Eigenmodes of an Asymmetric Cylindrical
Confocal Laser Resonator with a Single

Output-Coupling Aperture

By D. E. McCUMBER
(Manuscript received February 24, 1969)

Previous calculations of the low-loss modes of a symmetric cylindrical
confocal laser resonator have been extended fo the asymmetric case. Diffrac-
tion losses are governed by the geometric-mean Fresnel number N,, of the
two end mirrors and, in the system we consider, by the Fresnel number N,
of an output coupling aperture in one of the mirrors. Loss factors and
marror field distributions have been calculated numerically for different N,
for N, in the range 0.6 < N, = 2.

I. INTRODUCTION

In a previous paper' we described the diffraction losses and the field
distributions at the reflectors of the low-loss modes of a symmetric
cylindrical confocal resonator for Fresnel numbers 0.6 = N,, = 2. We
considered the effect of output-coupling apertures in the reflectors but
we assumed that both reflectors were identical, each with the same
output aperture and the same maximum radius. In this paper we again
consider the cylindrical confocal geometry, but we do not require
identical reflectors and, in particular, we assume that only one reflector
is pierced by an output-coupling aperture, as in the coupling scheme
proposed by Patel and others.”

T'igure 1 shows an axial section of the confocal resonator in question.
The cavity is bounded at its two ends by confocal spherical mirrors
(more exactly, confocal paraboloids®). The first mirror is perfectly
reflecting over the annular region 0 = a,, = p = a,, , the second over
the circular section 0 = p = a,, . The maximum radii (a,,, , @..) are
both much less than the mirror separation b.

Expressions for the eigenvalues and eigenfunctions of asymmetric
rectangular confocal resonators with output coupling slits have been
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Fig. 1— Axial section of cylindrical confoeal laser ecavity. The cavity is
bounded at its two ends by confocal spherical mirrors with radius of curvature b.
One mirror is perfectly reflecting over the annular region 0 = @10 = p = @im, the
oﬁherbover the circular section 0 = p = asm. Both @im and asm are much less
than '

derived by Boyd and Kogelnik.* Properties of symmetric resonators
without coupling apertures are summarized with an extensive list of
references in the review article by Kogelnik.® Equivalence relations
relating asymmetric and symmetric resonators with circular mirrors
have been derived by Gordon and Kogelnik.®

Our analysis of the resonator of Fig. 1 closely parallels that of the
symmetric resonator.! Assuming that all dimensions are large com-
pared with the optical wavelength A, we again use a scalar formula-
tion of Huygens’' principle.*® For the eylindrical confocal geometry
the field amplitude at reflector j, j = 1 or 2, for a typical mode can
be written in the form

Fi(p, ©) = 113 (p) exp (—ily), (1

where (p, ¢) are radial and angular coordinates in a plane perpendicular
to the resonator axis and where (I, p) are angular and radial quantum
integers (transverse quantum numbers). For this asymmetric system
with nonidentical mirrors, we cannot require for an eigenmode that the
field amplitude distribution F{’(p, ¢) at one mirror be a constant
multiple of that at the other. Rather, we must require for eigenmodes
that after a round-trip transit of the resonator the field amplitude at one
mirror be a constant multiple of the initial field amplitude at the same
mirror. This more elaborate self-reproducing requirement together with
Huygens’ principle gives the following pair of simultaneous integral
equations which must be satisfied by the radial eigenfunctions £ (p)
and eigenvalues x{!’ [compare equation (2) of Ref. 1].

2 aym
n?:)ﬁ:’(pz) = b_;f dPl PlJi(z""Pzﬂl/b)\)ﬁ:)(Pl): (23')
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Klp’f}::)(pl) = ﬁ dpz PzJ (2T91P2/b)\)f(2)(92)- (2b)

J(z) is the Bessel function of order | I |. The loss factor is
=1-= |"‘1[:=)"Iﬂ) [ (3)

which is the fractional energy of a mode lost per reflection (or during

the one-way transit time b/c, where ¢ is the velocity of light in the

resonator).” The phase of the eigenvalue product «{} {3’ determines the

resonant wavelength:
resonant A = 4xb/[(I + L)r — Arg «{0«2 — 2mn], (4)

where n is an arbitrary integer (longitudinal quantum number).
It is useful to introduce the mirror Fresnel numbers

