Some Theory and Applications of
Periodically Coupled Waves
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Parallel-traveling waves can interact with complele power transfer even
though they have different phase constants, provided that the coupling is
periodic. This paper outlines some possible applications of this phenom-
enon, including mode transforming devices, frequency-selective fillers in the
microwave and laser wavelength regions, and parametric amplifiers or
converters. This paper also gives some coupled-wave equations for inter-
actions in a nonlinear medium and a generalization of the Tien conditions
for parametric wave interaction.

I. INTRODUCTION

In a previous paper it was shown that two parallel-traveling coupled
waves can interact with complete power interchange even though they
have different phase constants.! This is accomplished by introducing
a variation in coupling in the direction of wave propagation. The ideal
coupling variation is a pure phase variation whose period exactly
matches the beat period between the uncoupled waves, however, it
was also shown in that paper that a simple periodic magnitude varia-
tion of the coupling can also yield complete power interchange between
waves having different phase constants.

In this paper we outline some of the possible applications of periodic
coupling. Complete power exchange between two modes of a single
hollow metallic waveguide is illustrated. In two dielectric or hollow
metallic waveguides, or in a combination of them, complete power
exchange (or a desired fractional exchange) can be arranged. Fre-
quency selective filters in the above structures can be obtained or
hroadband interactions can be chosen by suitable design. The periodic
coupling phenomenon can be applied in lumped element parametric
devices by modulating the pump waveform periodically; we give the
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resulting conditions that the signal frequency, idler frequency, pump
frequency, and modulation frequency must fulfill.

Finally, in distributed parametric devices the periodic coupling
principle can be used to advantage; spatial variation of the coupling
gives a modified phase-matching relation that may render useful
long lengths (with guided waves or unguided waves) of materials not
useful with previous veetorial phase matching relations; time modula-
tion of the pump introduces new frequency relations of possible use
in modulators or frequenecy translators. The frequency range in which
such applications may be useful extends from the laser region to the
lowest frequency at which distributed coupled-wave interactions are
convenient.

Section II presents some theory needed to understand the device
illustrations. In Appendices A and B and in the discussion of para-
metric devices, we develop some coupled-wave equations to facilitate
analysis of nonlinear circuits with generalized time- and space- de-
pendent couplings. This paper is a survey of potential applications
and is intended as a stimulus for further work. Complete design
relations and experimental verification are not included.

II. GENERAL THEORY

We deal with devices or situations in which two waves of amplitude
E, and E, are coupled according to

d 3
EEI(Z) = —vE, 4+ en(2)E, 1)

dizEz(z) = —v.E, + ¢,())E, (2)

in which v, and v, are the complex propagation constants and ¢,, and ¢,,
are coupling functions. In a previous paper we showed that the coupling
distributions summarized in Table I lead to wave interactions virtually
the same as those which are familiar for ¢;, and ¢, independent of z,
provided that transformations for coupling magnitude c, and differential
phase constant AS, are appropriately defined. For £, = 1.0 and E, = 0
at z = 0 the solutions for equations (1) and (2) are

E,(z) = exp (—v:2)[A4 exp (r:z) + B exp (r:2)] (3)

B = %\}1—’ [oxp () — exp (rs2)] @
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In Table I we define the quantities c, and AB, ; M. is the wavelength of
the coupling variation as defined in the second column of Table I.

In Table I, type 1 coupling is the familiar uniform coupling, inde-
pendent of z. For negligible attenuation and for A8 = 0 the wave energy
is exchanged cyclically between the two waves according to

E, = cos (c2) (10)
E, = isin (c2); (11)

Il

and for other values of Ay limited wave interactions occur. This has been
described previously.?

In Table I, type 2 coupling corresponds to the exact transformations
given for ¢, and AB, ; the other type couplings correspond to the
approximate values given for ¢, and AB, . For coupling types 1 and 2,
equations (3) and (4) give exactly the coupled-wave amplitudes; for
coupling types 3 and 4, equations (3) and (4) give the coupled wave
amplitudes exactly at z equal to a multiple of ,./2, and may be in error
by no more than about 0.2¢),./= at other values of z. The error may be
slightly larger for coupling type 5, but is negligible for small ¢}, .

Figure 1 shows the initial buildup of the wave amplitude E. for
coupling types 4 and 5. At z = A,/2 further extension of uniform
coupling would result in added components to E; at such a phase as
to diminish E,. By reversing the sign of the type 4 coupling, the added
components in the region 0.5 A, < 2z < A, cause an increase in Es. By
reducing the magnitude of the type 5 coupling to zero at A, = 0.5, no
components are added to E, in the region 0.5 Ay < 2 < M. At 2 = A,
the cycle repeats. In this way the amplitude variation in coupling
versus z causes an average in-phase transfer of energy. The same be-
havior exists for an arbitrary amplitude variation of coupling ¢(z) ; the
fundamental Fourier component may be taken as the type 3 coupling
and the resulting wave interaction calculated. The result is accurate
provided that ¢,A,, < 1, where ¢, is the peak of the coupling waveform.

III. FREQUENCY SENSITIVITY

In many coupled-wave devices the objective is to transfer all of the
power from one wave to the other, and frequency sensitivity may be
desirable (as in channel-selecting filters of a communication system)
or may be undesirable. We show the magnitude of this frequency
sensitivity.

