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In the course of analyzing the dynamic behavior of mechanical systems
subjected to random excitations, we investigate the associated Fokker—Planck
equation. We also discuss the relationship between the characteristics of
the random excitation and the nonlinear intensity coefficients governed by
the physical properties of the system. This relationship leads to some
simplified methods for solving the response probability density of certain
nonlinear systems. We present general solutions to a class of multidimen-
stonal problems with desirable constraints. The random motion of a single-
mode mechanical oscillator with various nonlinear stiffnesses and a charged
particle moving in an electromagnetic field are examples. Cosine-power
and sech-power distributions are found fo be associated with the steady
stale response of a tangent stiffness system and a hyperbolic langent stiff
ness system, respectively. When the influencing magnetic vector potential
M is irrotational, the stationary probability for the moving particle in the
6-dimensional response phase-space is statistically independent.

I. INTRODUCTION

Although the theory of stochastic processes has found wide appli-
cations in information and eommunication sciences for many years,
only recent advances in rocket propulsion and aerospace industries
have made random vibration problems subjects of growing importance
in mechanical and civil engineering. These problems involve struc-
tural responses due to random loadings and are in general nonlinear
resulting from large motions.! Such nonlinear random transformation
problems often encountered in practice are generally memory-de-
pendent; that is, the equations of motion are deseribed by nonlinear
differential equations.>* Under the Markov and Smoluchowski as-
sumptions, it has been shown that the probability density funection
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of a large class of random processes satisfies equations of the Fokker-
Planck (F-P) type.”® Recently Pawula showed that generalized
Fokker-Planck equations can be derived for many cases with both
these assumptions removed.” Many interesting problems with their
governing equations of the Fokker-Planck type have been investigated
by various researchers. Rosenbluth, and others, studied the Fokker-
Planck equation for the distribution function for gases with an inverse-
square particle interaction force;® van Kampen used an TFokker-
Planck equations to describe the thermal fluctuations in linear and
nonlinear systems;** Ariaratnam found the steady state response distri-
bution for a class of nonlinear two-mode mechanical oscillators by
applying certain constraints to decouple the governing Fokker-Planck
equation;'* and Hempstead and Lax used Fourier transform tech-
niques to eliminate the phase variable from the Fokker-Planck equa-
tion in the polar coordinates for a rotating-wave Van der pol oscillator
and found the phase and amplitude spectra.*®

The Fokker-Planck equation, satisfied by the random response
probability density function of a dynamic system, is a parabolic
partial differential equation which generally is rather difficult to solve.
Although approximate results may be obtained by using the per-
turbation and equivalent linearization tehcniques (for which brief
accounts are given in Appendixes A and B), the formal solution
yielded by the appropriate Fokker-Planck equation is still the most
sought one.2**" In this paper, we investigate the relationship between
the random input characteristics and the intensity coefficients of the re-
sponse process as governed by the physical properties of the system.
Based on this relationship, we establish theorems concerning classes of
potential-type and uncoupled-type solutions to the multidimensional
stationary Fokker-Planck equations. Then, we present simple methods,
based on these theorems, for solving such classes of random transfor-
mations and we describe the required natural restraints which justify
applying these methods on physical grounds.

As examples we analyze two separate cases, a simple mechanical
oscillator with various nonlinear spring resistances and a charged
particle moving in an electromagnetic field, which we also consider to
be subject to random excitation.

II. MARKOV PROCESSES AND RANDOMLY EXCITED DYNAMIC SYSTEMS

A stochastic process which has no aftereffect is called a Markov
process. If y(t) = [1.(®), v=(y), --- , y~(t)] is such a process (where
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bold type indicates a veetor) we can write

¥ Y2y o ¥8) = (N | ¥), N >2 (1)

and

P, Y2, o, ¥x) = 23 | ¥2)P(F | ¥a) - D | IW)P (Y (D)

where p( | ) and p( ) represent the conditional probability density and
the joint probability density, respectively; and y,=y(,), - - - , yv=y{tn)-

In examining the motion of a dynamie system under purely random
disturbance, it is found that the phase point y(t,) of the system at time
¢, depends only on the phase-point position y(t,) at the previous time
t, . Therefore, the trajectory of the phase-point of a system under purely
random disturbance is described by a Markov process y(&) = [1(f),
¥2(2), -+, y»(®)] in the phase space. The components y; , 1=1, 3, 5,
.-+, N — 1 represent the generalized coordinates of the system and
components y,,, represent the first time derivatives of y; . These N
variables completely defined the dynamic state of a viboratory system
in the N-dimensional phase-space.

