Intermodal Coupling at the Junction

Between Straight and Curved Waveguides

By C. P. BATES
(Manuseript received March 6, 1969)

This paper analyses the coupling of electromagnetic modes at the junction
between straight and continuously curved rectangular waveguides. The
method of solution is based on an integral equation formulalion, applicable
for sharp as well as gradual bends. Such quantities as the average power
transmitted or reflected into each of the various modes propagating in
the straight and curved waveguide sections are readily obtained.

The article presents the results of representative calculations for the two
types of waveguide bends. These include graphs of the energy distribution
in the transmitted and reflected modes as a function of dimensionless ratios
for a sharp bend; the range of values considered allows immediate applica-
tion of the results to standard C-band waveguides. The gradual bend example
uses paramelers encountered in the waveguide connections to an antenna
n a typical microwave relay nelwork.

I. INTRODUCTION

In a microwave system for guiding electromagnetic waves, often
there are bends formed by connecting straight and continuously curved
rectangular waveguides (see Fig. 1). Precise numerical computations
and extensive analytical investigations of the angular propagation con-
stants for the various electromagnetic modes in the curved section
alone have been published by Cochran and Pecina.* The propagation
constants and modal fields which may exist in the straight sections
alone are trivial. To understand propagation of electromagnetic waves
through these waveguide bends, therefore, requires a complete com-
prehension of the intermodal coupling that takes place at the various
junctions and discontinuities. This paper investigates the coupling that
occurs where straight and continuously curved rectangular waveguides
join.

This type of structure has been studied to some extent by others.
2259
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Fig. 1 — Waveguide bends formed by connecting straight and continuously
curved rectangular waveguides. (a) E-plane bend. (b) H-plane bend.

There is an approach based on a matrix calculus formulation by Rice.?
Using a perturbation method, Jouguet obtained expressions for the
fields in the curved waveguide up to terms of second order, that is, to
terms in 1/R?, where R denotes the radius of curvature of the axis of
the curved guide.® He uses these approximate expressions to determine
the intermodal coupling that results at the junction between the
straight and curved waveguides for a particular polarization of the
field. In contrast with Jouguet’s approach, the analysis we use permits
the waveguide bends to be as sharp as desired, while still including
the gradual bend within the permissible range of parameters.

Our approach involves the solution of a boundary value problem
formulated in terms of the appropriate modal expansions for the fields
in the straight and curved waveguides (see Section 2.1). The modal
funetions and propagation constants in these waveguide sections con-
sist of certain combinations of trigonometric and Bessel functions and
the zeros of such combinations. Evaluation of the appropriate quan-
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tities for the curved waveguide is one of the more difficult aspects of
this problem and necessitates not only numerical methods for deter-
mining zeros and asymptotic expansions but also computer algorithms
for the accurate evaluation of Bessel functions. Such algorithms have
been recently developed and programmed at Bell Telephone Labora-
tories.*

With the modal expansions in hand, one can formulate an integral
equation for the aperture field at the junction between the straight and
curved waveguides. This equation, as discussed in Section 2.2, may be
solved numerically by the method of moments to within a reasonable
accuracy (error criteria are discussed in Section 4.1). A solution for
the fields in the waveguides can then be easily obtained, and such
quantities as the power reflected or transmitted into various modes at
the junction may be evaluated.

Section 4.2 gives examples of the intermodal power coupling for both
sharp and gradual bends. Section 4.2.1 presents the results for the
sharp bend example as a function of certain dimensionless ratios; the
range of values considered allows direct application of the results to
standard C-band waveguides. The results clearly demonstrate that
significant intermodal power coupling takes place; they also establish
the exaggeration which occurs in the reflected powers near the cutoff
frequencies of the individual modes. Section 4.2.2 gives the results for
the gradual bend example and shows that reflections are negligible and
hence only the forward coupling has significant levels for the gradual
bend considered.

II. FORMULATION AND SOLUTION OF THE BOUNDARY VALUE PROBLEM

2.1 Fields in Straight and Continuously Curved Waveguides

An arbitrary electromagnetic field, which may exist in either the
straight or continuously curved waveguide, may be expressed as a sum
of the longitudinal electric (LE) and longitudinal magnetic (LM)
modes appropriate to that section (for explicit details on such modal
representations in a continuously curved waveguide see Cochran and
Pecina and for the straight waveguide see Harrington!-5), The LE
modes have an electrie field transverse to the z-direction which means
this field component lies in the longitudinal plane, while the LM modes
have their magnetic field similarly positioned.