Consider first two dielectric waveguides where most of the energy
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travels in the central dielectrics designated n, and n. (indexes of
refraction) in Fig. 2. Periodic coupling is induced by the dielectric
sheets labeled ng, corresponding to type 5 coupling in Table I. Then,

approximately
2
AB = ~ (n, — n,) (12)
in which A is free space wavelength. We assume the complete transfer
condition, which is
c,L = g (13)
with L being the length of the coupling region. Also let
L = N\, (14)
with
2r
A AB. (15)

and AB, defined as A8 at the midband frequency f = f, . Now AB, as a
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Tig. 1 — Transferred wave amplitude E; versus length of coupling region for

type 4 and type 5 coupling (see Table ),
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function of frequency is

AB,(f) = AB(f) — AB(f.). (16)
Expressing the frequency as a deviation from f,
f=0+0f, (17)
we find
28, = B2, = o) (18)

with A, equal to X at f = J, . Using equations (18), (13), and (14) and
assuming the typical case of negligible dependence of ¢, on frequency,
we find

——Ai*(” — 45N, (19)

*

This ratio uniquely determines the frequency sensitivity of the wave

interaction, according to
2 ]
sin {[(Qf—*) + 11 c*L} (20)

E. | = *AB%“—_
[(zc’:) M 11

\2
o
%'&

Fig. 2— Dielectric waveguides (having indices of refraction ni and ns) with
periodie coupling.
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Fig. 3 — Transferred wave amplitude E; versus Ag, /e, the frequency dependent
parameters, for ¢, L = =/2.

which follows from equation (4) with Ae = 0. With complete transfer
conditions ¢, L, = =/2 and with A,, chosen to make A8, = Oatf = {,,
equation (20) becomes unity at f = f, and falls off as AB,(f) differs from
zero, that is, as 6§ differs from zero in equation (17). Figure 3 shows E,
versus AB,/c, for ¢, L = w/2; values for this graph can be calculated
from equation (20). Using these results and equation (19) we find the
bandwidth properties of the periodically coupled wave interaction on
dielectric waveguides. A few examples are listed in Table II. The first
three rows illustrate broadband coupling; as long as N (the number of
coupling periods in the total coupling length L) is five or less, very little
variation from the complete transfer condition ocecurs. The fourth row
illustrates that intentional frequency selectivity can be induced by using
a large N; the 0.2 percent band at N = 865 yields A8, /c, = 3.46, the
location of the first null in Fig. 3. Structures analogous to Fig. 2 but
actually fabricated in a solid sheet continuum are under consideration
for laser beam circuitry. If a 20& bandwidth to the first nulls is desired

t For AB_ /e, < 2,20 lOgm 1 E, | ~ —1.1 |Aﬂ /e i’ dB.
%/ Tk */ Tk
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TaBLE II — BANDWIDTH PROPERTIES OF PERIODICALLY
CoUuPLED WAVES oN DIELECTRIC WAVEGUIDES

Percentage 20 log | E4|
Bandwidth Band Edge Loss
(2003) N - (dB)
10 1 —0.04
10 3 —0.36
10 5 -1.1
0.2 865 — @

at 10,0004 midband and if (n, — n,) = 0.1, we find A,, = 10 um and the
coupling length L = 8.65 mm. Frequency selectivity obtained in this way
does not require low heat loss in the circuit; as long as the two waves
have the same attenuation coefficient, loss does not limit the filter
selectivity.

For waves in an infinite medium or in other types of waveguides,
equation (20) remains valid but relations other than (19) must be found
to describe the way AB,/c, varies with frequency. For waves in hollow
metallic tubes the results are very similar to those for waves on dielectric
rods. We show this with two illustrative examples as follows.

In any hollow metallic waveguide the phase constant of a mode is
given by

B =270 — (21)
where

A = free space wavelength,

fe/t;

w =
f. = cutoff frequency for the particular mode, and
f = operating frequency.

By defining A, = Mat f = [,
o = pforwavelatf = f,
w = pforwavel at f = f,(1 + 8);

and using similar definitions (not written out) for wave number 2, we find

88,) = 88() — 86(.)
=2+ a0 - W)~ @ - )Y
— 200 — ) — (1 - 22)

To develop a physécal model, we take parameters typical of a 24,000
MHz TEY — TE,, transducer similar to one deseribed in connection
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with Fig. 42 of Ref. 2. We keep the same coupling length L = 0.417 m
for complete transfer of power, corresponding to ¢, = 3.76 m™'. We
arbitrarily choose to explore the bandwidth when \,, = L/3 = 0.139 m.
We keep the same rectangular guide width, 0.340 inches, which at
fo = 24,000 MHz gives u,, = 0.723. This determines that u,, = 0.625;
there is a round guide diameter of 0.96 inches (optionally a particular u,,
larger than 0.723 could have been selected to give the same | A2(f,) |
and )\,). We can now calculate AB,(f)/c, from equation (22), neglecting
variations in ¢, for this estimate. For a 10 percent frequency band,
that is, 6 = 0.05, we find AB, /c, = 1.01 and the loss 20 log,, E, = 1.1dB.
The case, N = L/\, = 3, thus yields a result very similar to that
obtained for dielectrically guided waves using equations (19) and (20)
and shows broadband interaction capability for waves in guided tubes
provided N is not too large. Sections V and VI discuss some factors which
may motivate one to use periodic coupling instead of constant coupling.

