Bends in Optical Dielectric Guides

By E. A. J. MARCATILI
(Manuscript received March 3, 1969)

Light transmission through a curved dielectric rod of rectangular cross
section embedded in different dielectrics is analyzed in closed, though
approximate form. We distinguish three ranges:

(%) Small cross section guides such as a thin glass ribbon surrounded
by air—Making its width 1 percent of the wavelength, most of the power
travels outside of the glass; the attenuation coefficient of the guide is two
orders of magnitude smaller than that of glass, and the radius of curvature
that doubles the straight guide loss is around 10,000M.

(71) Medium cross section guide for integration optics—It is only a few
microns on the side and capable of guiding a single mode either in low loss
bends with short radii of curvature or in a high Q closed loop useful for filters.
Q’s of the order of 10° are theoretically achievable in loops with radit ranging
from 0.04 to 1 mm, if the percentage refractive index difference between guide
and surrounding dielectric lies between 0.1 and 0.01.

(77) Large cross section guides—They are multimode and are used in
Jiber optics. Conversion to higher order modes are found more significant than
radiation loss resulling from curvature.

I. INTRODUCTION

A dielectric rod, embedded in one or more dielectrics of lower re-
fractive index, is the basic ingredient of three types of optical wave-
guide which differ only in their relative dimensions and consequently
in their guiding properties.

The first is a small cross section guide which supports only the fund-
amental mode; most of the power travels in a lower loss external
medium. Thus, the attenuation of the mode is smaller than if all the
power flowed through the higher loss internal medium. Tiny rods, thin
ribbons, or films made of glass or other substances embedded in either
air or low loss liquids are typical examples.*-3

The second is a medium size guide capable of supporting only a few
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modes; most of the power travels in the internal medium. Such a guide,
(Fig. 1 of Ref. 10) has been proposed as the building block of passive
and active components for integrated optical circuitry.**® Lasers,
modulators, directional couplers, and filters are some of the many
devices which could be built in a single substrate utilizing the high
precision techniques available from integrated circuitry; consequently
they would be compact, mechanically stable, and reproducible.

The third, a large size guide (clad fiber) which can support many
modes, is used typically in fiber optiecs.”

These basic guides, having round or rectangular cross section and
straight axis, have been studied both analytically and through com-
puter calculations.®*? Also the directional coupler (Fig. 2 of Ref. 10)
obtained by running two guides of rectangular or circular cross sections
parallel to each other, has been analyzed.*®%*

To my knowledge, though, little is known quantitatively about the
ability of any of the three types of guides to negotiate bends, or about
the radiation losses in loops, such as the one depicted in Fig. 1 as part
of a channel dropping filter. This paper should supply such informa-
tion.

In Section II the boundary value problem is discussed, and the
fundamental modes of each polarization are deseribed. Section III con-
tains a discussion of the results and numerical examples. Conelusions
are drawn in Section IV and all the mathematical derivations are
exiled to the appendix.

II. FORMULATION OF THE BOUNDARY VALUE PROBLEM

Figure 2 depicts, in perspective, the basic geometry of the curved
guide with radius of curvature R. The cross section is a rectangle whose
sides are a and b. The refractive index of the guide is ny, and the re-
fractive indices around the guide are no, ns, ns, and ns, all of which are
smaller than n, . Furthermore, for reasons which become apparent later,
we do not specify the refractive indices in the four shaded areas.

This boundary value problem is solved in closed, though approxi-
mate form in the appendix, by introducing the same simplification
used in solving the problem of transmission in the straight guide.°
That simplification arises from solving Maxwell’s equations only for
guide dimensions such that a small percentage of the total power flows
through the shaded areas and consequently a negligible error is ex-
pected if one does not match properly the fields along their edges.

Two types of hybrid modes propagate through this curved guide;
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Fig. 1 — Channel dropping filter (ring type).

each one has six field components. But since some of the refractive
indices n,, ny, n,, and n; are chosen close to n,, guidance occurs
through total internal reflection only when the plane wavelets that make
a mode impinge on the interfaces at grazing angles. Consequently, the
only large field components are perpendicular to the curved z axis
(Fig. 2). The modes are then of the TEM kind and we group them in two
families, EZ, and E¥, . The main field components of the members of the
first family are E, and H, , while those of the second are E, and H., .

