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This paper describes a computer analysis of the propagating modes
of a rectangular dieleciric waveguide. The analysis is based on an expansion
of the electromagnetic field in terms of a series of circular harmonics, that s,
Bessel and modified Bessel functions multiplied by trigonometric functions.
The electric and magnetic fields inside the waveguide core are matched to
those outside the core at appropriate points on the boundary to yield equa-
tions which are then solved on a computer for the propagation constants and
field configurations of the various modes.

The paper presents the results of the computations in the form of curves of
the propagation constants and’as computer generated mode palterns. The
propagation curves are presented in a form which makes them refractive-
index independent as long as the difference of the index of the core and the
surrounding medium is small, the case which applies to integrated optics.
In addition to those for small index difference, it also gives results for
larger index differences such as might be encountered for microwave appli-
cations.

I. INTRODUCTION

It is anticipated that dielectric waveguides will be used as the
fundamental building blocks of integrated optical eircuits. These wave-
guides can serve not only as a transmission medium to confine and
direct optical signals, but also as the basis for circuits such as filters
and directional couplers.* Thus, it is important to have a thorough
knowledge of the properties of their modes.

Circular dielectric waveguides have received considerable attention
because circular geometry is commonly used in fiber optics.2-* In many
integrated optics applications it is expected that waveguides will con-
sist of a rectangular, or near rectangular, dielectric core embedded in
a dielectric medium of slightly lower refractive index. The modes
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for this geometry are more difficult to analyze than those of the me-
tallic rectangular waveguide because of the nature of the boundary.

Marecatili, using approximations based on the assumption that most
of the power flow is confined to the waveguide core, has derived in
closed form the properties of a rectangular dielectric waveguide.® In
his solution, fields with sinusoidal variation in the core are matched
to exponentially decaying fields in the external medium. In each
region only a single mode is used. The results of this method are
obtained in a relatively simple form for numerical evaluation.

The properties of the principal mode of the rectangular dielectric
waveguide have been studied by Schlosser and Unger using a high--
.speed digital computer.” In their approach the transverse plane was
divided into regions, as shown in Fig. 1, and rectangular coordinate
solutions assumed in each of the regions. The longitudinal propagation
constant was then adjusted so that a field match could be achieved
at discrete points along the boundary. This method gives results
which, theoretically, are valid over a wider range than Marcatili’s,
but with a significant increase in computational difficulty. One short-
coming of the method is that for a given mode, as the wavelength
increases the field extent increases, so, in the limit it becomes increas-
ingly difficult to match the fields along the boundaries between regions
[1] and [2] and between regions [2] and [3].

A variational approach has been undertaken by Shaw and others.®
They assume a test solution with two or three variable parameters
in the core. From this test solution, the fields outside the core are
then derived and the parameters are varied to achieve a consistent

REGION [1]

REGION [2A] |REGION[28]| REGION [2C]

REGION [3]

Fig. 1 — Matching boundaries for rectangular mode analysis.
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solution. This approach, like that of Schlosser, requires involved com-
putations. Also, it has the disadvantage that the test function must
be assumed in advance. In addition, some of his preliminary results
do not show the proper behavior for the limiting cases (waveguide
dimensions which are very large or very small compared with the
wavelength).

In the present analysis the radial variation of the longitudinal
electric and magnetic fields of the modes are represented by a sum
of Bessel functions inside the waveguide core and by a sum of modi-
fied Bessel functions outside the waveguide core. Solutions are found
by matching the fields along the perimeter of the core. Thus, the
matching boundary is not a function of the waveguide parameters,
so the computational complexity does not increase with wavelength.

Section IT discusses the underlying theory of the circular-harmonic
analysis of rectangular dielectric waveguides. This is followed by a
deseription of computational techniques and special graphical methods
of presentation used. Section III is divided into three parts, the first
describing the accuracy of the computations, the second deseribing
field patterns, and the third presenting propagation curves.