Consider a second example in hollow metallic guides to illustrate
intentional frequency selectivity. Assume we need a filter with center
frequency f = 50 GHz and a 3 dB bandwidth of 1000 MHz. Then
8 = 0.01 and from equation (20) or Fig. 3 we find (AB,/c,) = 1.6. We
keep one wave at u,, = 0.723 as before and choose gy = 0.91. We can
caleulate AB, from these choices using equation (22) which yields
AB, = 8.95m™" at f = 1.01f, . At this frequency we need (A8, /c,) = 1.6,
80 ¢, needs to be 5.58 m™' and complete transfer at f, (that is, ¢, I =
7/2), requires L = 0.28 m. These are reasonable values physically;
Section IV illustrates possible coupling and waveguide cross-sectional
geometries. We now note that N = L/\,, for this ease is 12.7. The same
values of §(0.01) and N (12.7) for a dielectrically guided wave pair yield
from equation (19) AB,/c, = 5.1, indicating somewhat more selectivity
in the dielectrically guided waves than in the hollow-tube guided waves,
for the same number of coupling periods N.

1IV. STRUCTURES FOR PASSIVE WAVE INTERACTIONS

We describe a few structures in which guided waves may be coupled
periodically. The general diagram is given in Fig. 4. Most typically
there is no input to wave 2 in this discussion although the transforma-
tions of Table I and equations (1) and (2) may be used to treat gen-
eral inputs to the periodically coupled region. In some ecases the two
waves occupy the same space as discrete modes of a single structure.
In other cases separate guiding structures for the two waves are
provided.

In Ref. 1 a structure is described for hollow metallic waveguide
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WAVE NO. | WAVE NO. |
IN L > ouT

WAVE NO. 2 WAVE NO. 2
IN I— > ouT

Fig. 4 — Two coupled waves; the dimension for the coupling region may be
distance or time.

TES — il"E:1 coupling which closely approximates type 2 coupling and
yields the simple transformation for A, of Table I without ‘harmonic”
transformations for AB, . The harmonic transformations, discussed
fully in Ref. 1, are characteristic of square-wave or sinusoidal coupling
patterns and may yield appreciable wave interactions when Ag, =
ABp/\,. with p an odd integer. The exponential type 2 coupling is thus
a desirable one. However, because the harmonic interactions are weaker
than the fundamental and may occur at greatly different frequencies,
the square-wave and sinusoidal couplings are useful.

Figure 2 shows two dielectric waveguides periodically coupled with
dielectric sheets yielding type 5 coupling of Table I. Its possible use as
a frequency selective filter has already been referred to. Figure 5 shows
the form it might take in laser circuitry where \, of 10 um could be
sought using photolithographic techniques; the substrate index =, is to
be less than », and n, .}

Figures 6 and 7 illustrate the way two modes of a single hollow metallic
waveguide can be coupled periodically to achieve complete or partial

sz

Fig. 5 — Periodically coupled dielectric waveguides.
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Fig. 6 — Periodic coupling structure for waves in a hollow, rectangular, metallic
waveguide.

power interchange. In Fig. 6 the TE[, and TE}, modes are coupled by
the dielectric sheet. The fields of these modes in a transverse plane are
sketched in Fig. 8; a thin dielectric sheet introduces maximum coupling
at a distance d = 0.392a, where the produect of the two fields is a maxi-
mum. The coupling between the modes is reversed by moving the sheet
to the opposite side of the guide centerline, as in section B — B’ of
Flg 6. A sumllar maximum coupling position can be found for the
TE“ — f.'i."E,]1 coupling, the fields for which are sketched in Fig. 9;

I _‘:::t:::_i‘::_:1'_‘_‘_‘_‘ S

A‘-J N j B' N l Cle D'
aui - anine o
. ---- FOAM SUPPORT--—___
jl’ --------- DIELECTRIC SHEET——————-_:"-
SECTIONS A=A, C-C/, SECTIONS B-B) D-D;
AND SO ON AND SO ON

Fig. 7— Periodic coupling structure for waves in a hollow, round, metallic
waveguide.
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Fig. 8 — Transverse field distributions for TE,(9 and TE,,".

Fig. 7 shows the structural form of coupler. In both Figs. 6 and 7 the
length A,./2 is that at which the coupled modes develop = radians phase
difference. This length is near that for = radians phase difference in an
empty guide, which for Fig. 7 is approximately one diameter. (Specif-
ically, in a % 1nch—1ns1de diameter guide at 54 GHz the half-beat wave-
length for TE'11 TEm is about % inch.) Structures of the type in Flgs
6 and 7 provide mode transformation without complicated and expensive
shaping of the metallic walls.

Figures 10 and 11, which show the transverse cross sections of the
guides, illustrate coupling between modes of dlfferent hoIlow metallic
waveguides. Although TEL, — TE,,, and TE01 TE,J1 couplings are
indicated, any mode pair havmg common field components at the
coupling aperture may be used. Figure 12 illustrates the type 5 coupling
distribution, simulated by a series of discrete point couplings which
should be spaced no more than about one-third guide wavelength.
Either broadband power interchange or intentional frequency selectivity
may be obtained.

TER

/!\\\\ _TES,

Fig. 9 — Transverse electric field lines for TE,,° and TE,°.
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Fig. 10 — Transverse cross section for TE; 8 — TE,° coupling in hollow metallic
waveguides.