I‘E*‘Jf‘ -d——- —-l

5 o s

Fig. 2 — Curved dielectric guide.
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Virtually every one of these components varies sinusoidally along
z and y within the guiding medium 1 and decays exponentially in the
surrounding media 2, 3, 4, and 5 (Fig. 2). The subindices p and ¢
represent the number of extrema of each field component in the z and
y directions, respectively. The field configurations of some members
of the two families in straight guides are depicted in Fig. 5 of Ref. 10;
section 2.1 describes the influence of a finite radius of curvature on
those field configurations.

General expressions for the different phase and propagation constants
in each medium of the curved guide are calculated in the appendix, for
arbitrary modes and for n, £ n; £ n, ¥ 1, . In the text, we consider only
the fundamental modes of each family Ej, and EY, ; furthermore, we
choose

Ny = Ny (1)

and leave n, and n4 arbitrary. This choice of refractive indexes en-
compasses the most interesting cases.

2.1 E}, Mode

We first study the EZ, mode. As we said before, the main compo-
nents are E, along the z direction and H, along y. Both components
have a single maximum located within medium 1 and drop sinusoidally
toward the edge of it. Outside of the medium, the decay is exponential.

The axial propagation constant is according to equation (47)

k. = (6 — k2 — k)Y, @)
where ky = kny = (2r/A)n, and A is the free space wavelength, k, is
the propagation constant along = in media 1, 2, and 4, and k, is the
propagation constant along y in media 1, 3, and 5. This means that
the electrieal width of media 1, 2, and 4 is the same and equal to k,a,
and the electrical height of 1, 3, and 5 is also the same and equal k,b.

The transverse propagation constant k&, is independent of the radius
of curvature B and can be found from the transcendental equation
(37)

k,b = = — tan™" [(k:%)z - 1]_% — tan™' [(k:i)g — l:lw4 (3)

in which

A, = (4)

B S
9(n® — n2\}
¢ 2(ni—ni)
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If the height of the guide b is selected so large that

A, + A,
b

only a small percentage of the power carried by the mode travels in
media 2 and 4; and equation (3) can be solved approximately,
yielding

X1, 5)

k, = (1+M)_,

T
b b

According to equation (49), the other transverse propagation con-
stant

_ 2 .k,oa,]
k: - kzo[l + akzo 4 :D (6)
is valid if
c
K1
ak.q )
a R K 1.

The first term in equation (6), k., , is the propagation constant in the
z direction of the guide without curvature; the second and third terms,
which according to equation (7) must be small, are perturbations related
to the change of field profile and to radiation loss, both of which are
introduced by the curvature. More precisely, «. is the attenuation
coefficient of the curved guide, o R is the attenuation per radian,
that is the attenuation in a length of guide equal to R, and ¢ is a con-
version loss coefficient such that, at a junction between a straight and a
curved section of the same guide, ¢* measures the power that the funda-
mental mode in the straight section would eouple to modes higher than
the fundamental in the curved section. The fact that equation (6) is
valid if ¢ < 1 requires the radius of curvature R to be so large that the
field profiles of the fundamental modes in the straight and curved guides
are quite similar. Later in this section we consider formulas applicable
when ¢ =2 1.

The axial propagation constant, k., , of the straight guide is related
to k.o and k, by the expression

ke = (7 — K20 — )} ®)

and k., is the solution of the transcendental equation (55)
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2 2 -4
— -1Ma m _ .
koa = 7 — 2 tan . [(k,u A) 1] 9)

The length

A

2 — o

A=
is used as a normalizing dimension. What does it measure? If one
assumes b = o, the guide becomes a slab of width a. If a < 4, only
the fundamental mode is guided; if @ > A, the slab is multimode.

Figure 3 is a graph of the electrical width, k..a, of the straight guide
as a function of a/A. The solid curve is the solution of equation (9)
assuming n,/n; = 1.5, while the dotted one is the solution for n,/n; =1.
For thin guides, a/A < 1, the electrical width is proportional to a; for
thick guides, a/A >> 1, the electrical width goes asymptotically to .