N = dia/Ab, NP = aiu/Nb, (5a)
and their geometric mean
N, = [NPNPT = a1n02./0b. (5b)

In place of the variables p; and the functions fi!(p;) in equations (2),
we introduce new variables

Ty = Tmpi/@m (6a)
and functions
gi;?(ri) = ﬁ:;’(?‘,-ﬂ,—m/?‘m), (6b)

where r2 = N, . We characterize the size of the radius-a,, hole in
the first mirror by the Fresnel number

N, = rﬁ = (al,/al,,.)zN,,. = af,azm/)\balm . (7)

With no significant loss of generality we can define the functions {2’ (p;)
such that

azmxg)/alm = alm"!p’/aﬂm = K!p (8)
and

6171! = 27[ drl rlg,,,’(rl)gﬁn(n), (9&)

By = 2m f dry 12015 (ra)gia (ra). (9b)
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With this notation the eigenvalue equations (2) become

"‘lpg::)(’rz) = 2r f i dr, T1J1(27r?'21'1)g(1;)(l’|), (]-Oa)

K!pgl‘;)(rl) = 2r f i dr, Tsz(zﬂlfz)ggi)(ra)- (10b)

Equation (3) simplifies to
Xy = 1-— | Kip |2’ (11)

which depends upon the parameters (a, , @1 , @2m , b, A) only through
the Fresnel numbers N,, = r2 and N, = 7 . In what follows we de-
seribe how the loss factor a;, and the amplitudes g{i’(r) change with
N, for N,, in the interval 0.6 £ N, =< 2. Solutions for N, = 0 are
described elsewhere.'"*""™°

Our numerical method is similar to that previously described for
the symmetric resonator! We expand the Bessel-function kernels
in equation (10) as power series, truncate the series after a finite
number M = max (10 N,, + 1, 10) of terms, and reduce the integral
equations (10) to M-dimensional matrix equations which are solved
numerically with standard matrix routines. [The reduction of equa-
tion (10) to matrix form is deseribed in the Appendix.] The merits
of this technique remain as described before.

II. ANALYTIC METHODS FOR SMALL N,

The eigenvalues «;, and field amplitudes ¢,,(r) for N, = 0 are de-
scribed elsewhere.'*"™® The loss factor a;, = 1 — | &y, |* for the four
lowest-loss modes (compare with Fig. 2 of Ref. 1) are tabulated for
0.6 < N,, < 2in Table I. For I = 0, the field amplitude g,,(r) at r = 0
is finite; for [ # 0, it vanishes as r'*'. As before, we expect the modes with
angular quantum number ! = 0 to be more sensitive to the coupling
aperture (N, > 0) than the ! # 0 modes.!

If we use a superscript “0” to lable the eigenvalues and field ampli-
tudes for N, = 0, then for small », to within corrections of relative
order 7*,

gix(r) = go,(0) for 1 =0 (12a)
=cir''' for 1#0, (12b)

where coefficients gg,(0) are listed in Table IT (an expanded version of
Table III, Ref. 1) and coefficients ¢}, in Table III. The forms (12) are
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TaBLE I—Loss Facror e, vor N, = 0

Nmn ano® aqr? a1’ a®
0.6 3.614 X 102 0.7931 0.2724 0.6679

0.7 1.301 X 102 0.6131 0.1371 0.4712

0.8 4.448 X 10— 0.4131 6.103 X 102 0.2900

0.9 1.471 X 1073 0.2411 2.477 X 1072 0.1563

1.0 4.759 X 10— 0.1233 9.417 X 103 7.505 X 1072
1.1 1.515 X 10— 5.651 X 1072 3.424 X 102 3.285 X 10
1.2 4.767 X 107* 2,382 X 1072 1.206 x 103 1.343 X 102
1.3 1.485 X 10 9.462 x 103 4.151 X 10— 5.225 X 102
1.4 4.59 X 10-® 3.601 X 103 1.403 X 10— 1.961 X 103
1.5 1.41 X 10—® 1.328 X 1073 4.674 X 103 7.164 X 10~
1.6 4.3 X 1077 4.78 X 10~ 1.539 X 10~ 2.561 X 10—
1.7 1.3 X 1077 1.69 X 10 5.01 X 10-¢ 9.000 X 10
1.8 4 X 108 5.80 X 107% 1.62 X 10-¢ 3.116 X 10°%
1.9 1 X 108 2.02 X 10°% 5.2 X 1077 1.066 X 10—5
2.0 4 X 107° 6.86 X 10—¢ 1.7 X 1077 3.60 X 10-¢

useful for estimating the perturbations induced by a
To first order, the perturbed field amplitudes are

0 = ah{1 + = [ an Lt}

small finite N, .