V. LUMPED-ELEMENT PARAMETRIC DEVICES

Periodic coupling can be applied to lumped-element parametric de-
vices; Figure 13 is a simplified version. The box labelled o, is a filter
presenting a short circuit at »; and an open circuit at other frequencies;
the filter box labelled ws has similar characteristics

We assume a general time-varying capacitor
e(t) = € + C,1) (23)
in which @, is a constant. Appendix A shows that the normalized

amplitudes representing the voltages and currents in the two resonant
circuits can be deseribed by the coupled-wave equations:

B e G- A e
B et + 2 (T [OgR -Gdll e
o jnat + (G [ -Gl @

Fig. 11 — Transverse cross section for TE.,© — TEy,© coupling in hollow metallic
waveguides.
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00000 00000 00000

Fig. 12 — Section A-A’ for Figs. 10 and 11.

For €, = 0 the solutions to equations (24) through (27) are of the form

a, = A, exp (jw,t) (28)
af = Af exp (—jwt) (29)
a, = A, exp (jwyl) (30)
af = AF exp (—jwd). (81)

We now specify a periodieally varying capacitance component
€, = AC cos (w,t + o) cos w,.t (32)

and we proceed to determine the coupling coefficients in equations (24)
through (27) and to deduce the frequency interrelations governing the
parametric interaction.

In equation (24) only the frequencies of the term in d( )/dt at w,
result in large coupled-wave interaction; similarly in equations (25)
through (27) only frequencies near —w, are important. Moreover, in
equation (24) the term in (@, — a*) is a reaction of circuit 1 upon itself,
which for small coupling is negligible; we drop terms of that type. With
these eriteria for selection of important terms we find that putting
equation (32) in equations (24) through (27) leads to the following as the
only significant wave interaction

I, Iz
— ——

Ly VIT == G Cit) Ca —= TVZ Lz

)
t——

Fig. 13 — Lumped element parametric circuit.
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da, _ . -~ A€ d
dit ~ M T gle, e, dt

(a¥{exp [jlw,t + w.l + )] + exp [jlw,d — w.t + ¢)]}) (33)
def ., Ac d
dt % T ogle et di

(@, {exp [jlwt — wpt — )] + exp [j(—wt — wy — 9)]}). (34)

Noting that dA%/di < (w, & «.) in our loose coupling approximation
[A% defined as in equation (31)] and similarly for dA,/dt, we find
equations (33) and (34) reduce to

% =j 1@ + szla-‘? exp [j(‘-l’p + Wr”] + (31'_’251'?= exp [j(wp - wr)l] (35)
o = ot oy = wn + w) (36)
_—AcepGe) .
Ci22 = 8[6“822]* ](CIJ,, wa "‘Jr) (37)
daf _ w.a¥ + ; + w )t K
T = Jwa @z €212, eXp [j(—w, + w)t] + c2pya, exp [j(—w, — w.)t]
(38)
—AC — o) .
Conn = —(g#ngpjﬂ (—w, — w. + w) (39)
—AC — o) .
cm=‘jﬁﬁgﬁmﬂﬂw+m+ml (40)
Note that
e = ), (a1)
C;‘u = E:ﬂ_%% Ciay - (“1’2)

Using relations (28) and (31) for a, and a% , equations (35) and (38)
reduce to

dA,
dt

= ¢ AF exp [jw, + 0, — w, — ws)i]

+ 1 A¥ exp [jlw, — w, — w;, — wy)i] (43)
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dA¥
dt

= 4, exp [j(—w, — w. + @, + w)i]

+ €124, exp [j(_w:z + w, + o, + w)i]. (44)

For simple exponential buildup of A, and A% there are two possible
frequency relations; one is

w; —I—- wy = (_gp + we (45)
which reduces equations (43) and (44) to
% = CI2IA2* -+ ClzzA'? exp (—j?w,_t) (46)
dA¥ )
dtz = ¢ Ay + €224, exp (j2w.1). (47)

Here the c;0; — ca1; terms are important; the other terms give a small
cyclical variation on the exponential buildup.
The other important frequency relation is

W+ w = Wy — W, (48)
which reduces equations (43) and (44) to
A2 — 0, AF oxp (120.0) + Al (49)
%
d_;;itl = ¢4, exp (—720.t) + €224, . (50)

Here the ¢100 — €910 terms are important; the other terms give a small
eyelical variation on the exponential buildup.

Thus the effect of periodically varying the coupling in the lumped
parametric circuit is to modify the frequency-relation requirement to
equations (45) and (48). The result is eminently reasonable and per-
haps superficially obvious. We can see this as follows: equation (32)
can be rewritten

e, = A—ze {eos [(w, + w)t + ¢] + cos [(«w, — w)l + ¢]}.

Suppose we assume a @, of

Ae
2

Then the previously known frequency condition for strong interac-

e, = cos [(w, + w)t + ¢].
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tion is*

W+ ow = w, + o
If instead we have

e, = % cos [.(wp — w)l + ¢].

then the frequency condition for strong interaction is
w1+w2=wp_wc'

If we then assume linear superposition (unjustified in the nonlinear
process) we could expect relations (45) and (48) for €, of equation (32).
The above analysis and associated discussion indicate the restrictions
which must be met to achieve the desired result.