If such a Markov process y(&) = [1:(f), ¥.(£), - -+ , yn(f)] satisfies the
following conditions

(¥) the Smoluchowski equation

P | e, Al) = fdya P [ ¥s, 8+ ADpGs [ V2,0 ()

holds for every y, , ¥. and y, defined in the N-dimensional phase space,
(72) the higher order intensity coefficients vanish, that is,

K.3) = lim — (ga — 9)) = 0 for s 3 @
at—o AL
and the first and second intensity coefficients
. 1
I(l(y} = lim — <Yf..m - Y-'> = Ai(Yx t) (5)
at—o N
1

K,(y) = Ligln Al (Vioae — ¥)Fiae — ¥i)) = Bis(y, 1) (6)

exist, where the symbol ( ) indieates ensemble average,*

(#z) A, , By; are continuous and bounded,
(?v) a4./8y; exist for every y; , and are continuous and bounded,

* A Markov process which satisfies condition (#) is said to be continuous.
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(v) 8B,;/dy; and 9°B,;/dy.dy, exist for every y; and y; , and are
continuous and bounded, and
(vi) Bi;(y, t) form a positive definite matrix,

then the conditional probability p(y, | ¥, ¢) of the process y(f) satisfies
the Fokker—Planck equation

N 32

ad

M _ ¥ 1
at io1 Y [A.'Zﬂ T 2 :'.72-1 oy: 0Y; [B:ip) @
and the initial condition
N
p(¥o | v, ) = H 8(y; — Yi) as t—0, 8)
=1

where y, is the initial state of y and & represents the Dirac delta function.

Consider a class of n-degree-of-freedom nonlinear discrete dynamic
systems whose motions are defined by the following system of differ-
ential equations

fi+aiii[1+fiDi($1:z2) =t ,.'15,,,5&1,(&2, e 7a.:n)]
+ bixi[l +M|'S|'(JU1 y Byttt T, By, v l:i;n)] = Tli(t)
i=1,2,.--,n 9

where a; and b; are linear damping and stiffness coefficients, respee-
tively; e; and u; are nonlinear parameters; D, and S; are nonlinear
funetions; and 7, (f) are excitations and are, in general, random processes.

It is always convenient to transform the motion in #n-dimensional
generalized coordinates space into a 2n-dimensional phase-space, that
is, let y; = z; and ¥,., = #; . Equation (9) can be written in a system
of 2n first order differential equations as

gl‘=f|'(ylay21"'my2n)+??i(t) 1= 112:"'!271' (10)

Assuming (y;i(£)) = 0 and (5 (£)n;(E2)) = Sy (£, — t2) for constant
D;; and applying equations (4) through (6) to equation (9), we obtain

Ay, D) = Yina,
Ay, 8) = —ayin[l + «Di(yy , -+ 5 Y2a)]
— byl + wiSilyr - 5 Yan)],
Bi(y, t) =0,

B-‘:‘(Y: t) = 0;
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and

1 t+AL
Bisi iy, f) = BE}O Z_i <{f 7:(7) dr

— a,-y.-+1[l + fiD.‘] At — b.—y.—[l + #isf] At}>

.laltl}-lu E <f f M (T LR (72) dr, dry + O(Aﬁ >

:S“.

From the above results we notice that the coefficients A;,, are de-
termined by the specific nonlinear damping and nonlinear spring
functions while coefficients B;; depend only upon the statistical proper-
ties of the random excitation functions. Therefore, we can conclude
that for the random response components y;(t) in equation (10) if
the limits of their first and second increments

[

lim - (Ay.(t)) and hm t {(Ay:(t) Ay (D)

At—0 At
exist, then the probability density funection of the many random fune-
tions ¥4, ***, Ys. satisfies the Fokker-Planck equation (7).
Equation (7) can be written as
. w— 3G.(y)
p=" g aY; (11)
where
1 2n
G = 40P — 5 X = [BuG)p] (12)
2 i=1 ay:

describe the components of a probability current vector
G’ = (G; ,Gz, e JGZ:I)'