II. DERIVATION OF EQUATIONS

The waveguide considered here consists of a rectangular core of
dielectric constant, ¢, surrounded by an infinite medium of dielectric
constant, . Both media are assumed to be isotropic, and have the
permeability of free space, uo. Figure 2 shows the coordinate systems
(rectangular and eylindrical) and rod dimension used in this paper.
The direction of propagation is in the +z direction (towards the
observer). ’

In cylindrical coordinates the field solutions of Maxwell’s equations
take the form of Bessel functions and modified Bessel functions mul-
tiplied by trigometric functions, and their derivatives. In order for
propagation to take place in the z direction, the field solutions must
be Bessel functions in the core and modified Bessel functions outside.
Since Bessel functions of the second kind have a pole at the origin
and modified Bessel functions of the first kind a pole at infinity, the
radial variation of the fields is assumed to be a sum of Bessel fune-
tions of the first kind and their derivatives inside the core and a sum
of modified Bessel functions and their derivatives outside the core.

In cylindrical coordinates, the z components of the electric and
magnetic fields are given by
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E, = i a.J.(hr) sin (nf + ¢,) exp [i(k.z — wi)] (1a)
and
H, = i b (hr) sin (n6 + ¢,) exp [i(k,z — wi)] (1b)

ingide the core, and by

Ew= 3 c.K.(pr)sin (0 + ¢,) exp [i(kiz — wi)] (10)
and
Ho = 3 d.K.pr) sin @0 + ¥) exp [k — of)]  (1d)

outside the core, where w is the radian frequency and k, the longitudinal
propagation constant. The transverse propagation constants are given
by

h=(k — k) (2a)
and

p = (k — ko)* (2b)

where &, = w(uoe,)? and ky = w(uoeo)}. The terms J, and K, are the nth
order Bessel functions and modified Bessel functions, respectively, and
¥, and ¢, are arbitrary phase angles.

The transverse components of the fields are given by?

_ ik, [3E, (M) ﬂ]
E=p_ k: [ ar T knx/ 06y (3a)
€o
Y
€ /”Ji\/ ?
=T % b !
¥ R ?
|
¥
e ——— —— — [ ——

Fig. 2 — Dimensions and coordinate system,
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_ ik, [10B, (qu) ﬁ}
B, = K -k [r a0 k./ or (3b)
_ ik, _( k? ) JE, gg]
H. = B -k [ wowk,r/ 96 + or @3c)
ik k* \oE. , 14H,
Hy = o —3 [(MA;) ar T r o0 ] ' (3d)

where & ean be either k4 or k.
Finally, the component of the electric field tangent to the rectang-
ular core is given by

E, = +(E,sin 6 + E, cos 6) —0. < 0 <86 (4a)
r—0.<0<7mT+ 0
or
E, = +(—FE, cos 0+ E;sinf), 6, <0<7—86, (4b)

r+ 6. < 86< —0.

where 6, is the angle which a radial line to the corner in the first
quadrant makes with the x axis. Similar expressions exist for the
tangential magnetic field.

2.1 Effects of Symmetry

Since the waveguide is symmetrical about the x axis the fields
must be either symmetric or antisymmetric about this axis. This is
true because the structure is invarient under 180° rotations and there-
fore the field patterns must be invarient under a 180° rotation, except
for sign. From this and the fact that d/08 appears in each of equations
(3), it is evident that two types of modes must exist, the first type
with ¢, = 0 and ¢, = »/2 and the second type with ¢, = /2 and
Yo = .

Similarly, the field functions must also be symmetric or anti-
symmetric about the y axis. Suppose, for example, E., exhibits a sinu-
soidal angular dependence about # = (E., is odd about the x axis).
Then, letting « = # — =/2, equation (1c) can be put in the form

-]

E,, = > c.K,(pr)(sin na cosnr/2 + cosna sin nr/2). (5)

n=0

For K to be purely symmetric about « = 0 (the y axis), all n must
be odd; for E.; to be antisymmetric about « = 0 all » must be even.
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Since similar results apply for cosinusoidal variation of E, about
6 = 0, and all other field functions as well, any given mode must
consist of either even harmoniecs or odd harmonies.

