission
error make a significant contribution to the system error?)

For small p, equation (9) yields

1 : l 1
~ _ _ & = 1.
ASBye = o1 [(2 1 4)p + 4] (10)
o2
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Fig. 3 — Average system error for uncoded transmission (AsEpe) for various I
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This expression can be broken into two components; the term

l
4 — — —
2 1 1

)
and the term 2-0+2), These components are shown in Fig. 5 for I =
15. In Fig. 5, the terms intersect at a probability of error denoted by

P, Where

1

e
[ — —
)

Notice that p. is the value of p for which the transmission error equals
the quantization error [within the approximations leading to equa-
tion (10)]. Accordingly, for p = p., ASEge =~ 279"V, In Fig. 6, p. is
given for various [. I'rom p., it is possible to obtain an estimate of the
general region in which AsEyc begins to deviate from 27*® because of
transmission errors.
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An additional feature of Figs. 3 and 4 is that, for a given value of [
and for p greater than the appropriate p., ASEgc is approximately equal
to p. This causes the converging of the curves as p increases and im-
plies that systems with different ! will have essentially the same
performance. Let us consider qualitatively the cause of this phenome-
non.

For p > p,, the transmission error is significantly greater than the
quantization error and, thus, the average system error is largely deter-
mined by the transmission error, If a single error ocecurs in a sample
and if it occurs in the most significant position, on the average, a
numerical error of 14 will result for any [. For values of p that are of
practical interest, the probability that this occurs is essentially in-
dependent of I and equal to p. Similar reasoning can be applied to the
less significant positions although the numerical error that results
will, of course, be less than 4. The point is that the probability that
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Tig. 5 — Average system error for uncoded transmission (asEve) for I = 15.
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these single errors occur and the numerical errors that result are es-
sentially independent of I. This implies that the transmission error
(and thus the average system error) will be relatively insensitive to I.

Notice that p, decreases as [ increases. The reason is that the quanti-
zation error decreases as ! increases whereas the transmission error is
approximately independent of [ Thus, the value of p where the trans-
mission error becomes a significant portion of the system error de-
creases.

From equation (10), no system using uncoded transmission can
have an average system error significantly less than p no matter how
large I becomes. This leads to the problem of how to make the average
system error less than p.

Suppose that the o most significant positions per sample are pro-
tected by coding and that the remaining (I — ¢) positions are not pro-
tected. Further, assume that sufficient protection is provided so that
the probability of error in the protected positions is substantially
less than p. Under these conditions, the transmission error is deter-
mined primarily by errors in the least significant positions and we
can consider the protected positions to be free of errors. Then, from
Theorem 2 of Ref. 2 (summarized in Appendix C),

1 o i— —o—i e
ASE = g(p 227+ 1 )

i=1

For values of p that are of practical interest,
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o L[ (g-e _ _£~a) 1],
ASE:Z;[(Q 1 T P t3 (11)

Accordingly, for p in the range where transmission is the major source
of system error, the average system error can be reduced by a factor
of approximately 2-¢ from the average system error for uncoded trans-
mission. This implies that we should seek codes that can hoth protect
the significant positions of each sample and maintain quantization
resolution by requiring small redundancy. The above requirements
provide the motivation for significant-bit packed codes.

VI. SOME EXAMPLES OF SYSTEM PERFORMANCE WITH CODING

In this section we assume that a predetermined number of positions
(denoted by ¢) are available to transmit each sample. By numerical
evaluation, the average system error that results from the use of
representative coding schemes (for ¢ = 7 and £ = 15%) is determined
for various values of p. The examples illustrate that system perform-
ance depends upon p and upon the manner in which the ¢ positions
are allocated between information bits and redundancy for error
control.

Let AsEye denote uncoded transmission. First, consider codes in
which one code vector is used per sample (o« = 1). Listed below is a
brief description of each code. The codes are indexed by the notation
used for their average system error in Fig. 7 (¢ = 7) and Fig. 8 (¢
= 15).

ASE(31): A (3, 1) perfect single error-correcting code is used to pro-
tect the most significant position.

E=T a=1 l=25
£ = 15: a=1 =13
ASB(s.1).(3.17: Independent (3, 1) perfect single error-correcting codes
are used to protect the two most significant positions.
t=T a=1 l=3
E=15 a=1 1=11

* These values were selected because in each case it is possible to construct a
perfect single error-correcting code and thus to compare uniform protection
with protection that is heavily weighted in favor of the most significant bit per
sample,
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Fig. 7 — Average system error (asp) with representative codes; 7 positions per
sample (¢ = 7)

ASE(7,4): A (7, 4) perfect single error-correcting code is used to pro-
tect the four most significant positions.

