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The direction-changing capability of electromagnetic waveguides may be
limited not only by mode conversion but also by radiation if the transverse
field extends indefinitely into a freely propagating region. This paper gives
new, more accurale expressions for the permitied bending radius with respect
to mode conversion, using coupled-wave theory to calegorize the wide variety
of transmission media possible. This paper also makes a suggestion for
estimating the permitted bending radius when radiation is a limitation. In
single-mode “open” waveguides that have transverse fields extending in-
definitely into a freely propagating region (such as a dielectric waveguide),
the permitted bending radius is limited by radiation effects, whereas in
either the open or completely shielded multimode waveguides, the permitted
bending radius is usually limited by mode conversion.

I. INTRODUCTION

It is useful to be able to characterize the direction-changing capa-
bility of electromagnetic waveguides without detailed knowledge of
the waveguiding structure. The first work in this area was reported
by Miller in 19641 A direction-determining parameter R, was
defined

a
a

4\
in which R, is a bend radius, a is the full transverse width of the
field distribution, and A is the wavelength in the medium in which the
waveguide is embedded.* For bend radii longer than R, Ref. 1 in-
dicates that wave propagation is virtually as in a straight guide; at
radii less than R.; something drastic happens. Just what changes

Rmin = (1)

* Notice that we have redefined a here; in Ref. 1 the full transverse width of
the field distribution was 2a.
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occur in a straight guide depends on the nature of the medium in
detail; for hollow conducting guides the change is large mode conver-
sion and for beam transmission in a sequence of infinitely wide lenses
the change is also mode conversion appearing as a wide oscillation
of the beam about the nominal axis of propagation.

Following similar lines of thought, a parameter

Q1>

@

6m ax

is given to describe the transition region between essentially normal
wave propagation and the region of drastic changes for abrupt angular’
changes in direction.! The only restriction on these order of magnitude
direction-determining parameters given in Ref. 1 is the exclusion of
degeneracy between the used mode and some other mode coupled by
the direction change. It is well known that such a degeneracy results
in complete loss of signal for certain lengths of bent guide regardless
of the bending radius, and that removal of the degeneracy by dis-
sipative or reactive means can in principle make the bend loss as
small as desired.**

In recent studies of bend losses in dielectric waveguides, Mareatili
found a serious disagreement hetween the implications of equation
(1) and the bend losses predicted by analysis of the particular wave-
guiding structure.® For an “open” waveguide—that is, one in which
the transverse field decays exponentially in a transverse plane but ex-
tends to great distances—he found that the bend radius required for
tolerable losses was much larger than given by equation (1) and it
followed a different law with relation to @ and A when only one mode
could propagate.

Tt is now clear that two components of bend loss must be considered:
the dissipative loss (resulting from either radiation or coupling to a
high-loss undesired mode) for the normal mode of the bend region
characterized by an attenuation coefficient «,, and the mode conver-
sion loss P, for the straight-guide mode on entering and leaving the
curved region. If mode transformers were used at the ends of the
curved region (impractical for occasional bends in most transmission
situations), the mode conversion loss would be zero and any bend R
would be acceptable from that eriterion.

Equation (1) relates to the mode conversion loss; it fails to give a
correct estimate when dissipative loss is important. The permitted
bend radius B must be assessed with respect to dissipative loss as
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well as mode conversion loss; Section IT gives relations which make
this possible. Improved forms of equations (1) and (2) have also been
derived which explicitly relate the maximum conversion loss to the
bending radius for the generalized electromagnetic waveguide. The
added quantitative factor should provide greater usefulness since the
improved relations not only identify the transition region between
virtually straight-guide behavior and violent changes, but also give
detail about the transition. Section III gives these results and the
appendices give the derivations.

1I. RADTATION FROM CURVED OPEN WAVEGUIDES

Figure 1 shows a representation of an open waveguide. The shaded
wave-guiding region has an effective index of refraction larger than
that of the surrounding region, resulting in a transverse field distribu-
tion for the guided mode F(x) which decays exponentially but re-
mains finite. To derive a generalized expression for radiation loss as
a function of bending radius R, we visualize this as a two-dimensional
guide with an isotropic surrounding region capable of supporting a
free-space radiating wave. We note that at some transverse distance
x, the maintenance of a pure guided mode with equiphase fronts on

WAVEGUIDE
’

Fig. 1 — A two-dimensional open waveguide.
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radial planes requires energy propagating at the speed of light, and
for £ > z, a pure guided mode implies energy propagating at greater
than the velocity of light. This is true at some value of z, for any finite
bend radius R, since F(z) extends indefinitely in the z direction. We
postulate that the transverse field distribution F(x) is virtually the
same in the curved region as in a straight guide for large R. The frac-
tion of the energy in the guided mode at z > z, is assumed to be lost
to radiation; this loss is taken to occur in a longitudinal distance
equal to the collimated-beam length associated with the field F(z).
All these assumptions imply that any mode propagating along the
curved open guide radiates. This is indeed the case for the modes in
the curved dielectric guide analyzed in Ref. 5.