From the preceeding analysis it is evident that if the matching
points are selected symmetrically about both the x and y axes, then,
except possibly for sign, every point will have an equivalent point
in each quadrant. Therefore, the field matching need only be per-
formed in one quadrant. Thus, the use of the symmetry of the struc-
ture not only reduces the number of constants required to caleulate
the properties of a given mode by a factor of four, it also decreases
the number of points to achieve a given degree of accuracy by the
same factor.

2.2 Selection of Matching Points

As mentioned in Section 2.1, the matching point locations should be
symmetrical about the # and y axes. For the odd harmonic cases, the
points used to compute the results to be presented in Section ITI were
b, = (m — 1/2)r/2N; m = 1, --- , N, where N was the number of
space harmonics.

The choice of points for the even harmonic cases was more complicated
since simultaneous existence of an n» = 0 harmonie for both the TE and
TM circular modes is inconsistent with the waveguide symmetries.
Thus, if the maximum » for both the TE and TM solutions are equal,
the total number of coefficients to be found will be 4N — 2 rather than
4N as in the previous case.

The method of choosing points for the even harmonic modes used for
the computation of the results of Section IIT was to pick the points
for the field components with even symmetry about 8 = 0 to be 6,, =
(m — 1/2)x/2N;m = 1,2, --- , N, and for the field components with
odd symmetry about 8 = 0 to be 6, = (m — N — 1/2)x/2(N — 1);
m=N+1N+2 -+, (2N — 1) for cases with unity aspect ratio,
(a/b = 1), For aspect ratios other than unity, all points were chosen
aecording to the first formula, except that the first and last points for
the odd z component were omitted.

2.3 Formulation of Matrixz Elements

The coefficients of equation (1) were found by matching the tan-
gential electric and magnetic fields along the boundary of the wave-
guide core. Since each type of field consists of both longitudinal and
transverse components, four types of matching equations exist.

To facilitate computer analysis the matching equations were put in
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matrix form. The matching equations in matrix form for the longi-
tudinal field components are

"4 = E*°C (6a)
for the electric field and
H""B = H*"D (6b)
for the magnetic field. For the transverse fields the matrix matching
equations are given by
E™A + E'B = E°C + E™D (6c)
for the electric field and

H™A + H™B = H™C + H™D (6d)

for the magnetic field. The 4, B, C, and D matrices are N element
column matrices of the a,, b,, ¢,, and d, mode coefficients, respectively.
The elements of the m X n matrices E**, E*, H*”, H"?, E™, E"",
E™ E™ H™ H™, H" and H™ are given by

ekt = J8, (7a)
20 = K8, (7h)
hiE — JC, (7¢)
WP = KC, (7d)
emn = —k.(J'SR + JCT), (Te)
e = koZoJSR + J'CT), (7)
ems = k(K'SR + KCT), (7g)
e’? = —kZ (KSR + K'CT), (7h)
han = eko(JCR — J'ST)/Z, , (71)
hmn = —k.(J'CR — JST), ()]
RIS = —ko(KCR — K'ST)/Z, , (7k)
hIP = k(K'CR — K&T), (71)

where

Zo = (#u/én)%.

€ = €/€n,
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8 = sin (na,,,+¢)r[‘ o PO
C = cos (nb, + ¢) o =m/2
J = J.(hr,), K = K,.(pr.),
J' = Jihr,), K' = Ii",’!(p?",,.).
= .J;:Bgﬂflr,,,) . K — nI;nzgilrm) ‘
J,zﬁ%@’ Kr:g";(;_”ﬁ,
and
R = sin 6, 1 R = —cos 0, ]
T = cos 6, 8 <8é,, T = sin 0, 6> 6. .
rm = (a/2) cos B,,.J, Tm = (b/2) sin 9J

For 6 = 6., the boundary at the corner was assumed to be perpendicular
to the radial line connecting it to the origin, so for this case B = cos (6,
+ x/4), T = cos (8,, — =/4), and r, = (a® + b*)}/4.