E=T a=1 l=4
£ =15 a=1 I =12

ASE(15,11): A (15, 11) perfect single error-correcting code is used to
protect all 11 positions.

g=15 a=1 1=11

Although many significant-bit packed codes can be constructed, we
consider only three examples. They were selected because the codes
should protect the most significant positions of each sample and
because a small number of parity check positions per sample should
be used so that we can reasonably consider 2! quantization levels.
The codes illustrate the general capabilities of significant-bit packed
codes and are easy to implement. One prime is used in the average
system error notation to indicate that the most significant position
of each sample is protected and two primes to indicate that the two
most significant positions of each sample are protected. Let p de-
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note the number of parity check positions per sample where p =
(n—k) /e. Let R denote the code rate where R = k/n.

ASE/y; 11 ¢ A (15, 11) perfect single error-correcting code is used in
a significant-bit packed code to protect the most significant position
of each sample.

E=T a =11 =17 p = 0.36 R = 0.950
£ =15 a=11 l=15 p = 0.36 kR = 0.976

I

ASE/q, o5 ¢ A (31, 26) perfect single error-correcting code is used in
a significant-bit packed code to protect the most significant position
of each sample.

E=7: a=2 1=7 =019 R =0974
£=15 a=2 1=15 p=019 R = 0987

ASEl}, 0 ¢ A (31, 26) perfect single error-correcting code is used in
a significant-bit packed code to protect the two most significant

103
8
8 ,/
/ &
4 A
/LA
~
/ A7)
2 - _ ) 2 p
ASE (15 11) L7
ASE[a,I),(a,u) __'_.:_— 4 L7 AN
—— 1 B A S e an %
1074 / s 7 -
| 7 1., P e
) & P PR :f_/:_/—-—-- 7
ASE(? 4) - ; ,4/ / |
a l — == — | 1 ;;AASEV(SI'%)
[ASE( _)_4__,__.. X % |
3 ~ASE|
5 i //i, ? (15,11)
// ///4/ ASE” '
ASEyc _L— __,-/// - {31,26)
-5 -1 |
| o o
Bl=— .
: |
4 |
10-6 2 a B o5 a 6 B4 > 4 5 8 (3

P

Fig. 8 — Average system error (ASE) with representative codes; 15 positions per
sample (§ = 15).
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positions of each sample.
E="1 a=13 =7 p = 0.38 R = 0.948
£ =15: a =13 l=15 p = 0.38 R = 0975

We can make the following observations concerning system per-
formance when codes are used. In all cases, as p = 0, Asg = 2-(+2)
which is the limitation on system performance because of quantiza-
tion. As [ increases, the quantization error decreases. Thus, the value
of p for which the transmission error becomes a significant portion of
the system error decreases. In other words, if you design for good
quantization resolution, then you need a good channel. This implies
that, as the number of positions per sample increases, codes are use-
ful for smaller values of p in order to bring the channel up to the
required quality.

Because all « = 1 codes necessitate a sizable reduction in ! to al-
low for redundancy, they are only attractive for larger » where con-
siderable coding capability is required. For these p, we have demon-
strated that system performance can be improved (by an appreciable
amount in some cases) by sacrificing quantization resolution for an
improvement in transmission fidelity. However, because significant-
bit packed codes provide protection for the most significant positions
without the large penalty in quantization resolution required by the
e = 1 codes, significant-bit packed codes are effective for considerably
smaller values of p than are the « = 1 codes.

Notice that ASE!,, 6 and ASE}; ., are nearly equal. The reason is
that although the significant-bit packed code using the (31, 26) code
provides less error protection than the significant-bit packed code based
on the (15, 11) code, in each case the protection provided for the most
significant position is ‘‘sufficient” and, thus, the errors that hurt are
coming in the less significant positions.

On the other hand, AsE!}, ., is less than either ASEl;; .4, or ASE!; ,,
for the values of p where significant-bit packed codes are preferable.
The reason is that errors are now nearly eliminated in the two most
significant positions in each sample. Further reductions in system error
could be achieved by using significant-bit packed codes which protect
three or more positions per sample. However, we must be careful not to
go too far or we should begin to charge the redundancy against quan-
tization resolution.