The attenuation per radian «. R and the conversion coefficient ¢,
obtained from equations (50) and (51) with n; = n; are

2\ -} 2 3 27}
wR =1 (1 _ ’ii) (@’f_a) (A) [1 3 (k,oA) ]
2 n n, Ta T
2 2 !
N )

: (11)
4 2 2 27] -4
) A [ ()]
mn m na T
and
_ 1 E)” 1
©= 2kma (A @’ (12)
where
_ 2R _ ﬁ( n_i)*
@ = KA 2 : 1 . R. (13)

The solid eurves in Figs. 4 and 5 are graphs of the function

a1l — =
m

(which is proportional to the attenuation per radian) as a function ofa/A
using ® as a parameter. In Fig. 4, we further assume that

144

Mg
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Fig. 3—Guide’s electrical width. Solid line is for Ef; mode with ni/na = 1.5;
dashed line is for E?, mode with n/ny arbitrary, and for Ef, mode with n = na.

and
ALK
in Fig. 5,
™ o_ 15
M

In the same figures each dashed line is a curve of constant conversion
loss ¢. Since the caleulations are valid for ¢ << 1, we believe the solid
curves are reliable to the left of the dotted curve ¢ = 0.3 and grow
progressively in error to the right of it.

To extend the use of this graph to arbitrarily large values of a/4, we
calculate the loss per radian, equation (63), when a/4 >> 1 and¢=1.Ttis

_n AN {@[ (&)‘ é&i]*}.
a“R_nf[l_(le)] exp {—3 1-— 2% +n",’(}'t ; (14)

the dotted lines in Figs. 4 and 5 represent this loss. The reader can
smoothly extend the solid curves to the right of the dashed line, ¢ =
0.3, so that they become asymptotic to the dotted lines. Thus, the
whole range of guide width a from 0 to R has been covered.
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Fig. 4 — Attenuation per radian for B, and E; modes if ni/rs = 1 4+ A
and A <1

To understand why these curves of constant R become asymptotic
for afd > 1, we have drawn in Fig. 6a a curved guide with a certain
R; its width a is very large compared with A. Also the amplitudes of
the field components E, and H, are plotted as functions of z and y.

Along z the field inside the guide behaves virtually as the Bessel

function J,[ky(E + x)] where v is a very large number and outside
of the guide decays exponentially. This guide has some radiation loss
per radian.

Now, suppose that we start shrinking a without changing R. Since

the field at = —a is very small, the radiation loss remains constant
until o is made so short that the field at x = 0 and £ = —a are com-
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2111
parable (Fig. 6b). The field inside the guide varies almost sinusoidally,

while outside decays exponentially and the attenuation per radian

increases. If @ is reduced even further (Fig. 6c) most of the power
travels outside of the guide, and the loss increases even more. The

field configuration along y is practically the same in the three cases
(Fig. 6).

For resonant loops, such as the filter in Fig. 1, the intrinsic Q re-

sulting from curvature radiation is more interesting than the attenua-
tion «,. They are related by the expression

k.
Q =32 (15)
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using as before the normalized guide width a/A4 as variable and ® as
parameter. As in Figs. 4 and 5, the reader can easily match the solid and
dotted curves. Further discussion of these curves is reserved for Section
IIT.

The field components in media 2, 3, 4, and 5 decay almost exponen-
tinlly away from the guiding rod, and the distances #,, 74, &, and &
over which the fields decrease by 1/e are
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Fig. 7 — Intrinsic @ for E,* and E,¥ modes if n;/n; = 1 + A and A < 1.
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2.2 B, Mode

We now consider the E¥, mode. The main components are £, and H. ;
they are qualitatively quite similar to components of the Ej, mode,
rotated 90°.

The propagation constant k, is still given by equation (2); but now k,
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Fig. 8 — Intrinsic § for E;* mode if n,/ns = 1.5.
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is the solution of

e[ () ] e ) 1]
A AV e\, 4,
(18)

The equivalent formula, of any of those between equation (7) and (17)
can be derived from that formula by substituting the ratio of refractive
indexes by unity, but leaving them unchanged wherever they are
subtracted from unity. For example, equation (11) becomes

o= [i- ()T on (AT - (4]
® exp {—g{ [1 - (k::A) (1 + akm)z] i}
- e - AT

while ¢ and @& given by equations (12) and (13) remain unchanged.

Figure 9 is a graph of the function «,R[1 — (n/n,)’]}, valid for any
ratio n,/n; . In particular, for n,/ns = 1 + A and A < 1, equations (19)
and (11) become the same, and consequently these curves coineide with
those in Fig. 4. This means that for n, =2 n; , the £;, and E}, modes have
the same loss.

Figure 10 is a graph of the intrinsic @ of a loop operating in the E},
mode which can be derived from equations (15) and (19). As before, in a
resonant loop withn,/n; = 1 + A and A < 1, the Ej, or I}, modes have
the same @’s.