2.4 Mode Designation

Unlike metallic waveguides, the field patterns of dielectric wave-
guides are sensitive to refractive index difference, wavelength, and
aspect ratio. This complicates the problem of finding a reasonably
descriptive mode designation scheme.

For rectangular metallic waveguides, the accepted approach is to
designate the modes as TE (or H) and TM (or E), and to specify
the number of field maxima in the x and y directions with a double
subsecript. When there is no variation the subseript 0 is used.

Since the rectangular dielectric waveguide modes are neither pure
TE nor pure TM, a different scheme must be used. The scheme adopted
is based on the fact that in the limit, for large aspect ratio, short wave-
length, and small refractive index difference, the transverse electric
field is primarily parallel to one of the transverse axes. Modes are
designated as EY, if in the limit their electric field is parallel to the y
axis and as E7,, if in the limit their electric field is parallel to the z axis.
The m and n subscript are used to designate the number of maxima
in the z and y directions, respectively.t

t This scheme agrees with that used by Marcatili in Ref. 6.
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2.5 Electric and Magnetic Field Function Differences

For a hollow metallic waveguide where pure TE and TM modes
can exist, it is evident from equation (3) that E, and Hy have similar
transverse variations as do Ey and H,, so that the impedance is in-
dependent of position. Furthermore, the transverse electric and mag-
netic fields are perpendicular and the power flow, Re {E X H*}, does
not change sign anywhere across the waveguide.

By examination of equation (3), it is clear that for the mixed modes
of the dielectric waveguide, the field functions are not similar and the
impedance is a function of position. In order for the transverse fields
E, and H, to be perpendicular,

E,'I{, = ErHr + EQHQ = O. (8)

Now, from equation (3)

ki — k* (0H,9E, , 1 0H, oE,

w5 TR ®
Thus, E, and H,; are not necessarily perpendicular. Finally, since the
transverse variations of E, and H; are not the same, the electric field
and magnetic field can change sign at different points, which results in
negative power flow.

Three special cases exist where the electric and magnetic fields, and
the impedance, have the same positional dependence, and where the
power flow does not change sign across the waveguide:

(7) in one of the regions if the propagation constant is approximately
equal to the bulk propagation constant of that region, that is, if k ~ k,
ork ~ ko,

(7%) everywhere in the limit for small refractive index difference,
since case ¢ will then hold in both regions, and

(72) everywhere for circular symmetry of both the structure and the
modes.

E,-H, =

2.6 Normalization

The arguments of the Bessel and modified Bessel functions are given
by hr = (k& — k2)¥ and pr = (k* — k2)*r, respectively. The first argu-
ment can be put in the form

hr = [k2 — K2 — p**r. (10)

t This unusual property has also been observed for helices.1® Presumably, if
loss were included there would be a radial component of power to feed the re-
verse flow, and the lossless case can be thought of as the limit of the lossy case.
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Letting
o =Gl =1, (1)
and
® = rho(n? — 1)}, (12)
where
n, = (ki/ko)* (13)
is the index of refraction of the core relative to the outer medium, gives
pr = PR (14)
and
hr = &1 — @9 (15)

The curves of the propagation constant given in Section III are
drawn in terms of ®* and ®, where
® = 2 — 1 (16)
Ao
and Ay = 2x/k, . Since ® is proportional to 1/(n* — 1)! and ® and ®
are proportional to (n® — 1)} the use of ®* and ® as plotting variables
eliminates the explicit dependence of the Bessel and modified Bessel
function arguments on the refractive indices of the media.
Examination of the matehing equations, equations (6), reveals that
¢, appears in the H™* term. However, since ¢, appears as a multiplicative
factor in H™, for sufficiently small values the normalized propagation
constant, ®°, is independent of ¢, .
The normalized propagation constant, ®*, has two additional prop-
erties which make its use convenient. First, its range of variation is on
the interval (0, 1). Second, for n, ~ 1,

: _kufke — 1
¢~ Aﬂ,- ' (17)

where An, = n, — 1; so for small n, , " is proportional to k, — ko . The
latter property is the reason that ®* rather than ® was used as a plotting
variable.