The explicit form of the transverse components of the LE model
expansion, suppressing an exp(jwt) time convention, is given below



2262 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1969
(for a LE field and straight waveguide) :
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Here °E° is the transverse electric field intensity, "H’ the transverse
magnetic field intensity, w the angular frequency, k the wave number,
p the permeability, and ¢ the phase velocity of the medium filling the
guide. The vector components which make up the field are given by the
lower case letters. The A, are the unknown expansion coefficients of the
individual LE modes in the straight guide with the (4=) indicating waves
traveling either in the positive or negative y-direction (towards or away
from the junction in the straight section of Fig. 1a). The propagation
constant of a particular mode is 8,,,, and it is either real or purely
imaginary (providing the guide is filled with a lossless medium) thus
indicative of either a traveling or evanescent mode.

In the curved waveguide, using polar coordinates (p, ¢, z), one has
(for the LE field and curved guide) :

Z Ct ﬂ . n €Xp (:FJan‘P)
2
= =+ z Cmn ch:m €xXp (:Fjvmn‘na)
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© =



INTERMODAL COUPLING 2263
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In these expressions J,(z) and Y,(x) are the Bessel functions of the
first and second kind respectively; the prime indicates differentiation
with respect to the argument. The permissible propagation numbers
vun, in this case, are given by the implieit solutions of

iC,,,,,,(:‘t,.p) [p-r, = 0, m=20,1,2,---,
dp

and again they are either real or purely imaginary providing the guide
is filled with a lossless medium.® Section IIT discusses the modal funetion,
C, , in more detail. The CZ, are the expansion coefficients of the individ-
ual modes with the (4) again designating the direction of mode travel.

In equations (1) and (2) the superscript e indicates that the partic-
ular vector is an LE component and the superseript s or ¢ indicates
that the vector or funection is associated with the straight or curved
sections. The subscripts m and n are the modal indices. In Section IV,
where results are also given for an LM polarization, a superseript m
designates such fields.

One may easily verify that these transverse LE field components,
along with their longitudinal counterparts, satisfy Maxwell’s equations
in the appropriate regions and that the required boundary conditions,
namely, zero tangential electric field and zero normal magnetic field
on the waveguide walls, are met. Such representations are complete in
that any arbitrary fields in the straight and curved waveguides which
have their electric components confined to the longitudinal plane can
be expanded in the form of equation (1) or (2), respectively.

Appropriate expressions may also be written for the transverse com-
ponents of the LM modal expansions. They would also be complete in
the sense that any arbitrary fields in the straight and curved wave-
guides which have their magnetic components confined to the longitu-
dinal plane could be expanded in such a representation.

It can be shown, for the geometry indicated in Fig. 1, that an LE
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source in either the straight or curved waveguide excites only an LE
field, and conversely an LM source excites only an LM field. Hence
a waveguide bend excited by an LE mode is usually referred to as an
E-plane bend, in keeping with the fact that the LE source sets up only
an LE field for which the electric field is confined to the longitudinal
plane, that is, the plane of the bend. Figure 1a shows the typical wave-
guide geometry for an E-plane bend. Analogously, an H-plane bend is
one for which the magnetic field is confined to the plane of the bend;
this occurs when the source and hence the resulting fields are LM.
Figure 1b shows typical geometry for this case,

Notice that the transverse vector components can be shown to satisfy

ff ae'!""' .e:ﬂ d‘/l = 6mr 6:u 1 /:[ re:nu' re:e PdA = 6ml' a'Il . (3)

In equation (3) the integration is taken over the cross-sectional area
of the appropriate waveguide interior. Such orthogonalities are a con-
sequence of the differential equations and the boundary conditions sat-
isfied by the scalar parts of the transverse vector components.

2.2 Integral Equation Formulation and Solution

As discussed in Section 2.1, the fields in the guides need only be ex-
panded in a representation consistent with the given source. In the
sequel, the unknown coefficients of the modal expansions are deter-
mined through an integral equation approach.