(19)

III. DISCUSSION AND EXAMPLES

The attenuation per radian of any dielectric guide of rectangular
cross section and the @, resulting from curvature are strongly de-
pendent on the radius of curvature. With the help of equation (17),
the attenuation per radian equation (11) can be written

2
ol = MR exp (—é %'3) (20)

where M is independent of R, X. is the guided wavelength along z, and
& is the length over which the field in medium 3 decays by 1/e. Ac-
cording to Fig. 11, the function

1 MR
Row (g i
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becomes negligibly small, and consequently the attenuation per radian
becomes negligibly small when

3
r> 2 Bl (21)
\:
This simple criterion is developed further in Ref. 15

We are interested, though, in a more detailed description of trans-
mission through a bent dielectric guide. Given a guide with a certain
radius of curvature (that is, given R and a/A4), in general the loss per
radianofthe £%, mode is much larger than that of the E}, mode (compare,
for example, Tigs. 5 and 9 for n,/n; = 1.5). That difference becomes
negligible if n,/n, — 1 K 1
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Fig. 9 — Attenuation per radian for E;¥ mode and n1/n; > 1
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Fig. 10 — Intrinsic @ for E,» mode and n1/ns > 1.

Let us consider separately the three types of guide: thin, medium and
large.

3.1 Thin or Low Loss Guides*
In thin guides the width a is so small that

* Low loss for straight guide.
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a _ 2am; — na)t

1= 5 < 1. (22)
The height b of the guide must be large so that only a little part of
the power travels in the shaded areas of Fig. 2. Assuming that the
guiding rod dielectric is lossy, its refractive index is

n, = n(l + k%) , (23)

where n is real and « is the attenuation constant of a plane wave in
that medium.

Substituting equations (22) and (23) in equations (2), (11), and
(12), we obtain

k. = ku + ic, + dar, . (24)

1 2\ 7z .
1+ 3 [kaa(l — %3)] for Fi, mode

2 2
1+ é I:kaa(%g — 1)] for E}, mode

3

The first term

koo = (k5 — k3)* (25)

is the phase constant. Since most of the power travels in the external
medium, its value for either mode is close to kng. The conversion loss
term ¢ is negligible.

The imaginary part of equation (24) is the attenuation constant,
and 1s made of two terms. The first term

a8
n
. (—3) for E?, mode
a, = %nngkzaz(gg — 1) n (26)
8 1 for EY, mode
R R
= Exp (-
Rg ( Ro)
JLIN I N
e N
l
i N
I I ~
I o
i | ~
I | o
| | N R
Re  2Ro 2Ry

Fig. 11 — Plot of R/R, exp (—R/R,) and tangent at inflection point.
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is the attenuation that each mode would have if the guide were
straight.'® The second term

3 2 2 2
a,=M("—,—1)
8 \ng

(o) 58 - -3

(for Ei, mode)

kid’R (ﬁ )“[ 1 (k-)z]}
e"‘p{_ 2 w2 Y2\

(for EI, mode)

@7

v

is the attenuation resulting from the radiation introduced by the curva-
ture. The E¥, mode is more tightly bound to the guiding rod and conse-
quently has more straight loss and less curvature loss than the E7, mode.

From equations (26) and (27), the radius of curvature R, that doubles
the straight guide loss is

et E @l

2
2&,”3(%3
3 2
el ] o
j(ﬂ) log |:4a n2 1 (for FEi, mode). o8

2 2
1 log [%@ (’:‘T— 1)] (for I, mode).

Example 1: Consider a thin ribbon guide made of glass surrounded by
air and assume thatn = 1.5, n; = 1, @ = 0.1 nepers per m, and b = .
From equations (26) and (28) we calculate the values in Table L.

It is doubly advantageous to use the Ej, mode rather than the ETY,
because (i) the thickness required for equal radiation loss and straight
guide loss is roughly (n/n)* times larger, and (ii) R, is about (n/n,)*
times smaller.

If the height b of the ribbon is finite, k,/kn, is no longer zero and the
radii are, according to equation (28), [1 — %(k,/ks)"]”" times longer than
those in Table I.