2.7 Method of Computation

2.7.1 Propagation Constant

Equation (6) yields 4N simultaneous homogeneous linear equations
for the a,, b,, c,, and d, for the odd modes and 4N-2 equations for
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the even modes, using the matching points previously deseribed. The
equations can be combined to form a single matrix equation

[QIT] =0, (18)
where

EY 0 —E" 0
o H*" 0 —H"
ETA ETR  _pTC _ gD
| gre ogre _pre _H-mj
and the column matrix

A

B .

c

D |

All of the quantities in the matrices [@] and [T'] are themselves ma-

trices as defined by equations (1), (6), and (7).
In order for a nontrivial solution to equation (18) to exist

Det [Q] = 0. (19)

The normalized propagation econstant, ®°, was found by substituting
test values into equation (19). First, values of ®° evenly distributed in
the interval (0, 1) were substituted to crudely locate the roots. Then,
Newton’s method was used to find the roots to the desired accuracy.’
Generally, one Newton approximation was used to find ®° for the prop-
agation eurves and about ten Newton’s approximations when ¢° was
to be used to calculate field plots.

Both the simple method of triangulation'? and the more complicated
Gauss pivotal condensation method' were used to evaluate the deter-
minant, the former for almost all cases and the latter for a few cases
when roundoff error was apparent because the value of the determinant
was not a smooth funection of @*. In all cases double precision arithmetic
was used. For five space harmonics, about 0.1 second of IBM 360/65
computing time was required for each value of ®* to evaluate the deter-
minant using the triangulation method.

Due to the wide dynamic range of the coefficients, steps had to be
taken to prevent underflow and overflow of the computer and to re-

(T] =
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duce the effects of roundoff. Multiplying a row or column of the ma-
trix by a finite constant is equivalent to multiplying the determinant
by that constant. Thus, any row or column of the determinant can be
multiplied by a positive function without shifting its zeroes.

A detailed theory giving the “best functions” ean be derived. How-
ever, since a “brute force” method was used, the more sophisticated
method, which was not used because it would have required a substan-
tial increase in the complexity of the program logic, is not discussed.
It was found that multiplying the Bessel function terms by h*d/|J, (hb) |
and the modified Bessel function terms by p2d/k.(pb), where d is
the average of the waveguide dimensions, kept the variation of the
terms “under control.” A further simplification was made by setting
Zo to unity, which does not shift the zeroes of the determinant be-
cause if the H; rows are multiplied by Z,, then if Z, appears in a
column, it will appear in a similar manner in every element of the
column.

2.7.2 Mode Configurations

The electric and magnetic fields were calculated for representative
cases from equation (3). To find the a,, b, c., and d, coefficients,
k, was first found from equation (19). Its value was then substituted
into equation (18). By setting one of the elements of the T column
matrix to unity, all of the other elements were then found by standard
matrix techniques.?®

Several approaches were used to obtain information that could
be used to derive the field patterns. These included computation of
the field components along radial cuts of the waveguide cross section,
computer generated isoclines giving the direction of the electric field,
and computer generated mode pictures.

The isoclines and pictures were drawn using a simulated Stromberg
Carlson SC-4020 cathode ray tube plotter, which is capable of gen-
erating points and lines on a 1024 X 1024 grid.! A single quadrant
was used for the isoclines and intensity picture since the results for
all quadrants are identical except for orientation. In general, the di-
mensions were scaled so that the long dimension of the rectangular
waveguide core extended over 80 percent of the displayed width. All
figures were plotted at the points (20m, 20n), where m and n take on
all integer values from 0 to 49.

Isocline drawings were made by drawing a line at each of the co-
ordinate points parallel to the electric field at that point (all lines

t An SC-4060 plotter was used to simulate the SC-4020 plotter to take advan-
tage of previously existing programs.
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had the same length). The isocline drawings were used as working
tools to derive the field line drawings in Section III.