0 \2 To
_ ;0 (k1q) 9 f 0 0
; gia(r) (K?p)2 — (x?,,)2 Ly , dry 1191 gi(r),
TABLE II—F1ELD AMPLITUDE AT #» = 0 FOrR [ = 0
Mopes witH N, = 0
Nm g00°(0) g01%(0) 702°(0)
0.6 1.2770 1.2251 1.6159
0.7 1.3021 1.1541 1.4851
0.8 1.3213 1.1254 1.3735
0.9 1.3354 1.1286 1.2760
1.0 1.3457 1.1511 1.1930
1.1 1.3536 1.1807 1.1291
1.2 1.3597 1.2093 1.0890
1.3 1.3647 1.2336 1.0742
1.4 1.3688 1.2532 1.0812
1.5 1.3723 1.2688 1.1025
1.6 1.3752 1.2814 1.1302
1.7 1.3778 1.29018 1.1580
1.8 1.3800 1.3006 1.1826
1.9 1.3820 1.3081 1.2033
2.0 _1.3838 1.3146 1.2203
@ V2 = 1.4142 1.4142 1.4142

(13a)
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TaBrLe III—FreLp-AMPLITUDE COEFFICIENT FOR
[ # 0 MopEs ar r =0 FOR N, =0

Nm cre® 1 c200
0.6 2.6428 4.4649 3.9948
0.7 2.7222 4.0086 3.9131
0.8 2.8269 3.7024 3.9979
0.9 2.9266 3.5247 4.1770
1.0 3.0094 3.4618 4.3917
1.1 3.0746 3.4932 4.5999
1.2 3.1255 3.5889 4.7809
1.3 3.1659 3.7148 4.9305
1.4 3.1988 3.8431 5.0526
1.5 3.2260 3.9580 5.1531
1.6 3.2491 4.0549 5.2371
1.7 3.2690 4.1351 5.3087
1.8 3.2862 4.2017 5.3704
1.9 3.3014 4.2578 5.4244
2.0 3.3148 4.3059 5.4721
] 27112 = 3 5449 23212 = 5.0133 2r = 6.2832

0 0
KipKiq

g1y (1) = gi,{) — ;’ g1.(r) TP = &)

2r [ dnrgh)d).  (13b)

To second order, the loss factor is

a, = al, + (1 — al)2r fo dry 13[gi,(r)]°

U] 0 To 2
- A=l o [ [ gt [ 0
In deriving (14), we used the fact that for the cylindrical confocal
geometry the eigenvalues «,, are real and «7, = | «i, [*.

The last terms in (13) and (14) deseribe mode mixing by the aper-
ture. The amount of mixing depends upon the separation of the
eigenvalues as well as upon the strength of the perturbation. Degener-
ate or nearly degenerate modes are much more sensitively coupled than
are modes with greatly different losses. In the symmetric resonator the
even-p and odd-p modes of a particular angular quantum number [
do not mix; such modes do mix in the asymmetric geometry.*

For N, sufficiently small, we can neglect the second-order or mode-
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mixing term in (14). If we use the small-r approximations (12) in the
remaining integral, we find for [ = 0 that

o, = o, + (1 — ap,)mNo[go,(0)]* (15a)
and for I ## 0 that
a, = ai, + (1 — ap)r(el,’NS' /(1] + 1), (15b)

These expressions confirm our previous conjecture that modes with
I = 0 are more sensitive to aperture loss than are modes with [ > 0.
A quantity of interest in the design of lasers with aperture output
coupling is that value N,, of N, for which the losses of the longitudinal
(00) mode equal the losses of the (least lossy) transverse (10) mode.?
All other things being equal, the laser will operate in the (00) mode
for N, < N, in the (10) mode for N, > N,,, and in still another
mode for larger values of N,. Using Eqgs. (15), we estimate that