Significant-bit packed codes achieve an effect similar to interleav-
ing. Thus, although the computations herein have been for independ-
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ent, errors, significant-bit packed codes could prove useful for a channel
with clustered errors.

VII. SIGNIFICANT-BIT PACKED CODES FOR DIFFERENT [

Several interesting points are illustrated in Fig. 9. Indexed on the
left are the four values of I considered. For [ = 15, ASEyc is shown.
For il = 15, 14, 13, and 12, ASE{;, ., and ASE}}, .4, are given.

The following observations concerning Fig. 9 can be made. For
small p, the I = 15 schemes are best. This is to be expected because
quantization is the major source of system error for small p.

However, for larger p, the significant-bit packed codes with I < 15
have less system error than uncoded transmission for I = 15. This is
particularly interesting because, in these significant-bit packed codes,
more positions are saved by reducing ! than are added by the parity
check positions. For example, in the [ = 13 system that results in
ASE’y; .q, , @ = 26 and n = 343. If uncoded transmission with I = 15 is
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Fig. 9— Average system error (ase) with significant-bit packed codes.
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used to send these 26 samples, 390 positions are required. Thus, for
p > 4.5-107°, this significant-bit packed code reduces system error
and saves 47 positions every 26 samples. Similar behavior can be noted
for other significant-bit packed codes considered in Fig. 9.

For p = 1072, the three systems with ¢ = 1 converge to approximately
271 ASEyc and the three systems with ¢ = 2 converge to approximately
27% AsEpe even though the systems use different quantization resolu-
tions. However, for p = 109, the convergence is determined by I This
clearly demonstrates the two extreme cases in system behavior: limita-
tion by transmission error and limitation by quantization error.

VIII. THE SYNTHESIS PROBLEM—AN EXAMPLE

Suppose that the probability of error and the maximum allowable
average system error are specified. Let these be denoted by p, and
AsE, respectively. From equation (11), ¢ and I should be chosen to
satisfy the relation

ASE, > 27, + 27 ¢*¥ (12)

where o represents the number of protected positions per sample.
Because equation (11) is an approximation, values of ! and ¢ that
satisfy equation (12) cannot be guaranteed to provide a system with
an ASBE = AsE, . However, as ¢ decreases compared with [, equation (12)
becomes increasingly reliable.*

Notice that [ and o appear as negative exponents in equation (12).
Therefore, for a given p,, a wide range of values for the Asg, can be
achieved by varying ! and o. Also, equation (12) frequently can be
satisfled by several pairs of values for I and ¢. For each pair, there
may be several possible coding schemes. The system designer must
then choose the final system configuration from these candidates on
the basis of such items as the cost of implementation or the number
of positions in the data stream per sample.

As an example of system design, consider a telemetry channel in
planetary space missions. This channel can often be modeled satis-
factorily by the memoryless binary symmetriec channel and typically

* A major assumption leading to equation (11) is that all of the average nu-
merical error comes from the unprotected positions. However, if ¢ is large, then
errors in the protected positions result in a much larger numerical error than
errors in the unprotected positions. Therefore, even though errors in the pro-
tected positions are less likely, a significant portion of the average numerical
error can come from these positions,
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has a bit error rate of 5-10-%. Thus, equation (12) becomes
ASE, > 5-107%.2774-974+3, (13)
If uncoded transmission is a system requirement, then ¢ = 0 and
ASE, > 5-107°4270%,

Notice that successive increases in I result in successively smaller
reductions in the average system error and that the average system
error can never be less than 5-107°. From Fig. 4, all systems with
I = 8 have essentially the same average system error and, thus, little
is gained by using I > 8.

A more interesting situation exists if the system designer is per-
mitted to choose ! and the coding scheme. If asg, > 5-10%, it is pos-
sible to design a system using uncoded transmission although coding
could prove effective as AsE, approaches 5-10-*, However, if AsE, <
5-107%, some form of coding is mandatory. Conversely, from equa-
tion (13), if coding is used, the system error can be made small by
choosing appropriate values of I and ¢. In Table I, the approximate
average system error is given for representative ! and o. The informa-
tion in Table I was computed by using equation (11) and, thus, is
subject to the assumptions and approximations leading to equation
(11). However, from Table I, the improvements in system performance
that can be achieved by coding are evident .

