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Any estimator which is constrained to take values in a finite range is,
in general, biased. Many times the bias s unknown; furthermore, in some
cases the bias may become the main contributor to the mean square error of
an estimator. This paper derives upper and lower bounds on the bias of a
finite-range, signal parameter estimator.

I. INTRODUCTION AND MAIN RESULTS

1.1 Introduction

Let the parameter be denoted by @ and let a take values in [—a, a].
We refer to 2« as the a priort range (or space) of a. We assume that
there exists probabilistic mapping from the parameter space to an
observation space, that is, a probability law that governs the effect of
@ on the observation.! This probability law will be referred to as the
“channel.” After observing the “outcome” which is a point in the
observation space, we estimate the value of a. Let this estimate be
denoted by a. Clearly, d is a random variable.

We assume, throughout this paper, that d takes values in [—A4, A].

Let the bias be defined

b(a) & Efd — a) = f (é — a) dp(d | a) (1)

where p(d | a) is the probability distribution function of 4 given a.
Assume that we are now told that the true value of the parameter a
is either @, or —a, with equal probabilities. Let H,, be the hypothesis
that @ = a, and let H_,, be the hypothesis that ¢ = —a, . The minimum
probability of error is (dropping the subseript 1 from a,):

P.{a, —a} £ Min {}[Pr {a | —a} + Pr {—a | a}]}
2023
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where Pr{a | —a} is the probability that the decision will be a, given
that —a is transmitted, and where the minimization is carried over all
possible decision rules. (A decision rule is a mapping from the obser-
vation space to the set {—a; a}.) Then we show in Section II that

3[b(@) — b(—a)] = —AP.{—a;a} + (4 —a); a=0; (2a)
3[b(a) — b(—a)] = AP.{—a; e} — (A + a); az=0. (2b)
By equation (2a) we have
i bo(—a) |+ |ba) || =2 AP.{—a;a} — (A —a); a=0.

Hence, an estimator must have a nonzero bias if

J%[> 1—P,f—a;a}. (3)
The bounds of equation (2) are the main result of this paper.
If we assume that for any a, b(a) = —b(—a) we have by equation
(2) that
bla@) = —AP.[—a;a} + (4 — a) (4a)
and '
bla) = AP.(—a;a) — (A + a). (4b)

These bounds are sketched in Fig. 1.
If, in addition, we assume a symmetry around a in the sense that

f (6 — a)dp(@ | a) = 0. (5a)
—A+|algd—asA-|al
We show (see Section IT) that in this case
b(a) =z —aP,{—a;a}; —A=a= —% (5b)
A
(A — @P(~a;a) 2 b(@) 20; -5 =a=0 (5¢)
and
A
bl@ = —aP.[—a;a}; Adzaz7 (5d)
A
—(4A 4+ @)P,(—a; a) = bla) = 0; 5 2ez0. (5e)

The bias b(a) is unknown, in general. However, the probability
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Fig. 1 — Bounds on the bias of an estimator.

P.{a; —a} is known for many important cases. The bounds derived
here depend on the channel probability law through P,(—a; a) only,
and therefore are easy to compute in many cases.

1.2 Shairpness
Section III shows that, for one special case, b(a) is given by

b(a) = —2A4P,}—a;a] + (4 — a); az0, (6a)
bla) = 24P,{—a;a} — (4 + a); a = 0. (6b)
Section III also shows that, for another special case, b(a) is given by
bla) = 24P,{—a;a} — (4 + a); az=0, (6¢c)
bla) = —24P,{—a;a} + (4 — a); a < 0. (6d)

The comparison of equation (6) with the bounds of equations (4) and
(2) indicates the degree of sharpness of these bounds (see Fig. 1).

1.3 Fzamples
Let the received message be a sample function of the random process

r(t) = s(t — a) + n(), (7a)
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where o is an unknown parameter constrained to take values in
(—a; «). The term n(t) is assumed to be white gaussian noise with
(double sided) spectral density N,.

Let
i : &) dt = E, (7b)

o(20) = - f : st — a)s(t + a) dt, (7¢)

¢ = (1 — p2)JE/2N,)". (7d)

Hence, in this case,’

P(—a;a) = 2m)} fw exp (—2°/2) dx
! (8a)

@

> (20)7 f exp (—22/2) de.

(E/No)}

Hence, by equation (3)

| b(@) | > 0 for any lal > 1 — (2#)"*[ exp (—a*/2) dx.
4 (E/Na)}
‘ (8b)
Furthermore, if the channel is that of equation (7) and if d is a maxi-
mum likelihood estimator, then it follows from equation (7) that the
conditions of equation (5a) are satisfied, since the maximum likeli-
hood procedure for estimating a is to evaluate

M) = [ " r(s(t — a*) dt

- f s(t — a)s(t — a®) dt + f n(s(t — a*) dt
and to set d to the value of a*(—A = a* = A) for which A(a*) is maxi-
mum. Hence, the statistics of A(a*) are the same as those of A(a}) if

L(a* + a%) = a; also, b(a) = —b(—a). Therefore by equations (5)
and (8a),
4 [ 2 .. A
ba) 2 —a@ [ exp(—2/Ddr; —Asas—5 Ow)
(E/No)} 2

(9b)