The periodie coupling variation need not be cosinusoidal as in (32).
Instead, square wave or even low duty cyecle pulse modulation of €,
again leads to equations (45) and (48), although care must be exercised
to assure that pulse modulation of the pump properly reproduces the
signal content in a parametric amplifier.

VI. DISTRIBUTED PARAMETRIC WAVE INTERACTIONS

Coupling in distributed parametric wave interactions can be periodic
in two ways: (¢) with respect to time at a particular point, and (i)
with respect to distance in the direction of propagation at a particular
instant of time. We derive the constraints on propagation constants
and on frequencies which result from such periodicity and then indi-
cate some physical structures in which these wave interactions may
prove useful.

Figure 14 shows a simplified model of a distributed transmission
medium. The distributed capacitance is nonlinear and is a function of
time as well as of the position z in the direction of propagation. A number
of waves of frequencies w, , w, , and », may propagate. The distributed
inductance L, is independent of current magnitude but may have

I 1T Tmfm I“‘T
G

Tig. 14 — Distributed parametrie cireuit.
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different values at different frequencies w, . In Appendix B the following
coupled wave equations are derived for the normalized amplitudes of
the traveling waves in Fig. 14

d : ! N Ve,,
L& = ke — [202] exp (— jw,t) e, N (51)
laf . I d V@
1 _ ot — 2l exp (jurp) 2V ) ) ) (52)
d . d Ve,,
s g, — 2L e (— oty 2V (53)
daf _ . . Eoz] ave,)
FT 182a, exp (jw,!) at s (54)
in which we define, at frequency w, ,
e(z’ t) = eon + ep(zs r) (55)
L, |
Zom = [ Ga,.:l (56)
Bu = @il L€l (57)

The time and space varying portion of €(z, t) is all contained within
@,(z, t), and @,, is dependent only on frequency.

Equations (51) through (54) may be used to explore the effects of any
periodic coupling behavior. Because the normalized amplitudes a, , a* ,
@, , and a*% are dependent on z only (according to equations 142, 143, 130,
and 131), only the terms of the partial derivatives of (51) through (54),
which yield zero time dependence of the coupling coefficient, result in
appreciable coupled-wave interaction. This condition produces the
frequency interrelations for parametric interaction. Similarly, only the
terms of the partial derivatives of equations (51) through (54), which
ultimately yield constant coupling between the traveling waves at all 2,
cause appreciable wave interaction; this condition produces the inter-
relations between the propagation constants (the §8,) necessary for
parametrie interaction. We proceed to apply this technique.

6.1 Traveling-Wave Pump with Spatial and Time Periodicity

We specify a function for the nonlinear distributed capacitance (type
3 coupling of Table I)

e,z t) = % cos B.z{cos [(w + w )l — B.2] + cos [(w — w)! — B_2]}
(58)
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in which 8, is the phase constant at frequency (v + «.) and 8- is the
phase constant at (w — w.). This corresponds to driving the nonlinear
medium with traveling wave at a modulated pump frequency cos w.t in
which w, is the modulation; the cos f.z factor represents a spatial periodic
variation in the coupling. Structures which produce spatially periodie
parametric interactions are described later in this section.

We use equation (58) in equations (51) through (54) and select the
terms which are capable of yielding a zero time dependence to the
coupling terms. This shows a, and a% to be the waves with significant
coupling and the selected terms are

W i, + crnat exp (=B, + 8 + ilo + 00 — w — 0]
+ cizaf exp [—j(B+ — B + jlw + @ — e — w,)1]
+ ci00f exp [_.7(.8— + ﬁr) + J'(w — W, — W — wz)tjl
+ cis0af exp [—j(B- — B+ ile —w, —w — wy)t] (59)
*
ddi; = jB.af + €51,0, €xXp 78+ + B.) — Jlo+ o, — o, — wg) 1]
+ e, exp [(B. — B.) — jlo + w. — o — wi)l]
+ czi2a, exp [j(B- + B.) — flo — 0w, — @, — w)i]
+ Ca1pay exp [§(B- — B.) — il — w. — w1 — wo)i] (60)
in which
Cizy = _]_2(‘3 ](w + w, — "-’-’2)(30:11302)i (61)
Ciz2 = flge ,’J(ﬁ’ - w. — C'J2)(Zu1zuz)} (62)
Cayy = %g 7(0-‘ + w. — wl)(zﬂlzcﬂ); (63)
Co12 = % Jlw — w. — Wl)(zmzuz);- (64)

From equations (59) and (60) one sees that there are two frequency
conditions which can yield large wave interactions. When

w+ w =@ T ow (65)

the ;a1 and o1, terms dominate and the other terms produce only minor
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fluctuations. Also, when
W — W, =HJ1+I'JJ2 (66)

the ¢,2, and ¢z,» terms dominate. When equation (65) is valid, (w + w. —
w,) = w, and the coupling coefficients reduece to

_ —Ae .&)%( B1Bs )* -
Cio1 = 16 ](m2 Co1Cos (67)
_ Ac g)*( B.8: )* .
Capp = 16 j(wl o, Cos (68)
Note that
Ciz1 = g_zcéku . (69)

When equation (66) is valid, the coupling coefficients of importance are
¢122 which reduces to equation (67) and ce;» which reduces to equa-
tion (68), so that again

Ciaz = g_:c;‘lz . (70)

To find the necessary constraints on the phase constants we note that
in the absence of coupling (that is, A€ = 0) the solutions to equations
(59) and (60) are of the form

a, = A, exp (—jB:2) (71)
a¥ = A¥ exp (jB.2). (72)