As developed in Appendix A, the attenuation coefficient for the
normal mode of the bend region is

18

% =9z 8, ®)
where
o= [ " P(a) da, @)
& = f_w F*(2) dz, (5)
gy _
Ac - 2}\3 1 (6)
z, = & blp 7)

k, = longitudinal phase constant for the guided mode,
k, = 2x/\, phase constant for a plane wave in the surrounding region,
and
a = effective width of the transverse field F(z).
Applying this formulation to a curved two-dimensional dielectric-
slab waveguide of width ¢ gives the following. From solutions of
Maxwell’s equations in a straight guide

F(z) = coskxz for —5 =z = % , (8)

12
2

(1.1t
F(x) = cos (I-G-’-E)e ——Q—-El-—“—-z—)

1
9 for leég (9)
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The resulting expressions for 2. , & , and &1 are

;
\ (icxt) _Q(x' - 5)
COoSs —

=5 cost (2 e (10)

& = f—) + ‘)i sin k.t + £ cos’ (k,;t) , (11)
[t + 2t cos (’%t)jl

2, = o . (12)

These expressions, when put into equation (3), yield a radiation at-
tenuation coefficient of the form*

a, = ¢, exp (—c;R), (13)

where ¢; and ¢, are independent of R. As Table I illustrates, in several
cases of interest ¢; and ca are very large numbers (calculated for A
= 0.6328 ym). Case 1 corresponds to a thin glass sheet surrounded by
air; cases 2 and 3 correspond to 1 percent and 0.1 percent index dif-
ferences between the guide and the surrounding region, a possible
guide of interest for miniature laser-beam ecircuitry.® Because ¢; and
c. are so large, reasonable values of «, occur only within a narrow
range of bend radius R. Figure 2 illustrates «, versus R for case 2. We
can define a transition radius R, as that value of B which gives o =
1 neper per meter:

R, = ;— log ¢ (14)

2

in which ¢, and ¢, are the constants of equation (13) found by evaluat-
ing equation (3). Because of the exponential nature of «, versus R,
radii smaller than R, give excessive losses and radii slightly larger
than R: give negligibly small losses. We may therefore use R, as an
index of this transition for radiation losses analogous to the Ry, of
equation (1) for mode conversion losses.

Notice the size of z,, the transverse distance to where wave propaga-
tion at the velocity of light is required. For cases 1, 2, and 3, z, has
the values 1.0, 3.9, and 16.5 pm, respectively, for o, = 1 neper per
meter. Wave propagation at the veloeity of light occurs quite close
to the center of the guide, well within the bending radius.

* This paper uses mks units in all formulas.
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TABLE I— VALUES FOR ¢, AND ¢,
Sur-
Waveguide Slab rounding
Case index of width ¢ index of c1 (nepers forar =1
refraction (um) refraction per meter) ¢z (meters—1) neper;/m
1 1.5 0.198 1.0 2.57 X 10° 3.47 X 108 4,25 ym
2 1.5 1.04 1.485 1.04 X 108 1.46 X 104 0.79 mm
3 1.5 1.18 1.4985 5.4 X 108 81.4 0.106 m

In Appendix A the results using equation (3) are compared with
the more exact values of «, obtained from Maxwell’s equations di-
rectly.® For a given o, equation (3) yields a value of R about 0.6
times that obtained from Ref. 5. Moreover, Ref. 5 shows that, as the
slab width ¢ increases, the radiation loss does not decline indefinitely;
the normal mode transverse field reshapes itself in the bend to in-
crease F (2) in the z, region. However, the mode conversion loss usually
becomes important at those values of ¢ and for incidental bends (that
is, without mode matching transformers) the mode conversion loss is
limiting rather than radiation loss.

Another approach, which yields an expression for the radiation loss
of the curved guide in terms of constants of the straight guide, consists

0.8 B \

0.6

0.4 T

\
\

Fig. 2— Radiation loss versus bend radius f01 a two-dimensional dlelectrlc
waveguide ; case 2 of Table I.
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of noticing that the boundary value problem, which ean be solved
exactly by matching the radial impedances at each interface, can also
be solved approximately if the radius of curvature R is so large that
the field components of the curved guide differ only slightly from
those in the straight guide.® Then, all the impedances can be replaced
by those of the straight guide except that on the external inter-
face of the bend which, according to Ref. 5, must be multipled by

kS
1+ 7 exp (—%R };;)

In this expression k., and k, are the propagation constants in the z
and z directions in the external medium of the straight guide. The
attenuation constant of the curved guide results

EE\ ok, .
a, = k,, exp (—%R _IE) k.. (15)
This expression should give greater aceuracy in general and does so in
the case of the slab waveguide used in this section. It also shows that
waveguides which present imaginary radial impedances have no radia-
tion loss.