NN
A
S
1A
o

bl@) =z 0; —
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b(a) < —a(2m) f" exp (—2°/2) d; % <a< A 9¢)
ba)<0; 0<as %- od)
11, DERIVATION OF THE BOUNDS?
b@) & [(@ — o) dp(a| )
(10)
- [ @-omalao+ [ @-ada@la.
Now,
f G —a)ydpd|a) = —aPr{d>0]al (11a)
[ G-adp@la)s@4-aPria>0]a) (11b)

[ G-adp@loz-@+aPriasoled L

fm(a—a)dp(a|a)§—aPrmgola}. (11d)
Also, we have that
Pr{d>0|a} =1—Pr{d <0|al. (12)
Inserting equations (11) and (12) into equation (10), we have
ba) = APr{d>0]|a] — (4 + a) (13)
bl £ —APr{d =0|a}] + (4 — a). (14)

Consider the following detection problem. Assume that a and
—a (a > 0) are used as two signals for equiprobable binary signalling;
decide on @ if @ > 0 and decide on —a if @ = 0. The probability of
error associated with this detection procedure is given by

P, 4Pr{¢>0|—-a}+3Pr{d<0|a}; a>0  (15)

The error probability P, is lower bounded by P,(—a; a) which is
the probability of error that is associated with the optimal binary de-
tection scheme for this detection problem. In the same way P, is upper
bounded by 1 — P,(—a; a).
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Hence,
1 —P(-a;a) 2 3[Pr{d=0]—a

+Pr{d=0]|a}]] 2 P(—a;a); a=0. (16)

By equations (13), (14), and (16) we get equations (2a) and (2b).
Now, if

f—A+|u|s&—qu—|q| (d - a) dp(d l a') =0

then
A
b(a) = f @ —adpé|a)20; —-A<a=<0. (l7)
2a+ A
Hence
b(@ > —aPr[d > 0| al; —A =Za = —-'g— (17b)
bla) < (A —a)Pr[d > 0]al; —ggago (17¢)
Also
2a—-A
b= [ @-adp@la) =0, Azaz0. (7d)
-4
Hence
ble) < —aPr[d =0|a); %gagA (17e)
ba) > —(A +a)Prid<0]|d; 0@;5%- (17f)

Equation (5) follows from equations (17) and (11).

III. THE SHARPNESS OF THE BOUNDS

In order to check the sharpness of the bounds on b(a), let us dis-
cuss the following example.

Let d be some estimation of the parameter a.
Let a be defined as

= A if a4>0
= —4 if da 0.

Q» 8»

Now, regard ¢ as an estimation of a. The bias of g is given by
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bla) = (A —a)Pr[@d>0|a)+(—A4 —a)1 —Pr(d>0]a]
=24Pr{@d>0]|al — (4 + a); a=0 (18)
and also
bla) = —2APr{d =0|a} + (4 — a); a>0. (19)

Compare equations (18) and (19) with equations (13) and (14).
In the special case where d is a maximum likelihood estimator and
the channel is the one given by equation (7), we have that

Pr{ad=0|a} =Pr{d>0]— aj
= P,{—a;a}; a = 0. (20)
Inserting equation (20) into equations (18) and (19) yields equation

(6a) and (6b). By makinga = —A ifa > 0anda = 4 if 4 = 0 weget
equations (6¢) and (6d) in a similar way.

IV. APPLICATIONS

4.1 Postdetection Integration
Assume that one makes n independent, equally distributed, estima-
tions of a: dq, da, ds, **+, &, **+, da, and leb

d is sometimes called the “postdetection estimation of a”. Such an
estimator appears in many applications: radar range estimation, post-
detection diversity combiners in communication systems, and so on.

Now
&L B(@— o |a) = Bl@ — ba) — )" | a] + )

-la+ v

where o° is the variance of d; (for any 1), given a. Clearly, if the esti-
mator d is unbiased, the mean square error that is associated with @
can be made arbitrarily small by making n large enough. However, if d
is biased, then, for any n, the mean square error is lower bounded by

& = b'(a) = bi(a) @D

where by, (a) is the lower bound on | b(a) | given by equations (2), (4),

or (5).
Example: Let the channel be given by equation (7) and let d be
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a maximum likelihood estimator; then by equations (9a), (9c¢), and
(21)

L] 2

eiza“LU exp(—:cz/Z)d-’c]; Azlal|z
27I' (E/Nn)'

Assume that the a priort range of a, is smaller than (—A4, A).

Then

2 - 2
eizg—ﬂ_[‘/; exp(——a:z/2)dx]; %g[a{ga.

E/No)}
Now, let

\%

4,
2

- A
& L maxe .

Then, unless A = 2« (that is, unless the range of 4 is at least twice as
large as the a prior: range of a), we have that

2 o 2
22 s & f a2 ]
¢ = 2% [ (E/No)} exp ( v /2) do

even if n — o,

4.2 Predetection Integration

Let the channel be the one given by equation (7). Assume that
the estimation is based on n repeated measurements; namely, the re-
ceived signal is given by

r(t) = n(t) + ﬂzii s(t — a — 124).

In this case, an estimation is being made only after observing the com-
plete received signal (“predetection integration”). It then follows that
for a maximum likelihood estimation of a
b(a) = o - [fm exp (—2%/2) dm]z' 4dcla|s4
= 2r Ldmswan ’ 2= -

which is the same as for single measurement except for E being re-
placed by nE. In this case, unlike the previous case, the lower bound
vanishes as n tends to infinity.
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