N, = (el — ago)/w(l — aso)[g00(0))’. (16)

III. NUMERICAL RESULTS FOR NO FINITE

Let us ecompare estimates based upon the approximate expressions
(15) and (16) with accurate numerical results. Using the numerical
technique outlined at the end of the introduction and in greater detail
in the Appendix, we have computed the loss factor «,, for N, finite and
N, in the range 0.6 < N,, < 2. Results for N,, = 0.8 and N, variable
are shown in T'ig. 2 and similar results for ¥,, = 1.6 in Fig. 3. Results
for N, = 0.001 and N,, variable are shown in Fig. 4. These examples
were chosen to facilitate comparison with the two-aperture symmetric
geometry of Ref. 1. The results are qualitatively similar to those ob-
tained before, except that here odd-p and even-p modes interact whereas
before they did not.

Predictions based upon the first-order expressions (15) and Tables
I to III are shown as dashed lines in Figs. 2 and 3. The fit to the exact
results is good for sufficiently small N,, but deviations are large for
those N,'s for which the interaction between the (I, p) and (I, p + 1)
modes is evident as a repulsion in the calculated loss curves.

The critical single-aperture Fresnel number N,, for which the loss
factor «;, of the longitudinal (00) mode equals that of the lowest
transverse (10) mode is shown as a funetion of mirror Fresnel number
N, in Fig. 5. This is an important parameter in the design of aperture-
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Tig. 2— Loss factor a., versus single-aperture Fresnel number N, for low-loss
modes when N,, = 0.8. (Compare with I'ig. 9 of Ref. 1 for the symmetric two-
aperture geometry.) The dashed lines are estimates based on equation (15) and
the data from Tables I through IIL.

out-put-coupled cavities having good mode selection.? Also shown in
Fig. 5 is the estimate of N,, derived from Eq. (16) and the data from
Tables I through II1. The agreement is reasonably good, and consistent
with what one would expect from the accuracy of the estimates derived
from Eqs. (15) in Figs. 2 and 3.

The effect of mode coupling is apparent in the amplitude g§’(r) of
the field at the two mirrors. Consider the ! = 0 modes, which are those
most sensitive to finite N, . The field amplitudes and intensities at the
mirrors of the two lowest-loss modes are shown for ¥,, = 0.8 in Figs. 6
and 7 and for N,, = 1.6 in Figs. 8 through 11. Figures 6 and 8 show
the distributions for N, = 0; they are the same on both mirrors. [Distri-
butions for other (Ip) modes are shown for N, = 0 in Ref. 1.] The other
figures show how the distributions change for N, > 0. In each figure
the dashed lines indicate the field distributions on the mirror pierced
by the aperture, the solid lines those on the intact mirror. The radius of
the mirrors and the radius of the aperature are indicated on the plots.

One should distinguish two effects apparent in the field plots as N,
increases. First, there is a change in the magnitude of the field ampli-
tude g{»(r) on the pierced mirror. This is a simple renormalization
correction implicit in the requirement (9) that the fields be normalized
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over the reflecting areas of the mirrors. Second, there are changes in
the shape of the field distributions on both mirrors. This is a consequence
of mode mixing, which becomes appreciable for those N,’s for which
significant mode repulsion is apparent in the curves of Figs. 2 and 3.
In each case the effect is to reduce the intensity of the less-lossy mode
in regions where the mirrors are not reflecting, at the expense of the
more lossy of the two interacting modes. This is apparent, for example,
in Fig. 9 with N,, = 1.6 and N, = 0.0001, for which there is appreciable
interaction between the (00) and (01) modes (compare with Fig. 3).
The amplitude of the (00) mode at the aperture is decreased below that
in Tig. 9; that of the (01) mode is increased. In Fig. 11 with N,, = 1.6
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Fig. 3 — Loss factor ar, versus single-aperture Fresnel number N, for low-loss
modes when N, = 16. (Compare with Fig. 11 of Ref. 1 for the symmetric
two-aperture geometry.) The dashed lines are estimates based on equation (15)
and the data from Tables I through III.
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Fig. 4 — Loss factor e, versus Fresnel number N for low-loss modes with N,
fixed at 0001, (Compare with Fig. 16 of Ref. 1 for the symmetric two-aperture
geometry.)

and N, = 0.01, the amplitude of the (01) mode at the aperture is re-
duced as a consequence of interaction with the (02) mode (Fig. 3).