1II. MODE CONVERSION LOSSES IN CURVED OPEN OR BOUNDED WAVEGUIDES

3.1 General Formulation of Tilt Relation

When a pure mode of a straight multimode waveguide enters and
leaves a curved region, it generally suffers mode conversion loss. Coup-
led-mode theory has been applied to ealculate these losses as a func-
tion of bend radius and to devise lower loss bend structures.**"® In
these previous contributions, direct solution of Maxwell’s equations is
used to find which of the straight-guide modes are coupled in the
bend, and for these important modes to find the transfer coupling
coefficients and the associated differences in propagation constants
which are needed in the coupled wave solution.

We present here a generalized use of coupled wave theory which
gives an improvement on equations (1) and (2) in predicting ap-
proximate values of tolerable bend radius without direct solution for
the transfer coupling coefficients or the phase constants. We do not
imply that this provides accuracy comparable to a direct solution.
It does yield an approximate answer to show where further work to
get more accuracy is of interest.
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The first approximation is used to derive the transfer coupling coef-
ficient from the self-coupling coefficient. Consider a tilt (illustrated in
Fig. 3) for a hollow metallic rectangular waveguide. The self-coupling
in the tilt from the incident mode to the same mode beyond the tilt,
of angle §, is®

w b 2 2
[L1GE + () Jew (52e) ae
0o Jo dx ay A, (16)
[ LG + G e
0 0 dx ay
in which A, is the guided wavelength along z.
The function F is the axial field component which, for hollow metal-
lic rectangular waveguides, is either sin =p x/w sin =g y/b for TM,,

modes or cos =pr/w cos wq y/b for TE,; modes.
For small tilt angles | ¢,, | is of the form

lc.. | =1 — A, (17)

where A < 1; A corresponds to the energy lost from the input mode at
the tilt, whether by reflection or transmission into a single or into
many modes. We now assume the incident mode to be well above cut-
off so that reflection effects are small; that is, w/A > 1 and preferably
w/Xx »> 1. We further assume that all the lost energy at the tilt goes
into a single undesired mode. For such a transfer

|C,,l=

lew | =@ =l DPr1—1%e " (18)

where c; is the transfer coupling coefficient. We then combine equa-
tions (17) and (18) to obtain the transfer coupling coefficient

lec| = 28)% (19)

Tig. 3 — Tilt in hollow metallic rectangular waveguide.
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and the fraction of the input power that is converted is

P, = 2A. (20)

Carrying out the integration of equation (16) for the rectangular
metallic waveguide, assuming dw/x. < 1, gives

2
ool

Appendix C shows that for the lowest order TE mode TE;o, B is
5.28. For other modes, B ranges between 5.28 and 1.28; we somewhat
arbitrarily select the geometric mean of these' values to approximate
P, for any mode. Then,

P, = 2.6(::“”)2, (22)
o = 1.61(;2’;") , 23)
5= O.GQ%(P.)*, (24)

which we have derived under the restrictions

w dw

N > 1, x < 1.

Equation (24) is an improved form of equation (2). It shows the approxi-
mate tilt angle permitted versus fractional power converted. Derived
for hollow metallic waveguide of width w, the ‘“field” width is also w
which is equivalent to a in equation (2); since we required the modes to
be far from cutoff, A, = \; however, we note that the converted power
P, is smaller in fact than indicated by using A, = X since the guided
wavelength A, is greater than \.

3.2 Formulation of Bend Coupling Coefficient

Using a limiting process, described in Section 2.3.2 of Ref. 10, the
tilt eonversion coefficient can be converted to a continuous bend con-
version coefficient. Consider a sequence of straight guide sections, each
of length I and connected making a tilt angle 8§ (Fig. 4). Let us as-
sume that a mode entering in this guide couples at each tilt mostly to
itself and lightly to one single spurious mode travelling in the for-
ward direction. The tilt amplitude coupling coefficient is given by
equation (23). The coupling per unit length is | ¢;/!|; letting [ and 8
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Fig. 4 — Waveguide bend made of a series of straight segments.

go to zero simultaneously in such a way that {/8 = R, the bend ampli-
tude coupling coefficient, cp is:

w
e | = 1.61 v (25)
3.3 Coupled Wave Interaction
We are now prepared to discuss the effect of bends in producing
mode conversion using coupled-wave theory. In this approach the
signal amplitude E; is related to the undesired mode amplitude E.
by the equations

B p o
& g, + kE, , (26)
dF
T[f = _rzEz + kEl ' (27)
in which
Ty, = & + 28, = propagation constant of signal wave,

T, = a» + 18, = propagation constant of undesired wave, and

k = transfer coupling coefficient.