3.2 Medium Size Guide for Integrated Optical Circuitry

It is likely that guides for integrated optical circuitry will be possible to
fabricate only with n, =2 n, . The radiation loss per radian and the Q, of
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TaBLE I—VALUES CALCULATED FROM EQUATIONS (26) AND (28)

Euv Mode En® Mode
a a Ra a By
(neper‘a/m) A A by Iy
0.01 0.05 1.9 X 108 0.17 6.3 X 10
0.001 0.016 6.2 X 104 0.055 2 X 10
0.0001 0.005 2 X 108 0.017 6.5 X 108

loops made with these guides can be obtained from Figs. 4 and 7, con-
sidering abscissas around a/4A = 1. For both modes, E}, and Ef, , most
of the power travels within the guiding rod.*

In general, the losses are very sensitive to the radius of curvature.
They are also sensitive to the guide’s width to the left of the dashed
curve ¢ = 0.5, but fairly insensitive to the right of it.

Example 2: Let us design a guide:
(i) The attenuation per radian resulting from radiation loss is

a,R = 0.01 nepers = 0.087 dB.

(i%) Its width a is the maximum compatible with single mode guid-
ance in the infinitely high slab, that is

(775) We assume b = = and n; = n,(1 — A), where A < 1 andn, =
1.5.
From Fig. 4 we derive the guide dimensions for different values

of A:

a R

A X *
0.1 0.745 30
0.01 2.36 1,060
0.001 7.45 37,000

Unless A is 0.01 or larger, the radius of curvature B becomes un-
comfortably large for integrated optical circuitry. Furthermore, if b
is finite, k, is no longer zero, and the radii become [1 — (k,/k,)*]"?
times larger than those in the table above.

* This is not true if b/B> << 1. Then k., must be calculated from equation (8).
4
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Ezxample 3: We design a resonant loop (Fig. 1) such that its Q. re-
sulting from radiation is equal to the @ resulting from transmission
loss in typical glass (ny = 1.5, « = 0.1 neper/m at A = 1p); that is,

Q=0, =5X10.

Turthermore, let us assume as in Example 2 that a/4 = 1, n; =
n, (1 — A), and b = «. With the help of Fig. 7 we derive
a R
A x x
0.1 0.745 57
0.01 2.36 1,550
0.001 7.45 42,000

Again, unless A is larger than 0.01, the radius of curvature becomes
unwieldily large for integrated optical eireuitry.

Instead of using a loop as the resonant circuit of Fig. 1, it is pos-
sible to make ¢ = R, and the loop becomes a pillbox (Fig. 12). This
structure may be simpler to fabricate. For this case, also from Fig. 4,
using the refractive indices of the previous example, we obtain

R
A x
0.1 42
0.01 1,170
0.001 32,000

The pillbox resonator requires a 30 percent shorter radius than the ring
resonator, As before, if b is finite, the radii are [1 — (k,/k3) 2] times
longer than those in the last two tables.

PILLBOX RESONANT
AT £,
\

Fig. 12— Channel dropping filter (pillbox type).



2122 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1969

3.3 Large Gutdes for Fiber Optics
The large guide is multimode, a/A > 1, and the radius for small
mode conversion is derived from equations (11) and (12), making
kzoe = 7 and ko = 27ny/A. Then
e
c = TN, T
For a power conversion ¢ = 0.01, and n, = 1.5, we have

a B

A A

5 8,900
10 71,000

The conversion loss is many orders of magnitude larger than the loss
radiated by the fundamental mode because of the curvature. Radia-
tion loss of higher order modes can be found in equations (51) and
(63).

In general, clad fibers are of circular cross section; consequently
our calculations do not strictly apply. Nevertheless, a guide of circular
cross section and another of equal area but square eross section must
have quite comparable attenuation per radian unless mode degen-
eracy occurs, but this is quite unlikely.

Though we have been talking throughout of light guides, it is
obvious that all the calculations are equally applicable to microwave
guides.

IV. CONCLUSIONS

Relations between radiation losses resulting from curvature, geom-
etry, and electric characteristics of the bent dielectric guide are sum-
marized in Figs. 4, 5, and 7 through 10 and they are discussed and
exemplified in Section III.

The main qualitative results are that for a given radius of curva-
ture R, the radiation loss can be reduced

(1) by increasing the difference between the refractive index n; of
the guide and those of the media toward the outside, n3, and inside,
ng, of the curved guide axis (Fig. 2);

(%) by increasing the guide width a. Nevertheless, once a is bigger

than
)
i)
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(where A is the free space wavelength), there is little reduction of the
loss:

(71) by choosing the height of the guide large enough to confine
the fields as much as possible within the guide in the direction normal
to the plane of curvature.