When equation (65) is valid, use of equations (71) and (72) in equa-
tions (59) and (60) reduces them to

d:?z] = Cle;‘(exD [—7(B+ — B — B — B2)]

+ exp [—j(B. + B. — B — B2} (73)
dAf
dz CzlAl

-{exp [i(B+ — B. — B1 — Ba)2] + exp [i(B. + B. — B, — B2)2]}.
(74)

We can now observe two conditions, either of which permit significant
parametric-wave interaction:
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By — B. =B+ B: (75)
B.+B. =8+ 8. (76)

Repeating the above procedure for equation (66) being valid instead
of equation (65) yields two more permissible conditions at which in-
phase wave interaction occurs at all z:

- — B. = B + 8. (77)
B+ B. =B+ B (78)

When one of equations (75) through (78) is valid along with the
corresponding frequency condition, equations (59) and (60) reduce to

dA
E_l = ¢, AF (79)
dA¥
—dzl = CglAl . (80)

These equations are satisfied by exponentials of the form
exp [+ (Clzczl)i"-‘]-

When (¢12¢21)? is pure real, growing and decaying waves are present and
equations (67) and (68) meet this requirement. The parallel propagation
of signal w, , idler w,, and pump w results in gain, as is well known.
Other configurations of signal, pump, and coupling peridocity can result
in pure imaginary values of (¢2¢2,)? in which case a periodic interchange
of power between waves is indicated.

The above discussion pertains to type 3 coupling of Table I, the
difference between the sin and cos being negligible. For square wave
coupling the physical model is often simpler to construct; we briefly
consider this situation. In Fig. 15 we assume a region “a” in which the
coupling is constant but the normal phase matching relations are not
met, that is,

B + B: # B.
W
W2 — a b a b
w —>
Zg Zp Za Zp
e — —— e — — — P — — — P — — —

Fig. 15— Model of a transmission medium with periodically varying properties.
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Then the proper way to establish the periodie coupling is to make the
length z, such that the exponentials in equations (73) and (74) (with
B. = 0) become a half beat wavelength; for the specific case above
there are two permissible choices,

B+ — Bi — B2)z. = m &= 2pm (81)
(B- — B — Bz = m = 2pm (82)
with the time modulation present; for cw pumping

(B — By — Bo)za = m =& 2pr (83)
with p being any integer. Then, in the “b” region of Fig. 15, the cou-
pling may be zero in which case we have type 5 coupling, or the
coupling may be reversed compared with the “a” region, in which case
we have type 4 coupling. In either case we require

B — B — Bo)zy = m & 2pr. (84)

The #’s in the “a” and “b” regions need not be the same—the 8’s of
equations (81) through (84) are to be those values characteristic of
the waves’ location. Earlier work has made use of some of these pos-
sibilities.®¢

Figure 15 shows square-wave coupling which, as discussed above,
applies generally to passive wave interactions as well as to other
parametric interactions. The conditions analogous to equations (81)
through (84) follow from making the exponents in the appropriate
coupled-wave equations, analogous to equations (73) and (74), equal
to = or an odd multiple of =.

6.2 CW Traveling-Wave Pump with Simultaneous Modulation of the
Entire Medium
A case related to that discussed in Section 6.1 is described by

e, () = A@ cos w.t cos (wt — B2). (85)

Here the pump wave is a continuous wave and the entire array of
variable capacitors is simultaneously modulated. This may occur when
the modulating wave w, is brought into the nonlinear medium at right
angle to z, or when w, is so small that the entire length of nonlinear
medium is a lumped element in the w, circuit. Analysis similar to that
in Section 6.1 shows that the frequency conditions are again given by
equations (65) and (66), the coupling coefficients are twice those given
by equations (67) and (68), and the phase constant condition is
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B =5 t+8- (86)

6.3 Second-Harmonic Generation with Spatially Periodic Coupling
The capacitance function for second-harmonic generation with
spatially periodie coupling is
C,(t) = AC cos 8.z cos (w,t — B,2). (87)

We look for coupling with w. = 2w, in equations (51) through (54) and
find the interaction between a, and a, . The coupling coefficients are

CAC (w : 53182 )i
e = §—— | =] |5 88
12 j 4‘ (mz) (eglegg ( )
_ ;Ae &)(ﬂ)* 9
Ca) ] 1 (w1 CorCos (89)
and the phase-constant requirement is
B = 2B, £+ B. . (90)

In this case (cy2c91)* is pure imaginary, so the wave solutions, vary-
ing as
exp [(Clzczz)lz] =+ exp [—(CIZCZl)}z]r

represent a eyclical interchange of power between @, and a;. However
the mathematical model represented by equation (87) is not valid when
a, diminishes appreciably because it no longer is the principal field on
the variable capacitors as called for in equation (87).

If square-wave coupling is used in the configuration of Fig. 15, the
phase constant and length relations are

(2ﬁln - |62u)zn =7 % QPT (91)

(2815 — Bav)ze = ™ £ 2pr
with p being any integer including zero; the subseripts a or b on the
B's denotes the region of Fig. 15 involved. As in the previous discus-
sion of Fig. 15, a constant coupling in the “a” regions may be paired
with either zero coupling or reversed coupling in the “b” regions to
form types 4 or 5 coupling of Table I.