These equations have been solved and the resulting wave interactions
discussed in many papers.®>*#11t Appendix B gives a few of the ex-
pressions relevant to this disscussion; we will draw from these. We
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assume a boundary condition, E; = 1.0 and E, = 0 at z = 0, through-
out. The effects of mode coupling depend importantly on (T; — Ta)
and k. In finding expressions which improve on equation (1) we break
the discussion of a generalized waveguide down into a series of cases
which are classified by the relation between the coupling coefficient k
and (P] - Pg).

3.4 Gradual Bends in Low-Loss Waveguides
We categorize the case of gradual bends in low-loss waveguides hy

| &* | < (8 — B2, (28)
(az - flz)z < (181 - 182)21 (29)
al L1, (30)

where L is the length of the bend.

This is the most likely case to be encountered in waveguides in-
tended for low-loss transmission. The special case of degeneracy, g, =
Bz, is treated in Section 3.6; degeneracy is not likely to occur ac-
cidentally since it is a very critical condition. Because 2 is very large
compared with « in typical cases, equation (29) can be satisfied with
relatively small changes from the degenerate condition, and the present
case can be considered achievable except under very special circum-
stances.

With small &'s, k is pure imaginary, k& = ic; a value such as given
by equation (25) applies. With equation (30) valid, the signal loss
oscillates along the bend between zero and a maximum value

To complete our derivation we need (8, — Bi), which should be the
difference between the phase constants of the modes coupled in the bend.
We have not determined in our generalized waveguide case just which
modes are coupled. We use as an approximation the rectangular metallic
waveguide case of Fig. 3, and calculate the AS for the pth and (p &= 1)
mode; again requiring the modes to be far from cutoff, we find
2p £ Dr A

28 = (8 — oy~ G2 DT D (32)
Combining equations (31), (32), and (25) with ¢ = | ¢x | and solving
for R yields
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4.1 w’
=

=@z @y ¥ .

For the p = 1 mode only, the (4) sign in (2p =+ 1) applies; but for

higher order modes either sign is applicable and the (—) sign will be

controlling. As a further rough approximation we may drop the ==1 term,

yielding

2.05 w'

B = ey

(34)

Equation (34) has the same general form as equation (1) but gives
added accuracy by showing the quantitative influence of mode index and
fractional conversion loss permitted.

3.5 Gradual Bends in Lossy Waveguides

Here we keep equations (28) and (29) but address the case where the
undesired mode coupled to has high loss over the length L of the bend:

al > 1. (35)

Now, the true situation is very complex. The coupling coefficient & is
complex and may have real and imaginary components that are equal.
Energy conservation between c,. and ¢, , which was implied by equation
(18), is not justified. Experience with helix waveguide for TE], waves
shows, however, that the modulus of the helix coupling coefficient is
comparable to that for a copper tube; therefore, we use equation (25)
for the | k& | and proceed as before.

As the result of equation (35) the oscillations in the conversion loss
are damped out and the conversion loss has the form of a simple ex-
ponential; that is, the normal mode of the eurved region is set up with an
attenuation coefficient (ap + ), where the extra loss resulting from the

bend is
kZ
@p = real [m] - (36)

Using equation (25) with | ez | = | k|, this becomes

421 (ap — a)w’
T @2px1” R
This resembles a radiation loss in that it grows with length L, whereas

in Section 3.4 the oscillatory loss peak was independent of L.
We can rearrange equation (37) to show the permitted bend radius R,

37)
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(again dropping the +1):

— LI
R — % l:(az = Q‘l):l % (38)

Here ap may be regarded as a design criterion selected to meet the
requirements of a particular use, analogous to P, above; as such ap
may be independent of A or may have some A dependency.

Expression (38) has a character markedly different from equation
(1). Since a2 and a; are dependent on guide size and wavelength the
a®/A* dependence given by equation (1) is not valid when coupling
takes place to a very lossy mode.

3.6 Bends in a Waveguide with Low-Loss Degenerate Coupled Modes

When the modes coupled in the bend are degenerate, whether by
design or misfortune, a far more stringent requirement on R develops.
In this case

By = B (39)

Because attenuation coefficients are small in many typical cases, it is
relatively easy to obtain coupling coefficients that are larger, that is,

les P> | e — o | (40)
Then the signal wave output of a bend of length L is
| E,| = | cos csL | (41)
or, using the value of equation (25) for cp,
1.61 wL)
cos (——?\z 7 ‘ (42)

The signal loss is infinite when the argument of the cosine is an odd
multiple of «/2, and the corresponding bend radius R., or bend length
L, are

|E: | =

R, = 1.(2)\10[; 43)
: for m =1, 3, 5.
L. =098 m2E (44)

w
For small fractional power losses P,, equation (42) may be approxi-
mated by the first term of the expansion; the resulting permitted
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bend radius is

1.61 wlL =
R = (_PTCFT (45)

When (8; — 82) is nonzero, the signal transmission oscillates between
unity and a minimum of

|El ]min = r/. N2 T (46)

which merges with equation (30) and the case considered in Section
34.