Because the general solution to the above multidimensional para-
bolic partial differential equation with arbitrary boundary condition
is difficult and impracticable to find, no such attempt is made in this
study. However, with certain constraints on the properties of the
system as well as on the characteristics of the random input, equation
(11) may be reduced to simpler and more readily solvable forms. Such
forms are considered in Section I11.
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III. STATIONARY SOLUTION OF JOINT PROBABILITY DISTRIBUTION

In the limiting case of equation (11) when { — c the transition
probability density p(y, | y) tends to a stationary joint probability
density p..(y) = P , Y2, -+ , Y2.) which is independent of the
initial conditions and approaches a stationary (steady state) value as
the time of passage is sufficiently large. Under this stationary situation,
equation (11) becomes

< 9G.(y)
—S = 0 13
‘Z_; Y ( }
or
V,'G=0 =12 -,2n. (14)

Therefore G may be regarded as being incompressible and there are no
sources or sinks in the region E. Notice that since rotational probability
flows can occur even for cases of zero boundary conditions, that is,
the probability eurrent G(G, , Go, - -+, (f2,) satisfies

Gi(y) = 0, 1=1,2,---,2n (15)

on the boundary of the region E under consideration, G may not vanish
within R. In a special case, however, discussed in Section 3.1, the
current vector G vanishes in the whole region E.

Two situations which readily yield steady state solutions to equation
(10) are investigated in Section 3.1.

3.1 Potential Distribution

Under the assumption that the probability current vector G vanishes
everywhere in 2, a solution of the potential form exp (—U) ean be
constructed where U is a Liapunov type potential funetion of the system.

If the equations of motion of a dynamic system satisfy the following
conditions:

(7) G; = for all 1,
(77) the matrix [B;,] is not singular,

o O 0By _ )
(777) ay. Z Dﬁ-,-(; 3, 24;

-9 0B, ) ~
- ayﬂ i Dﬂi(; y; 2Ai ’ 0!:.8 = 1,2, . ,2ﬂ

and
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(7v) there is no probability flow through the boundary of B,
then the solution to the steady state Fokker-Planck equation (13) is

Vi.Va,ttt.Van aB‘-;
pii(y)=CeXp {_ f . Z[Z Dni'@_z ZDaiAi] dya}

(16)
where [Dg] = [By]™, that is,

Z DaiBij = 5:1’ H

and C is the normalization constant determined by

[ [paan, o dgn = 1. a7)
2n-fold

Equation (16) can be easily verified by a direct substitution of p(y) =
exp (—U) into equation (13) to solve for U. A speecial case of interest is
when the matrix [B;;] is isotropie, that is, when

[B:s] = B(y)[é:]. (18)

The solution for such a case, which can be obtained by substituting
equation (18) into (16), is
P (y) = Cexp (=U) (19)

. L fyl'n"'ul'ln 2n A‘.
U=lsgm =2 25y

where C is the usual normalization factor.

dy;

3.2 Uncoupled Distribution

There are cases when all generalized response variables of a system
in the 2n phase-space coordinates are independent of one another.
There are two approaches by whieh the solutions can be achieved.

3.2.1 Forward Approach

The governing Fokker-Planck equation may be reduced to a form
in which the final probability distribution function clearly shows a
statistical independent character. For this type of motion it is some-
times possible to find appropriate partial operators which, when linearly
operated on functions of the type g:(y)p + h:(y.)(8p/dy.), generate
an equivalent nonlinear partial differential equation. If equation (13)
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can be put in the form

2n 6
E L; [gf(yf)p + hi(y.) Eygil =0 (20)
where the coefficients L; are arbitrary first order partial differential
operators, and if there exists a p(y) satisfying each

0 .
g:(ydp + hiy.) gyﬂ = 0, #=1,2, -+, 2n),

then by Gray’s uniqueness theorem such p(y) is the unique solution of
equation (20).'® Such a solution is
_ 2n _ vi M ]
pi) = ¢ Mo |~ [ 200, (21)
and C is the normalization factor.
Notice that previous investigators such as Ariaratnam and Klein
had their problems satisfying equation (20) and therefore obtained
their solutions in a form similar to equation (21).