8.4 Frequency Converter with Spatially Periodic Coupling

Consider a medium driven nonlinear simultaneously at all z by a
frequency w, according to

C,(z, f) = AC cos .z cos wl . (92)
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With waves of frequency w, and e, in the medium, from equations (51)
through (54) we find that there is strong coupling between e, and @, at
the frequency

W, = W — Ws. (93)
The phase constant condition is
B — B2 = £B. (94)
and the coupling coefficients are
_ ;Ac (&’4)’(4_3132 )}
Cr2 = ] 2 \wy/ \Co,Cos (95)
_ ;Ae g)*( B:Bs )‘_
fn =1 4 ("-91 Co1Co2 (%6)

Since (¢12¢,:)* is pure imaginary there is a eyclical interchange of power
between waves, and in this case the mathematical model is valid for
complete interchange of power. If a wave at w, is the input, the output
will be solely a wave at w, at a medium length z, such that

| (612521)} Izl = g (97)
which yields

2, = 211'(@01@02)4‘
CT o Ae(BiB)
When square-wave coupling in a periodic structure of the form of
Fig. 15 is used, the phase constant and length relations become

(98)

(Bra — B2a)2. = 7 &+ 2prm (99)

By — Baw)z, = m =% 2prm (100)
with p being any integer.

6.5 Structural Forms of Periodic Parametric Devices

We suggest here a few forms which periodic parametric devices
might take. Figure 15 has already been referred to; it is apparent that
the diagram is applicable to all of the preceding cases. The “b” region
might simply be an index-matching oil without coupling effects. In
other cases, it may be possible to achieve a reversal of the coupling.®

Figure 16 shows a centrosymmetric crystal such as (potassium
tantalum niobate) with associated electrodes and potentials to achieve
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ve(t)
v
N e
: ‘ . L

. e e s s s
|

W Wa @ —

_ Fig. 16 — Model of a nonlinear erystal with wave coupling that is periodic both
in time and space.

the periodic coupling. In such a erystal, a change in index of refraction
is a parabolic function of the biasing field through the electro-optic
effect. We have in mind laser wavelengths for the w, , wy , and w waves.
For V, positive and V, negative in Fig. 16, the slope of index versus
RF field at frequency w is positive in the “‘a’ region and negative in
the “b” region. Therefore, a spatial variation of coupling of the general
form described in Section 6.1 is established; instead of the cos 3.z term
in equation (58), a square-wave variation results from Fig. 16 with
V. () = 0 and de biases of V, = +V, V, = —V.

With the addition of V.{f) in Fig. 16, a component cos w,l as in
equation (85) adds a simultaneous modulation of the medium, of the
general form discussed in Section 6.2; to conform to equation (85) the
voltages V, and V, should be made equal to zero. Second harmonic
generation can be achieved using Fig. 16 with the « wave omitted,
V.t) =0,V,=7V,and V, = —V.

Frequency conversion of the type discussed in Section 6.4 might also
be accomplished in the structure of Fig. 16. In this case the » wave is
omitted, the cos w.t variation of equation (92) is produced by V.(f), and
the biases V, and V, yield a square-wave spatial periodicity. Notice that
V, may be zero, approximating a type 5 coupling of Table I.

Figure 17 shows an alternate wave feeding arrangement for simul-
taneously modulating the entire nonlinear medium at a laser frequency
rate. This could apply to Section 6.4 as well as to Section 6.2 with the
addition of an w wave parallel to the w, and w, waves.

In all cases, a guided wave may be used in the nonlinear medium
by having a transverse index variation such as to produce a dielectric
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REFLECTOR ~-o

NONLINEAR
__MEDIUM

/

'9:9’*'

Fig. 17 — Parametric device with simultaneous modulation of the entire length
of the nonlinear medium.

waveguide effect. This permits much longer regions of nonlinear inter-
action by holding the field within a small transverse area.

VII. CONCLUSION

We have outlined a wide variety of coupled-wave interactions in
which a periodic variation in coupling may be used. The advantage
in using periodie coupling rather then uniform coupling is frequently
to achieve large power transfer between waves under conditions where
uniform coupling will not do so—that is, where it is not possible for
one reason or another to establish identical phase constants between
the waves. Then by matching the periodicity of the coupling to the
difference between the phase constants of the coupled waves, one can
achieve nearly the same wave interactions as for matehed phase con-
stants and uniform coupling.

With frequency-selective filters, dispersion in the phase constants
in combination with periodic coupling produces a desirable frequenecy-
selective transfer of power. In the case of parmetric coupled-wave
devices, periodic coupling requires a generalization of the Tien condi-
tions which the frequencies and phase constants must meet.” These
are outlined in Section VI.
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Lumped Element Parametric Circuit
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We now derive the coupled wave equations for the lumped cireuit

of Fig. 13 with a general time-varying capacitor?
Ct) = €, + e,@).
We define w, and w, by
wlhe, =1
w3l Cyy = 1
c,=¢C + e,
Cp =€ + C,.

Then
ar, _ 1,
di L,
& = _..1_- V, .
dit L?