3.7 Bends in Waveguides with High-Loss Degenerate Coupled Modes

When the phase constants of the modes coupled in the bhend are
degenerate—that is, equation (37) holds—but the undesired mode is
very lossy

Jaz_al 12>>t('3 |2. (4:7)

Then Appendix B shows that we again have normal-mode propaga-
tion in the bend region (as in Section 3.5) with an attenuation con-
stant (e; + «p) where

2
Cg

ap = ——— (48)

Qg — Oy
Using equation (25), this yields a bend radius:
1.61 w
R = = 49
[an(@s — el A (49)
This corresponds to very long bend radii in order to have equation
(47) valid. Just as in equation (38), ap of equation (49) is a dis-
cretionary design parameter.

IV. COMPARISON WITH KENOWN DIRECT SOLUTIONS

The principal usefulness of the preceding approximate relations for
permissible tilt and bend radius is in new unstudied situations, where
direct solutions are not available. However, we compare here the ap-
proximations with known direct solutions in order to gauge the ac-
curacy to be expected.
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4.1 Tilt in o Sequence of Cylindrical Lenses: (Two-dimensional Problem)

The input mode is gaussian, its spot size is w,, and the transverse
field distribution is exp[— (z/w,)?]. The normalized power coupled to
other modes at the tilt (8§ € 1) is*?

el ey
[ f: exp [—2(1%) ] dz [ R

To compare this exact result with our approximate one, equation (22),
we must define the width a of the beam. Somewhat arbitrarily we
choose

(50)

a = 2w, ; (51)
thus 95 percent of the power is traveling within the width a.
Substituting this value in equation (50) we obtain

sa\’
P,=25 ~/ (52)

This compares to equation (21) withp = landw = a,

P, = 2.6(‘;—“)2- (53)

‘onsidering that equation (53) came from rectangular metallic wave-
guide and equation (52) from an open lens waveguide, the corre-
spondence seems excellent.

4.2 Tilt in a Cylindrical Metallic Waveguide Propagating TEj,

For TEj, at a tilt, important coupling is known to occur to three
modes:*'"°

Mode pair Tilt coupling coefficient
TES, — TE!, 0.585 f‘;{i (54)
TE!, — TES, 0.98 "’T‘S (55)
TE', — TM,, 0.58 “T" (56)

where @ is the diameter of the round guide and is the full width of
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the transverse field. This corresponds to equation (23) with w = a
and p = 2 (two extrema in the transverse field),

¢, = 1.61 95 (57)

In the real case, the converted power is the sum of three conversions
using the above three coupling coefficients; since the three components
vary with a different period versus A, or distance along the guide after
the tilt, the actual mode conversion is a complicated function.
We might take the root-sum-square combination of equations (54)
through (56) to compare with equation (57), leading to

TES ooy 22 1.65 “T'E (58)

The converted power loss is | ¢; |?, so we see that equation (57) gives
a correct order of magnitude indication, but it lacks significant de-
tail.

4.3 Bends in Cylindrical Metallic Waveguide Propagating TEj,

The above discussion for tilt coupling coefficient applies directly to
bend coupling coefficient in empty round guides, noting the interrela-
tion

lea | = %l- (59)
However, the maximum conversion loss in the bend is also controlled
by the quantity (8; — B2) as given in equation (31). For the three
important modes, the values are

Mode B — B

TEy — TE 3.6% (60)
0 0 A

TE(]‘[ - TE]Q 4:.4 ? (61)

TEq — TM, 0 (62)

where a is again the guide diameter. These are to be compared with
equation (32) withw = e andp = 2,

A
.

p (63)

‘Bl'—ﬂ2|=3-9
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The approximation (63) agrees well with the values for the TES, — TE],
and TE), — TEJ, from expressions (60) and (61). However expression
(62) shows that empty round guide has a degeneracy, which controls
its behavior.” The permitted bend radius is controlled by the TEj, —
TM], interaction. Exact theory shows the bend length to the first
extinction of signal is®

B

L, =2. s (64)

which is to be compared with equation (44) with w = e and m = 1,

L. = 098 1%- (65)

Here the agreement is again quite good. The permitted bend radius
for P, fractional power loss, from exact theory is

_ 058 aL
B=5N5 (66)

and the approximation from equation (43) is

1.61 oL
R = L (67)

In practical use of round guides for TE,, , however, the bare pipe is
modified to eliminate the degeneracy. Intentionally making the empty
guide elliptical is one way;’ it takes only 1.7 percent diameter difference
to make (8, — B2)® = 10(a; — a,)®, making the relations of Section 2.4
valid. A more symmetrical modification is to add a thin dielectric lining;
with a polyethelyne lining only 0.010 inches thick in a 2 inch inner
diameter guide, the (8, — B.) for TEj, — TM}, is about 60 percent of
that given above for TE], — TE},."”” This also yields (8, — £.)* >
(az — a,)° for all modes. Interestingly, exact theory shows that the
lining drops the TEj, — TE{, bend coupling coefficient by an order of
magnitude.'*'** Thus only two small mode conversions occur in the bend
of lined waveguide. Taking the simple sum of these conversion losses
yields, from this “‘exact’ treatment,

aﬁ

P, = 0.098 e (68)
The exact radius relation is then
31 a°
R=23La (69)

PN
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This is to be compared with equation (33) with w = aand p = 2,

1.02 a®-
R = @;F (70)

Considering the complexity of the true situation the estimate provided
by equation (70) is good.