If there are LE modes incident on the junction in Fig. 1a in both
the straight and curved guides, the continuity in the transverse electric
and magnetic fields at the junction between the guides requires

Srten + 20 AL e, = 2 O e, + SIL el @

m,n m.n

and

S:,'hi, — > A, bl = > Ch, bl — S, Rl . (5)
Here the source coefficients have been designated, for emphasis, by
S;, and S, for the straight and curved sections, respectively; they are
assumed specified. The unknowns are the modal expansion coefficients
A, and C}, .

Each side of equation (4) is actually an expansion of the unknown
aperture electrie field E,(x, z). Referring to the orthogonal properties of

t Kronecker delta.



INTERMODAL COUPLING 2265

the transverse vector components in Section 2.1, it follows that

St bnr b0s + A= [[ E. el da ®)
S4
and
Chu b S b b0y = [[ Eur el pdd ™
Sa
form =0,1,...and n = 1, 2, . .. with the integration being per-

formed over the aperture area.! Rearranging equation (5) and substi-
tuting the relationships (6) and (7) for the expansion coefficients re-
sults in:

281, B, + 280, 0, = [[ B, )Gz, ad, @
Sa
where the dyadic kernel is given by
Gz, z;22) = 2. ["etn(r’, 2) "hin(z,2) + 27 ‘€ha(a’, 2') hoa(z, 2)]. (9)

Notice that equation (8) is precisely in the form of a vector Fred-
holm integral equation of the first kind for the unknown aperture elec-
tric field.

A solution of this integral equation by the method of moments would
proceed as follows.” Expanding the aperture electric field in terms of
the modes of the straight waveguide gives

E(2,2) = D Gmn "€oan - (10)

Substituting into equation (8) and interchanging summation and in-
tegration then requires

281, ‘h, + 285, B, = D2 Gpa(’hin + 22 bape 1), (11)
with b, defined by

b = [ b @eia(h) da. (12)

1

Taking the inner product of equation (11) with *hj, finally leads, after
some algebra, to

t The indices m and n of the modes are chosen such that in the limit of n
— o the mode in the curved guide with index numbers m and = is asymptotic to
the mode in the straight guide with index numbers m and =.
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28, 28; _ '
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=012 -, ¢g=12,--- (13)

as the infinite set of algebraic equations to be solved for a.., , the expan-
sion coefficients of the aperture electric field.

As a first observation, we note from equation (13) that @,., = 0 if
g # s, and hence the aperture field is actually given by

E.(z,2) = 2 .. ‘en.(z, 2), (14)

that is, the z-variation of the excited modes is the same as the z-varia-
tion of the source mode. At this point, therefore, the second subseript
may be dropped without loss of generality by merely realizing it is the
same as the second subseript of the exciting modes.

Equations (13) form an infinite set of equations for the infinite
number of unknown expansion coefficients of the aperture field. A trun-
cation is now made in order to solve for a,, by standard matrix meth-
ods, including sufficient terms in the field expansions in order to ensure
reasonable accuracy (see Section 4.1).%

2.3 Reflected and Transmitted Modes

Let us assume here that the expansion coefficients for the aperture
field have been obtained by solving equation (13). A relationship be-
tween the coefficients of the modes in the straight guide and the aper-
ture field was given by equation (6). Substituting the expansion of the
aperture field, equation (14), into this equation gives an expression for
the coefficients of the modes in the straight guide as

Af_n=a'm'_amrS:! m=0r1r2)“' . (15)
Likewise equation (7) yields, for the coefficients of the modes excited
in the curved waveguide,

C: = Z aabam - amrS: y m = 0l 1, 2‘ e, (16)

These relations are deceptively simple in that much of the complex
interplay between incident, reflected, and transmitted modes is hidden
in the “assumed known” coefficients a,, and a,.

The average power carried by the incident rth mode in the straight

t The solution of equation (13) also requires knowledge of the bm, defined by
equation (12). Their determination is at the crux of this method and their
evaluation will be discussed in Section 3.
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and curved guide may be determined:

P = — [[ B omes as =ﬂ%; | 82 [ (17)
and
h2 2t
Pl = ff ‘Bt “H*ds = V7 S (18)

Here we assume that the incident rth mode is a propagating mode with
real 8, and v, and that (*) designates the complex conjugate of a
quantity.