3.2.2 Backward Approach

Sometimes it is more convenient to work backward. By this pro-
cedure, the statistically independent property is assumed in order to
derive the desirable solution for the Fokker-Planck equation under
investigation. This method gives a close insight into the physical prop-
erties of the system and enables the natural boundary conditions to be
deduced. These deduced boundary conditions provide the necessary
constraints for randomly excited systems which have independent dis-
tributions in their response variables.

If equation (13) satisfies the conditions (22)

(¢) [By] is a constant diagonal matrix for s, j = 1,2, ---, 2n, and,

(%) the first order intensity coefficients A; are funetions of y; and
141 only, and there are no cross terms in 4, that is,

m=Amw+Am@m)}
Ay = Aoy + Avir i)
for 2=1,3,---,2n — 1; (23)

2n

then by setting p.,(y) = =, p:(y:) in equation (13), we obtain

1 p(y) 9°
2 ?:’:B“p.-(y‘-) 6y?p‘(y‘)

_ 2@ api(y.) BA,-,,-(y.-)]
B ; [pi(yi) (Asi + Avinr) Y +r) Yy ’



FOKKER-PLANCK EQUATION SOLUTIONS 2039

Dividing the above equation by p(y), we obtain
2n

a EB.‘ ]D. = Z [(A-',.' + A.‘.;n)% + A:.]

i=1 |' i=1

where the ' denotes 9/dy; .
The above equation can be reorganized as

2n 7 ’
5 |Bul _nty,, az.|

i=1 2 P i
2Zn—1 r !
= E [& A +1D.+1 A.‘+1.;:l'

i=1,3," i i+1

A sufficient solution p(y) for the above equation requires that it satisfies
the following relations

(i) 32"% B Pig, — AL, =0 for i=1,2 ---.2n  (24)
and
!’ !
(i) Bl Pa 1 p_ onstant

P Af+1..' Pi+1 Al‘.i+l
for ¢=1,3, ---,2n — 1. (25)
Equation (24) can be reduced to
By, _d_ '
2 dy. (pl) dy, (P‘A: 1)
Integration with respect to y, yields
Bn‘ ’
?pa =p A+
When compared with equation (25), ¢, vanishes and the following con-

dition must hold

214..'.,' - _ 2Ai+1.|‘+1
Af+1.iBi.i Ai.n’+lB|'+l.,|'+l

=E, (=1,3 ---,2n—1). (26)

Equation (26) is the natural restraint under which the backward
method can be applied. From the above analysis and the uniqueness
theorem stated, we can claim. If the steady state Fokker—Planck
equation satisfies conditions (22), (23), and (26), and if the phase-space
coordinates ¥, , ¥2 , **+ , ¥z are statistically independent, then the
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unique solution p,,(y) of equation (13) is
2n—1

pe(y) = C H exp [j;“ EA;. :(\) dx

i=1,3,*""

- EA""'+1(>\;+1) dhl""l] (27)

a

where C is the normalized constant.
IV. EXAMPLES

4.1 Randomly Excited Nonlinear Simple Mechanical Oscillator

When subjected to dynamic loadings 5(f) the equation of motion for
a single-mode oscillator with nonlinear spring F(z) is

i+ pz + F(z) = 2(t) (28)
where the excitation »(¢) is a gaussian stationary process with
(n(®) = 0 } ©9)
(n(t)n(t)) = 278, 8(t, — o)

in which S, is a constant power spectral density.
Letting 4, = x and y» = & = g, , the intensity coefficients 4, and
B;; can be found by using equations (4) and (5) as follows

A, =4, + Az = y., hence Ay =0, Ay =1 ;
Ay = A, + Ay = —F(y) — By, ,
hence A, = —F(y,), Ay = —BY2 ;

Bzz = 2‘::’;8‘2 .
Therefore the governing Folkker-Planck equation is
ip _ 9 s ~
S, dy: (v:p) + s {[F(y,) + By=Ip} = 0. (30)

Forward approach:
Equation 30 can be written in the form of equation (20) as

o[, Trsp;a_p_] [ i_i][ z&ai]_
Y [ﬁ(yl)p—l_ g 9y, + Bayz Yy, vp + B 9y =0

from which we see that
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0 0 a
LI—E;J—Z’ LQ_G_l;;—ayl’
S,
nn) = Fly),  hy) = 5
and
S,
g-(2) = 2 ha(yn) = TF’B :