TABLE I-—APPROXIMATE AVERAGE SYSTEM ERROR (ASE) FOR
REPRESENTATIVE [ AND o} p = 5:107°

I ‘ a Approximate ASE
7 ‘ 1 4.4-10-3
‘ 2 3.2-1073
3 2.5-1073
s 1 3.5-1073
2 2.2.10-%
1 3 1.6-10-%
9 1 3.0-10-3
2 1.7-1073
3 1.1-1073
o |1 2.7-10-3
2 1.5-1073
[ 3 8.7-10
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Consider the following specific example which illustrates certain
alternatives in code selection without requiring extensive computational
effort. Suppose AsE, = 4-107°. From equation (13) or Table I, we can
useo = land! = 8ore¢ = 2and! = 7. The minimum values of I will
be used. Several coding schemes are possible in each case. The codes,
indexed below by the notation used for their average system error in
Fig. 10, follow the ideas in Section VI. Thus, the parity check matrices
are not presented.

Fore=1 [ =28:

ASE(a.1): A (3, 1) perfect single error-correcting code is used to pro-
tect the most significant position.

a=1 [ =38

ASE{;; 11y+ A (15, 11) perfect single error-correcting code is used in
a significant-bit packed code to protect the most significant position
of each sample.

a=11 =28

ASEly, 00y ¢ A (31, 26) perfect single error-correcting code is used in
a significant-bit packed code to protect the most significant position
of each sample.
a =26 =28
Fore =2 l=1:
ASE(3.1),(3,1): Independent (3, 1) perfect single error-correcting codes
are used to protect the two most significant positions.

a=1 l=7

ASE(}, 20 ¢ A (31, 26) perfect single error-correcting code is used in
a significant-bit packed code to protect the two most significant
positions of each sample.

a =13 =7

The design objective, denoted by an asterisk in Fig. 10, is satisfied
by each system although the systems vary somewhat in performance
for other p. Notice that the systems differ in the coding equipment and
quantization resolution required for implementation. Also, notice that
the systems vary in the number of positions per sample in the data
stream [from a low of 7.4 for ASE!}, ., to a high of 11 for ASE, 4y, 2, 1))
Which system would actually be selected would thus depend upon the
details of the specific application.
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Fig. 10 — Systems for space telemetry channel.

IX, CONCLUSIONS

A general formulation of the error introduced by quantization and
transmission has been developed for the data transmission system
shown in Fig. 1. It has been shown that system performance is in-
fluenced by both the quantization resolution and the channel error
characteristics, that certain levels of performance cannot be achieved
without the use of coding no matter how fine the quantization, and
that performance can, in some cases, be improved by sacrificing
quantization for redundaney and error control. In general, when
coding is used, it is beneficial to use codes that mateh their protection
to the numerical significance of the information positions. Significant-
bit packed codes are particularly useful because they provide protec-
tion for the most significant positions without incurring a large penalty
in quantization resolution. The problem of determining the coding
capability and the number of quantization levels required to achieve
a specified average system error has been considered.

The specific results are based upon the choice of y = 1 in Section
IV. However, varying y simply changes the “cost” assigned to the
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numerical errors and, thus, the general ideas presented here are ap-
plicable for any vy > 0: for example, the desirability of the system
approach to quantization and transmission error, the possibility of
improving system performance by sacrificing quantization resolution
for redundancy, and the use of codes that concentrate protection on
the numerically most significant positions. Actually, it appears that
as y increases, the desirability of protection for the most significant
positions also increases.

Because of the unit distance properties of Gray codes, it is natural
to inquire whether Gray codes could prove useful in the system dis-
cussed in this paper. It can be shown (for y = 1) that a Gray code
with 2! levels gives exactly the same average numerical error and
average system error as the natural binary numbering with 2! levels
even when error-correcting codes are used.

APPENDIX A

Derivation of an Expression for Pro{rm | $m}

Let Pr, {7.|s.} denote the probability of receiving r. when s, is
transmitted using a packed code. Let Pr {s;} (1 = 7 = «) denote the
probability that s; is transmitted. Then

201 2l—-1 2f—1

Pr, frm|sa} = 25 000 20 20 e ZuPr s} Prsa) +o+ Pr ()
ra=0 ri=0 sa=0 a1= ~
excluding r,, and s, excluding Pr {s,}

where the values of r and s are determined from equations (4) and (2),
respectively. However, Pr {s;} = 27" for1 £ ¢ = o, ¢ # m. Thus,