In order to draw pictures of mode patterns, the power density was
calculated at each of the points to be plotted. The square root of the
power density was then normalized to the square root of the peak
power density and quantized into 21 levels. About each point in the
picture, a portion of the figure shown in Fig. 3 was then plotted,
starting at 1 and going to the point corresponding to the appropriate
quantized level (except at the points where the quantized power
was zero where no plotting was done). Since the size of the cathode
ray tube spot is approximately equal to the line spacing in the figure,
the plotted figures are filled in. Therefore, the light passed by these
figures is approximately equal to the power density to be represented.
For small index difference, since the power density is proportional to
the square of the transverse electric field, the dynamic range of the
pictures (in terms of the electric field) is 400.

Starting with the single quadrant pictures, complete pictures were
generated by making quadruple exposures of the microfilm. In general,
about 30 to 60 seconds of IBM 360/65 computing time were required
for each picture.

III. RESULTS OF COMPUTATION

This section gives the computed results. Section 3.1 discusses ac-
curacy. This is followed by a discussion of field plots and mode

|gl

I?l
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12 4 6 8 10 12 14 16 18 20

Fig. 3 — Intensity picture figure.
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TaBLE I—SamMpPLE Accuracy RESuLTs

2
Number of ¢

Harmonics Used —_— e —— —— —_—

a/b=1 a/b=2 a/b=3 a/b =4

3 0.714 0.811 0.820 0.828

4 0.713 0.811 0.820 0.819

5 0.715 0.808 0.819 0.813

6 0.714 0.808 0.822 0.820

7 0.715 0.808 0.820 0.813

b 0.715 0.807 0.820 0.814

9 0.715 0.807 0.823 0.815

Variation 0.29, 0.4% 0.4% 1.5%

pictures in Section 3.2. Finally, curves of the propagation constant for
a variety of conditions are presented in Section 3.3.

3.1 Accuracy

Numerous test runs were made in order to obtain an estimate of
the accuracy of the computed results. The results of several of these
runs are given in Table I for the first mode with ® = 2. The numbers
at the bottom of the table represent the total variation for a given aspect
ratio taken as a percentage of the full range possible (one).

For small aspect ratios, it is clear that the convergence is very rapid.
However, for larger aspect ratios the convergence is not as good. For
example, the variation for an aspect ratio of four is 1.5 percent (taken
as a percentage of the full range of variation). For this case, from the
table and from the limit for infinite aspect ratio'* which is an upper
bound for ®°, it appears the error is about 3 percent. This error is
achieved with a relatively small number of harmonics and can only
be improved by using a prohibitively large number of harmonics on a
computer which carries more significant digits than the one which was
available for this study. However, since solutions exist for an infinite
aspect ratio, the decrease in accuracy for the large aspect ratio of the
circular-harmonic method is not a serious problem.

Computations similar to those for Table I were performed to ob-
tain an estimate of the upper bound of the accuracy of the cases pre-
sented in Section 3.3. From these calculations, it is believed that all
of the data to be presented in the following sections is accurate to
1 percent, except for the results of calculations using even harmonics
for aspect ratios other than unity which are believed to be accurate
to better than 2 percent. In general, accuracy decreases as the mode
order increases, although not monotonically.
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The results of the cireular-harmonic analysis and of Marcatili’s
analysis agree.® In the regions where his method and the circular-
harmonic method are both theoretically valid, the agreement is well
within the tolerances given above. To avoid duplication, the reader is
directed to his curves for a comparison.

The effect of the number of harmonics used in the field patterns is of
some interest. This question has not been explored in great detail;
however, a few comparisons of intensity pictures for different numbers
of circular harmonies were made. In general, it was found that five
harmonics were sufficient to give a good representation of the modes
that this paper presents. An example of this is given in Fig. 4, comparing
the EY, mode intensity patterns for five and nine harmonies. For the
results which follow, five circular harmonics were used.

3.2 Mode Configurations

Figure 5 shows intensity pictures for the first six modes for unity
aspect ratio, ® = 3, and an index difference of 0.01. Figure 6 gives
similar data for an aspect ratio of two and 8 = 2. For both, the plots
are arranged in ascending order of cutoff frequency. All of the pictures
are for E, modes. These pictures are virtually indistinguishable from
the corresponding EZ, modes so both sets are not presented. In general,
for small index differences the E¥, and E%, can be considered to be
near duals, that is, to have identical field patterns except that the
electric and magnetic fields are interchanged.