Substitution of gy, g2, hy and &, into equation (21) gives the following
steady state solution for the system deseribed by equation (28)

LY F 1 ] 2
conf- [ 2 "%

cow{- [ ["reyar, + £} (31)

Backward approach:

In this two-dimensional case, it can be shown that condition (26) is
satisfied:

DY)

Il

E = 24, _ —24, — _2(_392) _ B8 i
B4, B4y, 27 8.y, TS,
Therefore, according equations (22) through (27) the stationary solu-
tion can be written:

Il

Pty ) 1) = C exp U EAu() dt, — f EAu(t) drz]

C exp {“ Tg Uﬂ ' F(¢) di, + -g—?]}

which is the same as equation (31).

4.1.1 Cubic Stiffness Characteristics

Let us consider various nonlinear spring resistance funections F(z).
The group of cubic stiffness characteristics 1s the classical case con-
cerned with the hardening spring type of nonlinearity, which is repre-
sented by

F(z) = kax + e, (32)

where k, is the initial linear stiffness and e is the nonlinear coefficient.
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Substituting equation (32) into (31), we obtain

bttty = Cop[ - 2 (B D] @y

Notice from equation (33) that the marginal probability density disitr-
butions for z and & are statistically independent and that p(z) follows
the gaussian law. As ¢ — 0, the system becomes linear and p(x) ap-
proaches gaussian.

4.1.2 Tangent Stiffness Characteristics'®

The spring function F(z) in this case is shown in Fig. 1 and is repre-
sented by

F(z) = (275;?) tan (1%) , —d<z<d (34)

in which m and d are constants. Notice that d is the threshold of the
oscillator and m can be regarded as the mass of the oscillator. Again it
follows from equation (31) that

DT, ) = p(H)p(x)

_ #* ) (4_':32_ w_w)]
= C[exp (— 5lai) P \ ;22 In cos 2d) |’ (35)

F(x)

al— 4+ — —=—__
1
4
=\
o\

Fig. 1 — Tangent stiffness characteristics.
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where w? = k,/m and o> = 78,/28w] is the corresponding linear mean
square response [that is, if F(z) = k,z].

The cosine-power distribution p(z) is shown in Fig. 2 for various
values of n = 4d*/x’¢® . It is interesting that for fixed o2 , p(z) ap-
proaches the gaussian distribution asd — « and approaches the uniform
distribution as d — 0.

4.1.3 Hyperbolic Tangent Stiffness Characteristics

Figure 3 shows a hyperbolic tangent stiffness model; the spring
resistance function F(z) is given by

F() = = tanh (b2), b,k m > 0. (36)

Notice that the resistance F(z) developed during the vibration is
bounded between k,/bm and —Fk,/bm. Therefore k,/bm may be re-
garded as the yield level and 1/bm the corresponding yielding response;
equation (36) can be used to model the familiar elastic-perfect-plastic
behavior observed in many physical realities. The joint probability
density function for this can be obtained from equation (31),
, , i 1

Pz, &) = p@)p() = C exp [-— ﬁé e In cosh (ba:)]- (37)

There are some interesting features about the limiting behavior of
the marginal distribution p(z) which is of sech-power type

p(x) = C,(b) sech™ ™" bx. (38)

The sech-power term in equation (38) belongs to a class of distribution
function f,(z) of a monotone decreasing sequence, integrable on [— ]
such that f,(z) =< 1 for all z. It can be shown that

lim [fn(x) /[ (@) dx] = 07 and for lim (@) = 5y exp (‘37)

the limit of the distribution funetion in equation (38) at zero, that is,
lim,., p(z) converges positively to a normal distribution with zero
mean and variance o> . The sech-power distribution p(z) is shown in
Fig. 4 for various values of m’ = 1/a2b".

4.2 Random Vibration of a Charged Particle Moving in an Electromag-
netic Field

As a second example, we consider a particle of mass m carrying
charge ¢ subjected to a random loading n(t) = 7,(#)¢ + 7.(1)j + na(0)E
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2.5
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/ \ _-fn=10

1.5
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i)
a

1.0

_In=a
i ~ L—-n=1
0.5F———+—— L4 ———ﬂ —— -i-—n—z—‘ﬂ
\\-..