4.4 Heliz Waveguide for TED,

The helix waveguide for TES, is a very special structure designed to
maximize the attenuation to the undesired modes.'*''* This waveguide
is unusual in presenting very large (@s — o). The bend coupling coeffi-
cients k of equations (26) and (27) are no longer pure imaginary as they
were in the simple metallic tube. For example, the complex nature of the
helix coupling coefficients are shown for comparison with those of a
metallic tube; we set &k = ¢’ + jc”’, as shown in Table II. The helix values
correspond to a longitudinal wall impedance of 196 ohms with a capaci-
tive angle of 5° both guides at A = 5.4 mm and a guide diameter of
5.08 cm.

The attenuation coefficient of the normal mode of the bend region is

w4+ 3 Real [(r—fr—)] (71)

where the summation represents the contributions of the three modes
above. Using the helix waveguide coupling values of Table ITI, the con-
version loss contributions are given in Table III. Note that the con-
tributions of the TE;, and TM;; modes are of opposite sign; experi-
ment agrees well with this theory.’® An approximate degeneracy exists
between TM;; and TE;. in the helix waveguide.

When such direct computations were made over a range of nu-
merical conditions in the 30 to 100 GHz region on helix waveguides
varying in diameter from 0.25 inch to 3 inches, it was found that the
mode conversion contribution to the bend-region normal-mode at-

TaBLE II—HELIX WAVEGUIDE CoOUPLING VALUES

Solid Metallic Tube Helix Waveguide

Mode 'R 'R 'R "R
TE 0 5.5 —0.16 6.86
TM1 0 5.46 —8.03 —-5.71
TE,. 0 9.21 —3.76 11.88
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TasLe 1II—CoxvErsioN Loss IN HELIX WAVEGUIDE

Rikn
B‘IDdB RBB] rl - r‘ll
TE 0.713
TMi, 8.79
TE;. —8.05
Y = 1.55
tenuation coefficient is approximately
aa
ap = 0.009 5577, 72
B RZAZ.T ( )

which yields a permitted bend relation from direct solution of the
helix problem:

0.095 a'®
k= (a;ji ?\1.35' (73)
The corresponding approximate relation from Section 3.5 is equation
(38) withw =aand p =2,

3
R = 0.52(9:—"3)i % (74)
ag A

To compare functional dependence on a and A, we need to know how
(@2 — ay)% [which is (a»)*] varies with @ and A in the helix wave-
guide. Unfortunately this is not readily available although it was
implicitly used in the work which yielded equation (72). However, a
single numerical point is known: at ¢ = 5.08 cm and A = 5.4 mm, a»
= 1.4 nepers per meter for TM,4, which will control the guide behavior
in equation (74). With these numbers equation (73) yields

_ L12

exaet — I 75
Ruans 2 (75)
whereas equation (74) yields
2.76 ;
Rnpprnx = (a”)?" (76)

The approximation is only off a factor of about two, which is re-
markable and may be fortuitous. We suggest that equations (38) and
(74) be considered provisional until proven or disproven by additional
work.
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4.5 Curved Beam Guide

Let us consider a curved beam guide made of a sequence of con-
focal lenses propagating the fundamental gaussian mode. The radius
of curvature R., the wavelength A, and the beam size w are found,
with the help of equation (50), to be related to the maximum power
conversion P, by

W)
= vy 7
As in a previous example, the width of the guide containing 95
per cent of the power in the wanted mode is @ = 2w,; therefore,
1.23 o’
R, = PPN (78)
This exact result compares with the approximate value from equation
(33) withw =aandp =1,
1.36 o’
R = PN (79)
Considering that the exact value relates to an open lens waveguide

and the approximate one relates to a hollow metallic rectangular wave-
guide, the agreement is excellent.