(101)

(102)
(103)
(104)
(105)

(106)

(107)

With the filter denoted by w, in Fig. 13, a short circuit at w, and an open

circuit at other frequencies, and similarly for the filter w,

1= Sle + eV, — eV
I = Ll + eV - e,

dt

Expanding equation (108)

(eu + en) — + Vv (e” + ('3)

’di

— hdj(e +e)—(e +e)

Rearranging terms,

av, 1, d(e,,vl)JrI .de, | (e, + e)dV,
e,

e ) te, a T dl

dt e, dt

t We follow the terminology of W. H. Louisell ¢

dVZ.

(108)

(109)

(110)

(111)
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Similarly,
v, I, (e Vg) V,de (e, + e, ) av, -
= — = — —2 1
i e abe) T v\ ey e 412

As a result of the action of the w, and w, filters, ¥, contains only the
frequency «, , and V, contains only the frequency w, . Hence dV,/dt
cannot contribute to dV,/dt, and may be dropped in equation (111).
Similarly, the last term of equation (112) may be dropped.

Multiplying the remainder of equation (111) by jw,€,, adding
equation (116), and multiplying each side by (Ly)}/2, gives

L]
(*L_l)' (gL + jwiCry dVl)

2 \dt dt
Using the normalized amplitudes a,, a2, ancl their complex conjugates
a, = (L‘) Iy + jw.Cu V) (114)
a¥ = (Lz')i (If — jw, e, V¥ (115)
G, = (LE)* (I, + jwaCs0 V) (116)
af = (L2)* (IF — jw,C VY), (117)

one may verify that equation (113) becomes

da, . d (@, — af)  (an — az)
-&-’E - Jmlal dt{ [ ell [e]IGEZ ]} (118)

Using similar methods one can derive the other coupled wave equations

daf . d e, | (e — af)  (a, — az)]}
A T e dt{ [ ey [€1Ca0)? (119)

dt 2
day _ . - d {e [g{ —af) (- al)]} 190
dt - Jw2a2 dt 2 622 [e“ezzl ( )

daf . dje,| (a— a¥) (@, — al)]}l
W = —jetd + dt{2 l: Gy - [euezz] ' (121)
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APPENDIX B

Distributed Parametric Medium

We now derive the coupled-wave equations for the distributed trans-
mission medium of Fig. 14 with the general time- and space-varying
distributed capacitance.

G(z, t) = eon + ea(z! t) {122)

where G,, is a constant relevant at angular frequency «, . Similarly the
distributed inductance may have different values L, at the various w, .
From circuit theory

14 al
o —L o (123)
of _ _a(ve)
2~ at (124)
Noting d¢€/at = 9¢,/dt, equation (124) becomes
al av 0
5; - _e’ona - at (V(",p) (125)
We define
s _ (L)
Ly = (@m) (126)
L, !
202 = (@;) (127)
B, = w1(L1em)% (128)
B = wz(Lzeuz)i- (129)

Consider the case of propagating two waves in the medium of Fig. 14,
one at w, and one at w, . Then define

Vie, 1) = Vi) exp (juif) + Vale) exp (jual) + V() exp (—jwl)

+ Vi) exp (—jwsl) (130)
I(z, t) = I,(2) exp (jw,?) + I,(2) exp (juwot) + I#(2) exp (— jw,1)
+ I%(2) exp (—jwst) (131)

where the V, and I, are dependent only on z and the* denotes the
complex conjugate. Then Equation (123) becomes
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.. dV .o dV
exp (jord) =t + exp (jwol) =

4+ -or = —ju, L, exp (jw, O)I, — jw.Ly exp (e}l + -+ . (132)
Equating terms of equal frequeney
% = —juw, L[, (133)
e = Ll (134)
%f — o L T* (135)
%f = juw.LoI¥ . (136)
Using equations (130) and (131), equation (125) becomes
exp (jond) 1 4 exp (junt) B2 + -+ = —jonCo Vs exp ()
— jwsCoy V,y exp (jwel) + -+ — %te’) (137)
Equating terms of equal frequency yields
% = —jw,CnV, — exp (—juf) ﬂ%ei) N (138)
dd—? = jw,Cq, V¥ — exp (ju,f) ﬂg—?’ﬁ . (139)
% = —juwyCo Vy — exp (— jwal) B—(VB—?*’) 5 (140)
% = jw,Co V¥ — exp (jwyl) % "“ (141)

The partial derivatives are to be evaluated in the vicinity of «, for
equation (138), —w, for equation (139), and so on. Considering only
forward waves, we define a normalized wave amplitude

@) = (zl); = Iy} (142)

a,(z) = 2—(21:); (Vi + zoud ). (143)
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Using equations (143), (133), and (138),

da 1 . . . .oca(Ve
% = ".)(7—)1 [}wu’q[l + zfn)“’lelu‘ 1 T Zo1 €xXp (_lel) LENL)]
2(z,,
Using equations (143), (128), and (126),
o —jeaen)t
]-Blal - 2(Zul)% (l 1 + '-lll]I) (1_1_1)
= _Q’Gﬁ (jwlemrxzm + jW1L1[1)-
Hence
d . ’ . ave,) |
Ezﬂ'l = —jBa, — % exp (— ju, ) (4ML) . (145)
Using similar substitutions one can show that
dat _ . ). e(Ve,) | ,
gz = Bl — o exp (o) =, N (146)
day . (202)® . oao(Ve,)
W = —)B.ay — % exp (— jual) at . . (147)
* 4 7 !
8 Jpar — 2 exp (o) 02| (148)

With the mode amplitudes normalized as above, the square of the
amplitudes represents the power carried by the mode.
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