0
-1.00 -075 -0.50 -0.25 025 0.

w

0 0 075 100
z
d

Tig. 2 — Cosine-power probability density distribution function.

where 4, 7, & are base vectors in the Cartesian coordinates. The particle,
moving in an electromagnetic field M = M,(z, y, 2)i + M,(z, y, 2)] +
M,(z, y, 2)k, is also subjected to a friction force F;, = —V,5 where
F = (002 4+ A2 + A\v?) is an energy dissipation function. The com-
plete force on the particle is therefore,

F=g{—w—}%‘+}(vxvxm} (39)

where ¢ is the scalar potential and ¢ is a constant.
If we introduce a velocity-dependent potential w, such that

'w=q¢—ch-v (40)

then equation (39) can be written as
F =~V + 2 V. (a1)
Therefore the Lagrangian function L can be expressed in terms of w as
L=T— g+ Mv (42)

where T represents the kinetic energy of the particle, and the equation
of motion of the charged particle can be derived from the Lagrange
equation

+95 0 (43)

4 (a_L) _ oL
dt \ag; ag;  9g;
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by>by>0

Fig. 3 — Hyperbolic tangent stiffness characteristics.

where ¢; represent the generalized coordinates of the motion. Using
equations (42) and (43), one obtains

N} Q(B_ﬂiﬂ an,
mu‘+q6u1+c at+au3“4

M, oM, M, ) .
+ e Ug ou, Uy au, Ug) + Mus = m

0.5

0.4

—
™
v
/'——r—
\\
3\
I
n
o

o 0.3 P
= m=1.0
a8 /
a /

0.2

m=0.5
;/

0.1 7 Q 7

0 — A_a// \\ —

-10 -8 -6 -4 -2 [o] 2 4 6 a8 10

bz

T'ig. 4 — Sech-power probability density distribution function.
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% |, g (aMz M,
mis + Qg T o \Tor T g, ®
(44)
oM, M, M, ) _
+ s Ug T Uz E7 Ug | + Nalhs = 72
oM g M,
iy +- q6u5+ ( at +5 ER
M, M, aM, ) _
+ ou, Us au, Uz 6 " + NUs = 73

where in equation (44), transformations u;, = z, 4, = & = 1, , s = ¥,
Uy = Y = Us , Us = 2, and Us = Z = s have been made.
Define

D, = (dy3 — do)us + (dis — da))us
D, = (dzl — dya)uy + (dos — daa)uu (45)
D; = (day — dis)us + (das — dzs)“a»[

where da.ﬂ = dmﬂ(ul y Us uﬁ) = aMn/auﬂ ya=1,2,or3andg =1, 3,
or 5, are independent of the velocity variables.
The following properties are assumed for the forcing function n(f)

(na) =0 for e« =1,2,0r3 (46)
(’?n(tx)%(tz)) =0 for « # .B} (47)
= 2r8.(t, — t,) for a =g

From equations (44) through (47), the six-dimensional Fokker—
Planck equation governing the transition probability density p(u, ,
Uy , *++ , Uy), derived by the standard technique, is

Py, -+, Us)

— 9 ) — _hy, g8 _ g (o, )1}
Ous 2 6uu{|: m™ " mou,  me\ at + Dy P

+%[Sla—+szi’—€+sa—’§]- (48)

2 3
o, Uy dug
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The initial condition for equation (48) is

' :uﬂ) lh = H a[u

i=1

p(ul y Uz y °

At t— o, the motion becomes stationary; th
if 8M /ot = 0. Imposing these conditions on
use of equation (45), the corresponding s

DLUTIONS 2047

(&) — wi(t)]. (49)
erefore p = 0 and p = p,,
equation (48) and making
teady state equation for

(48) is:

Ba = ) (s + 52 2) 1 2 0 (o 28, 4 21 22)
+ (o~ man)(ma + 52 30) + 1 (g + 2 22
+ (e~ o) (e + 52 ) 4+ L2 (o 22 1 52 22)
+ q(DI:—i + Dzaﬁi + D, g%) = 0. (50)

Notice that in the above equation p=p,, . Te
of equation (50) vanish if

(1)
or
(#0) Uy Uy U = (dos — dyy) : (day —
or
(777)

VXM=0 or

where G is a scalar potential function of z, y

D, =D, = D, 1

rms in the last parentheses

= 0 (51a)
d5) : (dl:s — dy) (51b)
M=G (51c)
and z.