IV. DISCUSSION

Qur previous treatment' of a symmetric cylindrical confocal laser
cavity is extended here to the asymmetric cylindrical confocal geometry
of Fig. 1 and specific numerical values for the loss factor and for the
field distributions at the mirrors have been calculated for Iresnel
numbers 0.6 = N, =< 2. The transformations outlined in Section I
show that the loss factor of a cavity with different-sized mirrors
(N = N%) equals that of a eavity having two mirrors with the
same outer dimensions [N, = (NON@)Y. The field distributions
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scale accordingly [see equations (6)]. Similar results also obtain in the
rectangular confocal geometry.*

For sufficiently small aperture Fresnel numbers N, the cavity losses
associated with a single output coupling aperture can be estimated as
in equations (15) from first-order perturbation theory. Just as in the
symmetric two-aperture case considered previously, the value of N,
for which such first-order calculations fail decreases rapidly as the
Fresnel number N, increases, because the field distributions distort
through mode mixing to minimize the aperture losses in the lowest-
loss modes." As before, this distortion occurs at approximately those
values of N, and N,, for which an observer at one reflector, using light
of the relevant wavelength and optics limited by the radius r, = N},
can resolve the aperture of radius r, = N? from the other reflector.""

APPENDIX

Reduction of Integral Equations to Matrix Equations

We express the Bessel-function kernels in power-series form. (I =
| 1| throughout this appendix.)

107!

1072

APERTURE FRESNEL NUMBER No¢
5
w
T

[lopns
0.6 08 1.0 12 1.4
FRESNEL NUMBER Nm

Fig. 5 — Critical single-aperture Fresnel number N,, for which diffraction
losses of longitudinal (00) mode equal those of the lowest transverse (10) mode
versus Fresnel number Nn.. (Compare with Fig. 18 of Ref. 1 for the symmetric
two-aperture geometry.) The dashed line is an estimate based on equation (16)
and the data from Tables I through III.
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Fig. 6 — (a) Field amplitude gi,(r) and (b) field intensity | gi»(r) |2 for modes
(Ip) = (00) and (01) with N,, = 08 and N, = 0. The field distributions are
identical on both mirrors.

] (__ l)m—l(ﬂ_rlrz)z(m—l)

J.2rryr,) = (mrirs)’ E (m+1— 1! (m— 1)!' (17

m=1

Truncating this series after M terms and substituting the result into
(10a), we obtain

r M m—1 1+2(m—1)
(2) _ " (=)™ '(arsrs) ()
Kip{ip (TZ) - 2"‘7 j:_n drl T rr; (m + l _ 1)' (m . 1)1 Gip (rl) (188‘)

_ @y (=D rd)" 1
a [ L :I ,,,Z_; [(m — D! (m + 1 — DY} G, ),

(18b)
where
(1) 2r ™ 2\m—1+1/2 (1)
Gn'(l,p) = [m +1— D! (m — 1){]& -/;., dry ry(mry) Gip (T1)-

(19)
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Likewise we obtain from (10b)

217y _qym-1g_ 2ym-1
x:ngﬂ’(ﬁ) _ [(ﬂl] E (=)™ (1) ;G,E,z)(l, p), (20)

1 Hm— D! (m+ 11— 1)/
where
2 2 o 2ym—1+1/2 (2
G0 P) = [ T )T on — DI [ e @

Substituting the expression (20) for g{.’(r,) into the right hand side of
(19) and the expression (18b) for ¢{’ (r,) into (21), we obtain after
simple manipulations
K[FG;I)(IJ 'P)
M k-1 t+m+k=1 l+m+k—1
_ (_ 1) [('"'Nm) - iWNo) ] (2)
= 2 (=D (mt =11 (=D Gt l— D Fmih—1) % G P
(22a)

T RADIUS T Tm

Fig. 7— (a) Field amplitude gip,*’(r) and (b) field intensity |gi,"’(r) |2 for
modes (Ip) = (00) and (01) with N,w = 0.8 and N, = 003. The dashed lines
refer to mirror 1 (Fig. 1) and the solid lines to mirror 2. The radius of the
aperture in mirror 1 is r, = 0.173.
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Fig. 8 — (a) Field amplitude g:» (r) and (b) field intensity | gip(r) |? for modes
(Ip) = (00) and (01) with N, = 16 and N, = 0. The field distributions are
identical on both mirrors.