V. DISCUSSION AND CONCLUSION

The direction-changing capability of electromagnetic waveguides
may be limited by (2) radiation, if the guided field extends into an
open freely propagating region, and (#) mode conversion. Radiation is
the limitation for single-mode open guides that have transverse fields
extending indefinitely into a freely propagating region. An estimate of
permitted bending radius may be made by using equations (15) or (3)
and the knowledge of the field for the straight guide. For a straight
guide transverse field decaying exponentially [exp(—z/£)], the radia-
tion attenuation coefficient in a bend of radius R was found to be of the
form

‘ap = ¢, exp (—aR), (13)
where ¢; and ¢, are large constants. As a result, « is large for
1
R < =loge (14)
Cs

and small for R greater than that value.
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When the guide supports higher order modes, mode conversion loss
tends to be the controlling factor. In Section III formulas are devel-
oped for permissible bend radius R versus transverse field width a, the
guided wavelength A., and fractional power P, lost to other modes.
Numerous possible cases are treated, depending on the relation be-
tween the mode coupling coefficients k, the signal mode propagation
coefficient Ty = a; + 18, and the propagation coefficient of the mode
coupled to, in the bend Ty = a2 + iB2. A case which should be very
common is one of small or moderate losses and gradual bends:

| & | < (B — B2, (28)
(011 - lez)z < (Bl - .32)21 (29)
a, L K 1, (30)

where L is the length of the bend. Then an approximation for the bend
radius permitted is

4.1 a
E=@mznerr )
and for the permitted abrupt tilt angle §
- 3 A
5 =062 ((P) =, (24)

in which p is the number of extrema in the transverse field distribution.
Examples are given in Sections 4.1 through 4.4 which show that known
theory for several hollow metallic and open lens waveguides agree well
with these expressions.

One must use caution in applying these expressions to new wave-
guides where the modes coupled in the bend are not known and, more
importantly, where the phase constaut differences are not known. If
by design or misfortune a degeneracy exists between modes coupled
by the bend, 8; = B., a radically more severe restriction on bend E
oceurs. Sections 3.6 and 3.7 discuss this situation. However, since f’s
are large compared with typical o's, it usually is possible to avoid these
restrictive conditions and justify equations (28) and (29) by small
modifications of the guiding structure.

If the mode coupled to is very lossy, so that axL >> 1, equation (33)
does not hold. Section 3.5 and equation (38) relate to this case. We
cite one example in Section 5.4 which supports equation (38); but
more experience with coupling to lossy modes is needed.
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APPENDIX A

Supplement to Section IT

We note that the maintenance of equiphase differences on F (x) for
all , but on radial planes differing by Ay (Fig. 1), requires

kR Ap 2 k(R + ) Ap, (80)

where k, is the phase constant for a plane wave in the region surround-
ing the waveguide. For the equal sign in equation (80) a plane wave in
the z, region is traveling at the velocity of light and equation (80)
vields

2, = Ee =KD (81)

k,

The energy traveling at £ > z, is presumed lost to radiation, since to
remain guided would imply energy traveling at greater than the velocity
of light. The fraction of the total energy in the cross section at & > x,
is 8/8y, where & and &, are given by equations (4) and (5). How
rapidly, as a function of distance along the direction of propagation, does
energy flow out from the main energy packet to this region at z > z. ?
For a wave in an infinite uniform medium the energy remains collimated
for a distance

a’
- 2
z. . (82)

]

where a is the transverse field width and A, is the wavelength in that
medium. It may be expected that an approximate distance z. would be
required for energy to flow out from the guided field of the same width a.
Noting a power decay rate e °** & 1 — 2az, the fractional power loss
becomes

&; 5
=L — 9, 2 8
. .z, (83)
or
1 &
_ —_—— . 8
T %, &y (84)

Numerical Evaluations of a Specific Case

The potential usefulness of equation (3) is in estimating radiation
losses of curved open waveguides for which the straight-guide fields are
known, but for which a solution in the curved coordinate system is not
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known. Here we compare the results of using equation (3) with the results
of a direct solution, to obtain an indieation of the accuracy that might
be expected in other cases. The case is defined by equations (8) and (9),
which lead to equations (10), (11), and (12) for &, , &7, and z, .

We provide additional expressions needed in the numerical caleula-
tions: from known theory®?**

1

£
where k is the free space wave number, n, is the index of refraction of
the dielectric slab, and ny is in the index of the surrounding region.
The quantity k, may be obtained graphically as a function of ¢/4 and
is reproduced here in Fig. 5, from Ref. 5. The quantity A is the
value of ¢ at which the second propagating mode appears,

= [K*n: — nd) — K (85)

T A

A= 2 2z ™' (86)
kn? — nd)t 2} — n3)?
2.8
|
/—
2.4 —J/
/ ——‘-_-__—-
/ I
20— A ,"'"
i P
. _-
r,’
1.6 VA —
,/
Kga 7
s
1.2 7~ -
'3 |
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(4 |
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| |
/ | -
0.4 ‘; ! : E
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t kt
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Fig. 5 — Normalized transverse wave number k.2 versus normalized thickness
t/A for a two-dimensional dielectric waveguide. ——— fundamental mode
polarized perpendicular to the dielectric sheet and na = mflh; —————
fundamental mode polarized perpendicular to the sheet and m/ne — I < 1, or
fundamental mode polarized parallel to the sheet and na arbitrary.
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Also known are ®°

k2 = nik® — kI, (87)
K = nlk + si . (88)

and in the region of considerable interest where
k. < kn, , (89)

the approximations
1k
k; - knl - 2 k‘n. (90)
k. — kny =k, — k. = ko, — ng) — £ £2 ©1)
] 3 z [ 1 3, 2 knl

are valid. Using the above relations, one can calculate «,, given i, A,

74, and ng.