If any one of these conditions is satisfied, equation (50) is of the

same form as equation (20) and its solution
by using equation (21), that is:

p-t(ul y 0 luﬂ)
_ _mh(u_i)wih " 99
- C exp [ 'H'S| 2 Tﬁsl 0 a;‘
_ﬁ “'a_d)dg' _m)\a(u_i)_
w8y Jo ¢ N 85 \2

where C is the normalization factor determin

can be found immediately

. )
'ﬂ'Sg 2
I\

Us a_¢
[ o] o
ed by

dé
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f...fp”dul,... ,due= 1.

If damping factors in three directions are identical and the random
loading n is uniform, that is, if

F = I\l + v + v)) (53)

and
.lgl = Sg = 83 = S, (54)

then equation (52) becomes

D, = C exp [fg)\ (T + qu)]- (55)

Applying this result to single-mode conservative oscillators with
potential ¥V (x) and subjected to gaussian white random loadings, the
stationary response probability density is

P = C exp (— ﬁ H) (56)

where H = T + V is the Hamiltonian function of the system.

It is interesting that if the magnetic vector potential is irrotational,
the steady state response probability density of a charged particle
under white noise type random disturbances is statistically independ-
ent. The solution can be immediately written down in terms of a
quadrature. Extension of this result to a conservative dynamic sys-
tem shows that stationary probability solution is of the form p, =
C exp[—f(y, H)], where H is the Hamiltonian function of the system
and y is a coefficient depending on the random input characteristies
and the energy dissipation mechanism of the system.

APPENDIX A

Perturbation Technigque

The perturbation method is based on a series expansion in powers
of the nonlinearity coefficient e. This method is valid for small values
of ¢ only. For example, consider a single-mode oscillator with non-
linear damping and stiffness, when subjected to random force »(t), the
equation of motion is

&+ 28(1 + € 2_ b,d") + wix(l + € 20 a2 = 9().  (57)
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A series solution can be assumed*®

() = x, + ev, + €22 + -+
From equations (57) and (58) it follows that

&, + 262, + wix, = ()

. o 2
& 4+ 262, + wr,

Therefore the correlation function is

R..(r) = R.,.,(7) + €R... (1) 1

where

R-"v = <$(t)y(t + T) -
Equations (59) and (60) are linear and theis

obtained

z(l) = f: h(r)u(t — 7 dr,

and

w) = — [ M) T 260 — ) +o

where h(r) = [¢7" /w,(1 — %)% sin (1 — %)}
for system described by equation (59).

From equations (63) and (64), the nonling
be found. Considering only the first-order pet

R = — [ h(r) 3 (280 (08"t —
0 n

+ wia,
which can be evaluated explicitly if ,(¢) is
APPENDIX B

E quivalent Linearization Technigue
Consider the equation of motion

& + Bt + olv + eglx, &, 1)

* Under fairly general conditions it can be show
convergent.

— 2 (28,7
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+ 'z, . (58)
(59)

' wlaatth). (60)
e, (1) (61)
(62)

+ solutions can be readily

(63)

n
o

taant ' (t — 1] dr (64)

L7 is the transfer function

ar response moments can
rturbation,

7))

x,(0a  (t — )] dr,
gaussian.

1(t), (65)

n that this series solution is
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for a nonlinear function g, dependent on both = and #. The following
equation is said to be equivalent to equation (65) in the sense that the
mean square deficiency is minimized:

&+ 8.2 + iz + ez, &, 1) = 5(2). (66)

The deficiency ez, &, £) = (8 — B.)z + (¢ — wdz + eglz, %, £), in
which 8, and w, are equivalent damping and frequency is determined by,

e )uw (e )ew
o8 5. 0 and __Bwf =0, (67)

where the { ),. indicates time average, that is,

T

(€*)ae = lim % . ez, &, t) dt. (68)
T -
Using equations (67) and (68), we obtain
B =8+ e (69)
wi=w t e %g%— (70)

From equations (69) and (70) and by neglecting the deficiency term e,
equation (66) can be solved by using standard linear theory. If the
system is nonhereditary, the time averages in equations (67) through (70)
are replaced by ensemble averages. 8, and «? for this situation can be
solved by a prior assumption for the probability density function of z(t).
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