1 2l-1 2l—1 27-1
Pro [Fm | 8m} = pYe=E E Z‘a E Z‘a Pr | (14)

excluding r,, and s,,

The expression in equation (14) can be simplified. From equations
(2 ) and (4), equation (14) can be written as

» Pr’” [T"‘ |s"‘} = 2(::%1)1 o=

excluding r,, and s,

-Pr{z AL S 2"""‘“8,“.}. (15)
. - m’'=1

. m'=1
By Lemma-1 of Ref. 2, for a binary group code used with a binary
symmetric channel in which the errors are independent of the symbols
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actually transmitted,

PI' { i 2(!»'-&)15"1J

m'=1

a
Z 2(m —1”8,,,-
mi=1

where Bi(tm) = Bi(*m:) ® Bi(s,). By Lemma 2 of Ref. 2, equation
(15) can be written as

0} = Pr { 2 2,

m’' =1

Pro {rm | sm)
2l—1 20—1 211 « ) ‘
z{a -1 Z z E -2 PI‘{ Z PR 0}
2a=0 8:=0 ta=0 t1=0 m’=1

excluding s,, and .,

which reduces to

Pr, {rn | Sn} = ZZ_! Z Pl‘{ i gtm =11y

ta=0 t1=0 mi=1
excluding /.,

0}-

APPENDIX B
Reduction of the Expression for the Average System Error
By substituting equation (3) into (5) and rewriting,

20—1 2!1-1
1

"= =Xy > 2 Pr{ra|sa)

1/ rm=0 am=0
X, — X
Ty — X1 — (rm + %)(—-——21 ‘)

ASE

j-x.+ (sm+1) (X3—X1)/2!

dz,, .
Xitam(Xs—X1)/2}

However,

fX1+(lm+1)(X|—X1]/2‘

Tw — Xy — (rm + %)(—z—é:zi) ‘ dz,,

Xi+em(Xa=Xa)/2!

- (—i;,—&)zﬂ T = Sm | + § 8rmen)

where
=1 for r, = 8a

Tm&m

0 for 7. # &n .

Thus,
2i—1 2!-1

AsE, = X2 ‘Xl > 3 | — 8u | Pra {ra | sa)

rm-O am=0

+X2_X'22Prm{rm]s Brmem -

221
rm=0 am=0
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The average numerical error for the mth sample was defined in equa-
tion (6) as

2i-1 21—

mn=2!1' E E Irm_'smlPrmrr!ul'S!u}'

rm=0 am=0
In addition, it can be shown that for a channel in which the errors are
independent of the symbols actually transmitted,

2l-1 20—1

> 2 Pro{rm|sm} Srmem = 2' Pr, {00},

rm=0 am=0
Therefore,

ASE,, = (%)(ANE, + 1 Pr, {0]0}).

APPENDIX C

Theorem 2 of Reference 2

A significant-bit code is a code in which the (k—Fkq) most signifi-
cant positions are protected by what is referred to as a base code and
the remaining %k, positions are transmitted unprotected. For the base
code when used alone, let Prp{0 |0} denote the probability that the
output of the decoder is the zero message when the input to the en-
coder is the zero message. Also, let ANEg denote the average numerical
error of the base code. The average numerical error for the signifi-
cant-bit code is given by Theorem 2 of Ref. 2:

Theorem 2: Let the base code be defined as above. For a binary sym-
metric channel with independent errors and when all messages are
equally likely to be transmitted,

ko .
ANEgp = Prp {0 | 0}p 2 277 "¢"™" + 2*anm; .
i=1

Uncoded transmission is the special case where k& = ko. Thus, the
average numerical error for uncoded transmission can be obtained by
letting ANEg = 0 and Prp{0 |0} = 1 when k = k.

APPENDIX D

Proof that the Average System Error for Uncoded Transmission In-
creases Monotonically with p

In Section V, equation (9) gives the average system error for un-
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coded transmission as

ASEUC=?(;0 > 2ty +g—)

i=1

After differentiating with respect to ¢ and grouping terms,

dASEUC _ i[_( _l) -1 _ = N _ gi-l 1-{-1]_
i a3 21— -2

T=1
For: <g¢g<1,

dASEpe

dq < 0.

Thus, AsEyc decreases monotonically as g goes from 14 to 1 or, alter-
natively, AsEyc increases monotonically as p runs from 0 to 4.