The field distribution patterns for the modes of Figs. 5 and 6 are
more complicated than those for the rectangular metallic waveguide

Fig. 4 — Intensity for the EY, mode for a/b = 2, ® = 2, and An, = .01: (a) for
five harmonies and (b) for nine harmonics.
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Tig. 7— Field configuration of the EY, mode.

since they extend beyond the waveguide boundary and, in general, their
shape is dependent on waveguide parameters other than shape. The ET,
and EY, modes have the simplest field patterns. Figure 7 shows the elec-
tric and magnetic field orientations for the £}, mode. In this figure and
the following ones, there are heavy lines in the regions of high field inten-
sity and light lines in regions of low field intensity. Only E¥, modes are
shown since the E%,, modes can be obtained by interchanging the electric
and magnetic field vectors.

Figure 8 shows the field lines for the £%, and EY, modes for a large
aspect ratio. (For a/b — o the fields have the appearance of rectangular
metallic waveguide modes.) However, as the aspect ratio approaches
unity, the E¥, and Ej, modes and the E}, and E}, modes couple and
shift to the patterns shown in Fig. 9. Most of the change takes place
with the aspect ratio close to unity.

Figures 10, 11, and 12 show the field configurations for the E%, mode,
the E%, mode, and the F¥, mode, respectively. The field patterns of
these modes do not change drastically with the aspect ratios.

Figure 13a shows an intensity picture of the E%, mode and Figure

_E }!‘ {' } M _‘_—_‘}_:__: T

(a) (b)

Fig. 8—Field configurations for the (a) E%, and (b) EY, modes far from cutoff.
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Fig. 9 — Field conﬁgui:ations for the square (a) F¥%, and (b) EY, modes.

13b its field pattern for unity aspect ratio. The field pattern inside the
core is similar to a sum of the T'E,; and TE,, of metallic waveguide,
shown in Fig. 13c and d, respectively. Figure 13a demonstrates that the
circular-harmonic analysis can generate complex field patterns with
a relatively small number of harmonies.

Figures 14 and 15 show the variation of the intensity distribution with
® for the E¥, and E% modes, respectively. As one would expect, for
small values of ®* the radial extent of both modes increases very rapidly
as @ decreases. It is of significance, however, that most of the energy is
contained within the waveguide core, even for relatively small values
of ® and An. Thus, Mareatili’s assumption that very little energy
propagates in the region of the corners is valid over a wide range.

3.3 Propagation Curves

In all cases of computed propagation curves, the normalized wave-
guide height ®, as given in equation (11), is plotted on the horizontal

Fig. 10 — Field configuration of the E%, mode.
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b

Fig. 11 — Field configuration of the Ej, mode.

axis and the normalized propagation constant, ®*, given in equation (16),
along the vertical axis.

Figure 16 shows the case of vanishing index difference for an aspect
ratio of one. The first 16 modes are shown. For this case the following
six degenerate groups exist

v T
11 11

v z v £
Elﬂ ’ 12 rEEI IE21

'l r
31 » 13

B3 H
31 » 13
T v
22 22

v 'z v x
E32 ’ E23 ’ E?E !E23 .

In addition, the E¥ and the Ej, modes are almost degenerate except

Fig. 12 — Field configuration of the EY; mode.
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Fig. 13 — The E¥, mode for unity aspect ratio: (a) intensity, (b) field configura-
tion, (¢) T'Ejs, and (d) TEss.

near cutoff. The splitting of these modes can be accounted for by the
differences of the field patterns shown in Fig. 11 and 12. Since the Ej,
mode reversals occur along the direction of the electric field lines, the
electric field for this mode must have a larger longitudinal field com-
ponent than for the E}, mode.