The average power coupled into the mth mode from the incident rth
mode may be evaluated in a similar manner vielding for the straight
guide

h2
PCL, = B2 [A.|* (19)
and for the curved guide
pPCc = h’ + 2 D)
mr = J:,,.Z—* | Cn 1% (20)

The index m in equations (19) and (20) is anyone such that 8m or v
is real; that is, the mth mode must be a propagating one which carries
energy away from the junction. There are, of course, only a finite num-
ber of such propagating modes for a particular operating frequency
(see Cochran and Pecinal).

Equations (19) and (20) thus determine the power coupling, that is,
the power excited in the mth propagating mode either transmitted or
reflected when the rth mode is incident in either the straight or curved
sections. Naturally, these quantities become of dominant importance
as one moves away from the junction and the evanescent modal con-
tributions die out. Section 4.2 gives some examples of the power cou-
pling for both sharp and gradual bends.

A similar analysis can be performed for an LM excitation. Section
IV presents the numerical results for this case.

III. PROPAGATION CONSTANTS AND MODAL FUNCTIONS
The modal functions for the continuously eurved waveguide are de-

t At this stage we assume that the waveguides are filled with a lossless dielectric;
hence, the total power is the sum of the power in each individual mode.
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fined in terms of Bessel functions of the first and second kind in Sec-
tion 2.1. Obviously they are solutions of Bessel’s differential equation,
which we write in the form

2
La (o )t (i-"2)c.. =0 )
pdp \" dp P

moreover, for LE excitation, they are such that

d

% Cy...,.(hnﬂ) ;:r. = 0. . (22)

The boundary condition at o = 7. is automatically satisfied by the
particular choice of the cross-product Bessel functions in Section 2.1,
whereas the boundary condition at p = 7; determines the admissible
angular propagation constants v,,,.

The real angular propagation constants result in propagating modes
and hence are the most important in this analysis. These are obtained
for the sharp bend by a program of precise calculations of the real
v-solutions of the transcendental equation (22). The Bessel functions
appearing in equation (22) were approximated with six-figure accu-
racy by the use of algorithms recently developed and programmed for
a digital computer as discussed in Ref. 1.

There are other methods to determine the propagation constants of
gradual bends. For instance, a large parameter expansion of the differ-
ential equation (21) can be made; that is, the modal functions and
propagation constants may both be expanded in negative powers of 7.
The unknown coefficients of each series can then be determined by im-
posing the boundary conditions at p = 7, and 7.. This approach has
been used by Kislyuk, as well as others; Ref. 8 gives these results.
Four terms in the expansion are all that are available, because higher
order terms are extremely tedious to determine.

A comparison of the real values of v evaluated from Kislyuk’s re-
sults with the precise v-zeros of equation (22) shows five digit agree-
ment for gradual bends (r;/b > 12). In the final program, we chose
to calculate all angular propagation constants by Kislyuk’s equation
for large (r/b), that is, 12 or greater.

In the sharp bend case the imaginary propagation constants cannot
be obtained precisely, because there are no computer algorithms for
the evaluation of Bessel functions for this range (imaginary orders).
So other techniques must be used.

When the propagation constants lie on the negative imaginary axis,
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that is, v = —iu and u is not close to zero, asymptotic expansions for
the modal functions can be obtained. One approach is to approximate
the Bessel functions in C, (the derivative with respect to h,ry is not
performed as yet) by the first term of the asymptotic series developed
by Olver.? This yields an expression in terms of the familiar Airy func-
tions Ai and Bi. When the Airy functions are approximated by the
leading terms of their phase-amplitude expansions (see Abromowitz
and Stegun'®) and the derivative with respect to h.rs is taken, the ap-
proximation of C, becomes

—9

G~ AT &Pa + DF

{(1 + 7))/ cos [uw(n) — w(in)]

_n _
+ T [n(w(n) — w§ n))}} ) (23)
where
hr, T
n= —”_ ’ = T2 ’
and

3}
o) = [ LA gy

The imaginary propagation constants for the sharp bend are now de-
termined by numerically finding the p-zeros of the asymptotic expres-
sions, equation (23).