In general, the radiation losses are small if

247 | & |1

}\2 1
where & is the length over which the field decays by 1/e in medium 3
(Fig. 2).

Thin ribbons of glass, surrounded by air and oriented as in Fig. 6c,
operate better with the electric field perpendicular to the ribbon’s
plane. Choosing the thickness a = 0.055A, the attenuation of the
straight guide is 1 percent of the attenuation in glass, and the radius
of curvature which doubles that low attenuation is 20,000A.

The dielectric guide for integrated optical eircuitry seems suitable to
negotiate bends and to make resonant loops of small radii of curvature
and small radiation losses. For example, for

R >

n, =15

A

n= —F>))0"
n\}
2n,01 — =

n,

a 1 percent attenuation (0.087 dB) resulting from radiation in a length
of guide equal to R is achieved with the following values

(single mode guide)

1 =M a i
ny A A
0.1 0.745 30
0.01 2.36 1060
0.001 7.45 37000

The smaller n; — ng, the larger the radius of curvature. For A = 0.63p,
if one wants to keep R below 1 mm, the difference between the internal
and external refractive indices must be larger than 0.01.

Large cross section dielectric guides capable of supporting many
modes are far more sensitive to mode conversions than to radiation
losses. For the fundamental mode, the power conversion loss at the
junction between a straight and a curved section of a multimode
guide is
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3 \2
a
¢ = (misim) -~

For n, = 1.5, @ = 6.3, and A = 0.63y, the radius of curvature E that
produces a power conversion ¢? of 0.01 is 45 mm. The radiation loss in
a length of guide equal to B is many orders of magnitude below 0.01.

APPENDIX

Field Analysis of the Curved Guide

Figure 2 shows the geometry and dielectric distribution of the curved
guide. In this appendix two families of modes are found, Ej, and Ej;
each is studied separately.

A.1 E;, Modes: Polarization Along x

The field components in each region should be written as integral
expressions, but, as discussed in Section II, the power propagating
through the shaded areas is neglected, and the field matching is per-
formed only along the sides of region 1. Consequently, those field
components do not need to be so general. As a matter of fact, the
simplest field components in the mth of the five areas are'
{
A

¥

1 9H,.
B kvzn - kim dx ay !

H o —ivlitiwt
wm — €

Hzm

M J (G — EDMR + 2) + yu) cos (k,y + @) for m =1
AN AL )] ; _2
2 [[kf ”ﬁ] (R4 )+ {_I exp [?zkyiy] for m 4
MH®[(k3 — ki) (R + 2)] cos (kay + Q) for m = 3
MJ,[(K: — ki)Y (R + 2)] cos (k,y + Q) for m =5
) v oH,.
H""_kf,.—kﬁ,,,R—l—:c ay '
_ i v
B = T =R ® 0
Et‘lﬂ = 01
By = oty S (29)

ky — ki, oz’
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in which M, is the amplitude of the field in the mth medium; ,, and 2.,
are constants that locdte the field maxima in region m; w is the angular
frequency; en? and g, the permittivity and permeability of each medium,
are related by k2 = k*n? = «’eun?; k,. is the propagation constant
along ¥ in medium m; and J, and H{® are Bessel and Hankel functions,
respectively.

Strictly speaking, the H, component in media 1, 2, and 4 should
be written as a sum of Bessel functions of the first and second kind,
but later on they are approximated by ecircular functions; therefore,
we do not make any mistake using only the Bessel function of the
first kind with an arbitrary phase constant in the argument.

We consider only guide geometries for which the guide wavelengths
measured in the 2 and y directions in medium 1 are large compared
with the wavelength measured in the z direction. This means that (7)

an < E ,
and, as a consequence, the ﬁeld component H,; 1s very small com-
pared with H, and is neglected; (i) the propagating modes are bas-
ically of the TEM type.