Table IV lists the principal parameters and a comparison with
more exact theory for several cases. In Table IV the first five columns
define the waveguide; ¢; and ¢, are values from equation (13), found
in turn by evaluating equations (3) through (7). The table also
lists the radiation attenuation coefficient «,, the estimate of the asso-
ciated bend radius R, the value of R from Ref. 5, and the ratio. The
estimate from equation (3) is consistently lower than the true re-
quired B (in the approximate ratio 0.6) for a wide range of index
differences (n; — ns) and bend radii B.

The table also lists the transverse distance z, at which the velocity
of light condition occurs. It is interesting that it is so close to the wave-
guide.

Additional support for the approximate calculation based on equa-
tion (3) comes from an additional case. It is readily verified from exact
theory that the case 1 condition, 7, = 1.5 and n3 = 1.0, yields different
radiation losses for the two polarizations of wave if the thickness ¢ is
fixed. However, if ¢ is adjusted to give the same external field decay
constant ¢ of equation (9), then the radiation losses are the same for
the two polarizations of wave.

APPENDIX B

Solutions of the Coupled-Wave Equations (26) and (27)

If one assumes that the coupling coefficient k in equation (26) and
(27) is pure imaginary, k = ic, one can express the fractional power
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P, converted out of the signal (that is case 1) mode as

[1 — (1—_:—}{5) ] exp [1‘(1 + '{—]2)502:|

exp [(a; — a»)2]

P.=1-

4
1 . IAUEE
+ 11+ 1+ xz}_* exp [—z(l + F) €z , (92)
where
2,
S\ = T, ©3)
and
11; = + iﬂ1 . (94)

In these formulas, T; and T, are the propagation constants of the
wanted and spurious modes, respectively; in general, they are complex
and their real parts, a; and as, are the attenuation constants; their
imaginary parts, 8; and 8., are the phase constants. We bear in mind
that k = ic has only been proven valid in lossless waveguides, and for
one case of coupling to a lossy mode (helix waveguide) k is complex.

Another useful expression is for the signal wave amplitude £, when
the coupling k is small compared with (I'; — TI';), or more specifically,

[4]02 | < (T, — Iy)* (95)
and
|k° | << | To(T, = T) | . (96)

Then we may write

Ei = exp (—P‘z){El - - rz)z] exp [_(r, = 1“2)]

+ 3 exp (T — I"z)z]}' 97)

k.
) (Fl - Pz)
The first term corresponds to the low-loss normal mode of the coupled
region, and the second term to the high-loss mode (we assume as > ;).

For Section 3.4, it is valid to take k = ic; equation (92) yields a con-
version loss of

2c 2 2 031 — 13223
P, = (m) sin [ ) ] (98)
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For Section 3.5 we use equation (97), keeping a complex k; note
that for aoL 3> 1, only the first term remains significant and the propa-
gation constant of the normal mode is

K
(T, — Ty)
This yields equation (36) for ax, the added attenuation resulting from
the bend.
For Section 3.7 we again use equation (97) ; the first term predomi-
nates with the assumption

T+ (99)

kﬂ
T — ) <1 (100)
and equation (99) yields equation (48).
For Section 3.6, the case of low-loss modes degenerately coupled,
equation (92) yields

N |2
P.>~1 — exp (@ — an)2] ‘ oS (cz + z) . (101)
It is also well known that the signal amplitude is given by*™
|E, | = |coscz|, (102)
the undesired mode amplitude by
| E,| = |sin cz | (103)
and the fractional conversion loss P, by
P, = sin® cz. (104)

APPENDIX C

Supplementary Information Concerning the
Derivation of Equation (22)

Carrying out the integration of equation (16) for the rectangular
metallic waveguide as outlined in Section 3.1 yields a conversion loss
resulting from the tilt of

P, = B(i“’) (105)

where
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e

The + or — sign corresponds to the TE,, or TM,, modes, respectively.

For the lowest order TE mode, p = 1 and ¢ = 0, B becomes 5.28.
For the TE or TM mode with p = 1 and ¢ = 1, B ranges from 5.28 to
1.28 as the dimensions of the guide vary between w € b and w > b.
The limits on B are 5.28 and 1.28 for any p or q. We somewhat arbi-
trarily chose a value (528 X 1.28)% = 2.6 to represent all modes
simultaneously.
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