APPENDIX E

Parity Check Matrices for Codes Considered in Section VI

AsE@aqy: A (3, 1) perfect single error-correcting code to protect the
most significant position.
E =1
= [1 0000 Iﬂ]
10000

£ = 15:

Il
[y
L]
I
—t
[¥~]

1000000000000
H = I,
1000000000000

ASE(31),(3,1): Independent (3, 1) perfect single error-correcting codes
to protect the two most significant positions.

E=T
100
e
Hzloolg a=1 l=3
010
010
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& = 15b:
10000000000
H=10000000000L o =1 =11
01000000000

01000000000

ASE(r,4: A (7, 4) perfect single error-correcting code to protect the
four most significant positions.

E=T
1110
H=1[1101 I, a=1 =4
1011
& = 15:

111000000000
H=(110100000000 I, a=1 =12
101100000000

ASE(15,11) ¢ A (15, 11) perfect single error-correcting code.
& = 15:
11111110000
H:IIIIOOOIIIOL N
11001101101

10101011011

Il
—
It

11

ASEf{y; 4y ¢ A (15, 11) perfect single error-correcting code in a sig-
nifieant-bit packed code.

E=T
1 1 1 1 1 1 1 0 0 0 O
H=|"0"0,"0,"0,50,°0,%0, "0, "0, 10, %0, 1,
1 10 0 1 1 0 1 1 0 1
1 0 1 0 1 0 1 1 0 1 1
a=11 =7 p =036 R = 0.950
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15:

wer
I

H = 015 015" 01 015 Oy 014 014 " 044 014 01s ~ 01 I4

[== I
= O -~ O
- O O

1
0
1
1

e e =)
S = o= O

1 1 1
1 1 0
0 0 1
1 0 0

(=

1
1
1
1 1
a=11 =15 p = 0.36 B = 0976
ASElg, 209 ¢ A (31, 26) perfect single error-correcting code in a signifi-
cant-bit packed code.
E=T:
i 1 1 1 1 1 1 1 1 1 1 1 1 1
i1 1 1 1 1 1 1 1 0 O O O O O
H = ({10,10,10,10,00,00,00,00510510410410500;5 00,
i1 0 0 1 1 0 0 1 1 0 O 1 1
1 0 10 1 0 1 0 1 0 1 0 1 O

1.0 0 0 0 0 0 0O O 0O 0 0

0 1 1 1 1 1 1 1 0 0 0 0

00510510,10,10,00,00500,10510510,00, I,

0 1 1 0 0 1 1 0 1 1 0 1

1 1 0 1 0 1 0 1 1 0 1 1 |
a=2 = p=019 R =0973

1 1 1 1 1 1 1
1 1 1 1 1 1 1
H=1{10,10,10,10,00,00,00,
1 1 0 0 1 1 0
1 0 1 0 1 0 1

v
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1 1 1 1 1 1 1 1 0 O
1 0 0 0 O 0 0 0 1 1
00410,410,410,10,,00,,00,,00,610,, 10,4
0 1 1 0 0 1 1 0 1 1
6o 1 0 1 o0 1 0 1 1 0

o o 0 0o O O O o0 O
1 1 1 1 1 0 0 0 O
10,4104,00,00,00,410,4104410,,00,, I
0 0 1 1 0 1 1 0 1
1 0 1 o0 1 1 0 1 1 J

a = 26 =15 p=10.19 R = 0.987

ASE!S, 20y ¢ A (31, 26) perfect single error-correcting code in a significant-
bit packed code.

=T

(11 11 11 11 11 11

1 11 11 11 00 00
11 05 11 05 00 05 00 05 11 05 11 054
11 00 11 00 11 00

10 10 10 10 10 10

1 10 00 00 00 00 00
00 01 11 11 11 00 00
00 0501 05 1105 10 05 00 05 11 05 10 05 I
11 01 10 01 10 11 01
10 11 01 01 01 10 11

a =13 =7 p=038 R =0.948
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-

11 11 11 11 1 11
11 11 11 11 00 00
H = |11 0,53 11 0,5 00 0,5 00 015 11 045 11 0y,
1 00 11 00 11 00
(10 10 10 10 10 10

11 10 00 00 00 00 00
00 01 11 11 11 00 00
000,501 0,5 11 0,53 10 0,5 00 0,5 11 0,5 10 0,5 I;
11 01 10 01 10 11 01
10 1 01 01 01 10 11

a =13 I=15 p = 0.38 R =0.975
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