In order to match the remaining components along the boundaries
of medium 1, the field components in media 1, 2, and 4 must have the
same dependence along z, while the field components in media 1, 3,

and 5 must have the same dependence along y. Therefore

(30)

k“ = kvs = kyh = ky , (31)
K — k2 =k — kL =k — K, (32)
Wi=v:=¢%.=¢, and @ =2 =g = Q. (33)

Furthermore, the field matching yields the following four equations
from which two characteristic equations will be derived

b ke b .k,
tan (k,,é + 9) = I— tan (k, 5~ Q) =1 ﬁ (34)

J.(p13) P3 H-N(Pa) Jv(plﬁ) ps J4(ps)
7 = Fil y d 7 = 37
J,(pw) Pis H:r (p%) an J»(Pls) Pis ‘Ir(pﬁ) (35)

where

ps = RUE — B + ¥,  ps= R — a)(k* — k) + w]r (36)
ps = RUZ — k), and  p; = (R — a)(i2 — kD)
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Similar to what happens with the straight guide, equations (34)
and (35) are the boundary conditions of two independent problems
far simpler than the one depicted in Fig. 2. Thus, for a dielectric slab
infinite in the = and z directions and with dimensions and refractive
indices as depicted in Fig. 13a, the boundary conditions for modes
with no E, component coincide with equation (34). Similarly, for a
bent slab infinite in the y direction as shown in Fig. 13b, the boundary
conditions for modes with a negligible H, component coincide with
equation (35).

The elimination of Q@ between the two expressions of equation (34)
yields the characteristic equation for the plane slab*®

kb = gr — tan™* T I e v e T 37)
(@ - (G -1
Ak, Ak,
in which
Ay = 2 (38)

2 _ o2\’

4 Z(nl n::)
the tan functions are to be taken in the first quadrant, and the
arbitrary integer g is the order of the mode, that is, the number of
extrema of each field component within the guiding rod in the ¥
direction.

The transcendental equation (37) has an approximate cloged form
solution already found in Ref. 10

L A+ A ,.)‘l
k‘y - (1 + Tl'b + ) (39)

b /

1

—= 1

(b)

Fig. 13 — Guiding dielectric slabs.
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which is valid only when b is so large that

A, + 4,

40
b <l (40)

and consequently the parenthesis is close to unity.
The field components in media 2 and 4 decay exponentially by 1/e
in lengths 7, and 54, which are deduced from equation (32) to be

1 _ 1 )
(5 Ry

Let us consider the solution of the characteristic equation of the bent
slab (Fig. 13b). For guided modes, both the arguments and the order
of the Bessel and Hankel functions involved in equation (35) are large
compared with unity, and consequently they can be replaced by their
Watson's first term approximations,”

0 =Y
2

1
Y T RCE.C) R
J(p) = [ ]

m(p’ — »)! ] - 23
| =) z]
(sm ‘: 27 + 1 for p>v

2 = (41)
T"'l kuz
4

L (42)

N %[exp [@ ;};p—):} for »> p
)!v(p) - ﬁ[ = ] '

TI'(IJE_VZ)& . (2 o
cos|:p ay) +7r:| for p > ».

These expressions are valid if

TETE < 1. (43)
p —V
Introducing these approximations for the Bessel functions in both

equations (35) and eliminating ¢ between them, we obtain the char-
acteristic equation for the bent slab

1 2 21 2
gi [(Pfa - Vz)! - (.015 - V-)%]

e (8 I b - _‘2(v2—p§)$:l})
= pr tan (n?[uz_P]{l—i—zenp[ 3 7

v
2
3
2 2 2\ }
-1 Ry — v\
— tan™' =5 (%1_5 *“r) , (44)
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in which p is an arbitrary integer bigger than zero which determines
the order of the mode in the z direction, and the tan— functions are
to be taken in the first quadrant.

Let us rewrite this equation substituting ps, ps, p1s, and pys by the
values given in equation (36) ; furthermore, let

A
Ay = —F7F7, 45
T (46)
5
y = k.R (46)
and
k. = (& — k& — kD)L (47)

Because of these two last definitions, k., k., and k, are the axial and
the transverse propagation constants at * = 0. The characteristic equa-
tion (44) then becomes

-6 -39
3k: [1 '~ &R

2
]
: [1—§]<k?-—ki)—kf
— tan~' —3 . (48)

K — (1 ~ ﬁ)z(k: —B)