The evaluations of the inner products, equation (12), required in
Section 2.2 are performed numerically. When the propagation con-
stants are real, we again use the computer algorithms for the evalua-
tion of the Bessel functions for both the sharp and gradual bends. The
latter evaluation was required because the evaluation of the modal
functions by means of a large parameter series expansion as deter-
mined by Kislyuk’s approach (really only three terms available) does
not exhibit very good agreement with the precise evaluation of the
modal function even in a region where the agreement between the two
methods of determining the propagation constant is very good. When
the propagation constants are imaginary the modal functions for the
curved waveguide are evaluated by means of the approximate expres-
sion, equation (3), for both the sharp and gradual bends.

A similar analysis may be made for an LM polarization; Section IV
presents the results of appropriate numerical calculations, as well as,
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comments concerning the verification of the numerical solution and
some representative examples.

IV. ERROR CRITERIA AND REPRESENTATIVE EXAMPLES

4.1 Error Criteria

As discussed in Section 2.2, the solution of the integral equation for
the aperture field reduces to an infinite set of algebraic equations for
its expansion coefficients. We make a truncation so that standard ma-
trix techniques may be used to solve for these unknown coefficients.
Sufficient terms must be included to obtain reasonable accuracy; in-
cluding more terms than necessary wastes computing time.

One can verify that a particular truncation is adequate by determin-
ing how well the field solutions satisfy the continuity requirement at
the aperture. The conservation of energy, which requires that the aver-
age power in all the propagating modes traveling away from the junc-
tion between the guides be equal to the average power in the propagat-
ing modes incident on the junction, is always satisfied (within roundoff
error) by the solution obtained (that is, regardless of the number of
modes used) ; therefore it cannot be used as an accuracy check. This
redundancy in the conservation of power, which may be established by
an analysis suggested by Amitay and Galindo,** is a consequence of the
method of moments approach which has been used to solve the integral
equation.

When the incident field is an LE mode, the aperture electric field is
determined. From this field one can derive the modal coefficients and
hence the magnetic fields in the straight and curved guides. These de-
rived magnetic fields should be continuous at the aperture; therefore,
a mean square error (MSE—refer to its application by Cole and oth-
ers'?), normalized with respect to the incident field, can be defined as

ff (H' — “H)-(H' — “H°)* ds

MSE =
ff ("H + “H)-('Hi + ‘H)* ds

The subseript 7 designates the incident exciting field; the terms in the
numerator constitute the total fields, all evaluated at the junction be-
tween the guides. This mean square error is a meaningful measure of
how well continuity in the aperture field is approached, and is, of
course, a function of the number of modes used in expanding the fields.
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It was found, in the examples of Section 4.2, that the mean square
error could be maintained smaller than 10-3. This corresponds to three
to four digit agreement between the samples of the transverse com-
ponents of the magnetic fields on both sides of the aperture. A similar
mean square error may be defined for the LM ecase with corresponding
error levels.

4.2 Representative Examples

Some of the following representative examples correspond to very
sharp bends (r,/b & 1); the others correspond to very gradual bends
(7'1/b > 1)

4.2.1 Sharp Bends

Figures 2 through 5 and Table I give the results for the sharp bends.
We give the power transmitted into the modes of the curved guide and
reflected into the modes of the straight guide for an incident mode in the
straight guide in terms of the dimensionless ratios b/, r./b, and a/b.
Any structure with these ratio numbers has a coupling characteristic as
displayed.

The incident modes used in Figs. 2 and 3 are from the set of LM,
modes in the straight guide which have an electrie field given by

—Ba.ha
Bma Y
That is, the incident fields are the familiar T'E,,, modes of a uniform
rectangular guide. The curved guides used here are referred to as
H-plane bends since the magnetic field lies in the plane of the bend
(see Section 2.1). In Figs. 4 and 5 the incident modes are from the LE:,
mode set in the straight guide. The curved guides there are referred to as
E-plane bends since the electric field lies in the plane of the bend.
The LE:, mode incident corresponds to the familiar 7Eo, mode with an
electric field given by

‘Ef, = An(2/ab)!sin (rz/a) exp (—iBuy)E

whereas the LE?, mode incident is a combination of the TE,, and TM,,
modes in a uniform rectangular guide. The coefficients B;,, and A, of
the incident modes are chosen so that the incident power is unity.