All degeneracies, except the E%, — EI,,, are broken by a change
in the aspect ratio as demonstrated in Fig. 17, which is drawn for
the first 12 modes of a waveguide of aspect ratio 2. One interesting
feature of this curve is the mode crossing of the E%, and EY, modes.
Crossings of this type, which cannot oceur in metallic waveguides, are
possible because the field functions are frequency dependent. Qualita-
tively, it can be explained by noting that field reversals must take place
in the core, therefore constraining the central lobe of the E3; more than
any of the EY, mode lobes as cutoff is approached. Far from cutoff,
however, all fields are well constrained and the E}, mode has a larger
propagation constant than the EY, mode, as it does for the similar
metallic waveguide mode with an aspeet ratio of 2.

The effect of finite index difference on the modes can be observed by
comparing Fig. 16, which is computed for unity aspect ratio and a
vanishing index difference, with Fig. 18, which is computed for unity
aspect ratio and a 0.5 index difference. The curves for modes whose
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0.50,

0.81, (b) ®2 =

0.02.

Fig. 14 — Intensity pictures of the E¥, mode for (a) @2

and (c) ®2
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Fig. 16 — Propagation curves for the first 16 modes for unity aspect ratio and
An, — 0.

field lines reverse direction across the origin are no longer degenerate,
but those whose field lines do not reverse still are degenerate. For all
degeneracies to be split, there must exist a finite index difference as well
as an aspect ratio other than unity. Figure 19 illustrates one such case.

The effect of index difference on the degenerate principal modes for
unity aspect ratio is examined in Fig. 20. The curve shows both a low
and high index difference limit. In the range of interest for optical

1.0
v e ES, E5~]
=1 EEI_"-\ | ——] _____\_,,.__._.—-—--'—
0.8 —t < \———
=B ] %é/
06 e /A - ‘EH £ |
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Vi ~Ezz4 Eaz

e

: // // ///<~ ~~Ea, EZ
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0 0.4 08 1.2 1.6 2.0 2.4 28 32 3.6 4.0
®

Fig. 17 — Propagation curves for the first 12 modes for a/b = 2 and An, — 0.
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Fig. 18 — Propagation curves for the first 16 modes for unity aspect ratio and
an, = 0.5

circuits (0 — 0.1) the vanishing difference curve is an excellent ap-
proximation. The greatest changes occur in the 0.1 — 10 range, which
is the range of interest for some microwave problems.

Figure 21 presents the computed results for the effect of index changes
on the principal modes for an aspect ratio of 2. The effect is much
stronger on the E}, mode than the E7, mode. In fact, the effect on the
E?, mode is comparatively small, except near cutoff.

The effect of aspect ratio on the principal modes is demonstrated for

1.0

I ex | ERL
T =
06 Ea 7// “’//yy %
N . | EX
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Fig. 19 — Propagation curves for the first 12 modes for a/b = 2 and An, = 0.5.
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Fig. 20 — EY, and E7, mode propagation curves for several values of An, with
unity aspect ratio.

vanishing index difference in Fig. 22. The curve for infinite aspect ratio
was obtained from the exact analysis of the slab case.'
IV. CONCLUSIONS

The results of the computations show that the circular harmonic
method for analyzing rectangular dielectric waveguides gives excel-
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Fig. 21 — EY, and Efl mode propagation curves for several values of An, with
a/b = 2. )
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Fig. 22 — E?, and E7, mode propagation curves for several values of a/b with
Any — 0.

lent results for waveguides of moderate aspect ratio. The convergence
of the computed results was rapid and the results are in agreement
with those of Marcatili’s in the regions where his approximations ap-
ply. Furthermore, the results eompare very well with Schlosser’s
curves for the principal mode.

Comparison of the results presented here with Mareatili’s show that
the two methods give values of the normalized propagation constant,
®*, which are within a few percent for @ > 0.5. Thus for @ in this
range his method is to be preferred since the caleulations required are
much simpler. However, for ®* < 0.5, and when it is desired to dif-
ferentiate between modes for some of the near degenerate cases, an-
other method must be used.

The cireular harmonic analysis is attractive for small @ because of
the nature of the matching boundary. For large refractive index dif-
ference and moderate ®* both the method presented here and the one
presented by Scholosser can be used.
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