To solve this equation for k, we expand the left side and the second
tan~ in powers of 1/R and the first tan in powers of the exponential.
Assuming R is large and keeping the first term of each perturbation
ealculation, the solution of equation (48) is

k, = icm(l + 2 v.’“—i) , (49)

z0 x0

where

_ 1 ()L _1+2F
€= 9%..a (Aa) ®R1+ Fy, + F,s (50)
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and
v _(ﬁ _ k.rﬂA 3)2( ‘)C ) ]i}
K \:1 B (A_!_)], “’p{z [_1 ( - )\ Yk, 1S
o, k;o . 3 1+ F, + F, ’
(51)
in which
n3]2 A, 1
Fy= |2 : , (52
F koo da| 1! Ic,oA 52)
a1l — & 1—|1-35—2
L T Th T
r)‘.l'l'a 2 i ksR
L2o‘ : = 2( - 3) kfo ] (53)
= (&} — k) — k2)}, (54)
and k.o is the solution of the equation
2 2
k.,a = pr — tan™ E% —+—1—% — tan™' n_; S
ez -] G ]
k:ﬂAS kaAﬁ
(55)

This is the physical interpretation of equation (49): the trans-
verse propagation constant k, measured at x = 0 is made of three
terms. The first term, k,q, is the transverse propagation constant of
the guide without curvature; the second and third terms are perturba-
tions related to the change of field profile and radiation introduced by
the curvature. It is easy to find that ¢? is the mode conversion loss that
would exist at a junction between a straight guide and a curved one,
and e, is the attenuation coefficient of the curved guide.

The field components in media 3 and 5 decay almost exponentially
away from the guide. The length &, over which the intensity in medium
3 decays by 1/e, is derived as in equation (41) to be

ok = ks — [ RZD

and only approximately

(56)

. 1 _
Pl ks | — ks — [RDD

(67
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All these equations have been derived under the assumption that
inequality (43) is satisfied; this means that the field configuration of
the curved guide is very close to that of the straight guide. In other
words, ¢ < 1. For a given R, if one chooses the width a of the guide
large enough, these inequalities are not satisfied, the previous results
are no longer applicable, and a new solution is needed. We proceed
to find it.

Let us assume as a limiting case that in Fig. 2

a =R, (58)

The characteristic equation derived from the first equation of (35),
making ¢ = 0, is

2 2 2 2
v ny \v. — p;

-{1 + i exp [—% (i:—z”gi]} (59)

Following similar steps to those taken to solve equation (44), we
substitute pis, ps, and » by the values given in equations (36) and
(46) ; we obtain

R(k1)* _ (
3 (k)"

(s = ) _ (p — Hr — tan™ nj.(p?a - ,,2)!

~ br
. [ 2 =R (@A)]*}
2 L e"p{ 3 () A [1 -\

“1 Mg
tan n [( . )2 1]}
KA,

The primes distinguish the symbols from those used previously.
To solve this equation we notice that for small losses it must be that

(60)

keds 4, (61)
m

Therefore, the tan! can be replaced by its argument and the approxi-
mate solution of equation (60) is

N
I = k:0[1 - z(%,'ﬂ‘;g] , (62)
where
_ma_ ki
% T nkRm: — ni)}
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-exp (—‘%f {1 [bw(m - _)]’[1 ~ %;{é (;EGT:G—%W)A]};) |

(63)
klo = [k — kb — (kL) (64)

mp — 3) | 1n; 6 ! -
o 5 - Lﬂ@ tpwl

and

, 2R . ”
® (Ic 3 AR = = 2(n; — n3)? (k o) (66)
The field components outside the guide decay to 1/e in a length
1 1
;= 7 I* 67
Ea { e | [A2 _ A2 (kﬂ))?], ( )

A.2 By Modes: Polarization Along y

The field components and propagation constants ean be derived from
those in Section A.1 by changing E into H, u into —e, and vice versa.
Except for their polarizations, the E, and E*, modes are very similar.

The formulas equivalent to equations (37) and (41) are

2 2
"y o— _ -1 Mg 1 _ -1 1 B
ki’b = gr — tan n? [( . )2 lir tan . ——_[( . )2 I:l*
Ak T ARV T
(68)
" 1 1 (
2 = < 69)
Lkl K — k2 — k1))
R ( P )

The double prime distinguish these symbols from those used before.
The equivalent formula to any of those between equation (45) and

(67) can be derived from that formula by substituting the ratio of

refractive indexes by unity, but leaving the differences between squares

of indexes unchanged. For example, the formula equivalent to equation
(52) for E*, modes is

A
Py = ; L .o
5 : Iﬂf.,ﬁ; 3 2 ﬂ'g "k:oAa *
ra 1 — 2 1 — |1 —-3 2
L T LS A
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