KrﬂGr(nﬂ(ls p)

B M (_l)k—l(w_Nm)H-m-i-k—l a
- ,; [(m—1)! (m+1—1)! (k—1)! (k+1—1) P(+m+k—1) R( p).

(22b)

We have used the definitions (5b) and (7) to replace (r, , r3) by the
Fresnel numbers (N,, , N,).

It is convenient to view G%'(I, p) as the mth component of an M-
dimensional vector G (I, p). We define B to be the M X M diagonal
matrix with elements B,. = (—1)""'. We also define real symmetric
matrices S (1) and S$”(l) with elements

(er)i+m+k—1
[(m—D1 (m+1—1)! k—1)! k+I1—-DTPI+m+k—1)"

(2) _ [(wNm)l+m+k—l _ (ﬂ_Nn)!+m+k-1]
S = [(m—1)! (m+1—1)! (k—1)! k+I—D T+ mth—1) (23b)

SO = (23a)
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With these definitions equations (22) can be written more compactly
x, GV (1, p) = S®()-B-G®'(I, p), (24a)
k,GP (1, p) = SP()-B-GV(I, p). (24b)

Eliminating G'*, we obtain

x,G(1, p) = 8¥()-B-8"'()-B-G(, p), (25)

which is a single M-dimensional matrix eigenvalue equation.

It is generally useful to transform equation (25) such that the matrix
to be diagonalized is real symmetric (or Hermitian). Because S* (i)
is real symmetric with nonnegative eigenvalues, we can find a real
lower-triangular matrix P(/) such that

s = P()-PO)". (26)

0 0.2 04 0.6 [oX-} 10 1.2

Tig. 9— (a) Field amplitude gi,*’(r) and (b) field intensity |gi,"’(r) |2 for
modes (Ip) = (00) and (01) with N = 16 and N, = 0.0001. The dashed lines
refer to mirror 1 (Fig. 1) and the solid lines to mirror 2. The radius of the
aperture in mirror 1 is », = 0.01.
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If we define a new vector
F(l, p) = PGV, p), (27)

then (25) can be written
«2,F(,p) = P()7-B-S™())-B-P())-F, (28)

for which the matrix on the right hand side is obviously real symmetric.
If U(l) is the real orthogonal matrix which diagonalizes this matrix, then

U -K(@) = P(OT-B-S(D)-B-P()-U() (29)

where K(J) is diagonal with elements K,,(I) = i, , » = 1 to M. The
eigenvector F(l, p) of (28) corresponds to the pth column of U({) and,
from (27),

G*(@ p) = PO-F{ p)- (30)

o 0.2 04 06 08 1.0 1.2
Ty RADIUS T T,

Fig. 10— (a) Field amplitude gi,’(r) and (b) field intensity |gi,*’(r) |2 for
modes (Ip) = (00) and (01) with Nm = 1.6 and N, = 0.001. The dashed lines
refer to mirror 1 (Fig. 1) and the solid lines to mirror 2. The radius of the
aperture in mirror 1 is 7, = 0.0316.
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Tig. 11— (a) Field amplitude g:,’(r) and (b) field intensity | gi,"’ () |2 for
modes (Ip) = (00) and (01) with Nw = 16 and N, = 001. The dashed lines
refer to mirror 1 (Fig. 1) and the solid lines to mirror 2. The radius of the
aperture in mirror 1 is r, = 0.1.

The elements of U(I) and K(I) are easily computed numerically; the
vectors G (I, p) follow from (30); the vectors G® (I, p) follow from
(24b); and the amplitudes g{i’(r) follow from (18b) and (20).

The program used to compute the results reported in this paper
required a nominal 0.0003 hr. of GE 635 processor time to compute the
M different eigenvalues | «;, | and eigenvectors [G™ (I, p), G (I, p)]
for M = 20. Timing for other values of M varies roughly as M°.
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