The sharp bend results may be used, for example, to depict the
operation of the standard C-band guide 0.872 by 1.872 inch for a fre-
quency range from 3 to 18 GHz for the LM excitation and from 3 to
90 GHz for the LE excitation. For convenience we have superimposed

‘B0 = (2/b)¥ sin [mm/blr, — )] exp (—jBnaY)2-
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TaBLE I—INTERMODAL COUPLING FOR LONGITUDINAL ELECTRIC
AND LoNGITUDINAL MAGNETIC FIELDS FOR A SQUARE
Gume witH r,/b = 1.068

Incident Mode
/N Power Reflected Mode Power Transmitted Mode Power
1.19 | LM}, =1.0 LM}, =~ 1077 LM;, = 0.952174
LM3, = 0.000012 LM, = 0.047815
LE}, =1.0 LE;, = 0.000001 LE5, = 0.618860
LE:, = 0.000046 LE:, = 0.376074
LE;, = 0.000022 LES, = 0.004997
1.79 | LMj, =1.0 LM, = 10~° LM, = 0.736720
LM:, = 0.000001 LMg, = 0.258699
LMS, =~ 107 LMg, = 0.004581
LE) =1.0 LE;, =~ 107 LE3, = 0.456751
LE:, = 0.000005 LE:, = 0.384346
LE;, = 0.000001 LE;, = 0.153564
LE;, = 0.000027 LE5, = 0.005306

another coordinate scale on Figs. 2 through 5 demonstrating the fre-
quency of operation if the guide has these dimensions. The vertical
arrows on this frequency scale indicate the cutoff frequencies of the
modes in the straight guide. As these examples show, the frequency band
covered corresponds to a situation where up to 5 modes can propagate.
The overmoded operation demonstrates the possible coupling between
modes. Also notice that for the H-plane bend (Figs. 2 and 3), b is greater
than e and for the E-plane bend (Figs. 4 and 5) b is less than a.

The strong coupling between the modes for sharp bends is clearly
demonstrated for H-plane bends in Figs. 2 and 3. In Fig. 2 we see that
the LM}, mode incident in the straight guide can actually couple more
energy into the LM3, than into the LM}, mode of the curved guide
when b/\ is greater than 2.7. Conversely the LM}, mode incident in the
straight guide can couple more energy into the LM3, , LM;, , and LM,
modes than into the LM3, mode of the curved guide for the appropriate
b/, as Fig. 3 shows.

For an LM excitation it is possible to have a mode propagating in
the curved waveguide while still eut off in the straight waveguide. This
leads to a value of coupling into the curved guide mode which drops
sharply as the corresponding mode begins to propagate in the straight
guide but then increases with increasing frequency. Figures 2 and 3
show this at b/A = 1.0, 1.5, 2.0, and 2.5. The reflections are also exag-
gerated at the cutoff frequencies of the modes in the straight guide. In
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contrast, the cutoff frequencies of the LE modes in the curved guide
are greater than or equal to those in the straight guide. This leads to
the possibility of having a mode propagating in the straight guide
while still cut off in the curved guide. Sharp jumps in reflections and
transmissions are thus also expected at such cutoff frequencies for this
situation; unfortunately, we are not able to examine them in detail.
Recall that the procedure outlined in Section IIT allows us only to find
the imaginary propagation constants in the curved waveguide if they
are not too small. Unfortunately the case just described violates this
restriction since the pertinent propagation constants in the curved
waveguide are imaginary with a magnitude infinitesimally close to
ZEro.

In Figs. 4 and 5 one can see that the power coupling at an E-plane
bend is also very strong. The reflections for this case are more pro-
nounced over a wider frequency band than in the H-plane case. Again
there are exaggerated reflections at the cutoff frequencies of the modes.
Notice that with both LE and LM polarizations, the forward coupling
is greatest into the modes adjacent to the one corresponding to the
incident mode.

It is valuable to compare the coupling for an E-plane bend with that
of a H-plane bend for equivalent problems. To this end, consider a
square guide with the ratio r;/b set at 1.068 for each polarization and
the frequency of operation set at the same value for both cases. Table
I gives the coupling for this situation. (Notice that the number of LE
modes propagating is one more than the number of LM modes prop-
agating at the frequencies used.) From the results one sees that much
less energy is forward coupled into the mode corresponding to the in-
cident one when the fields are LE and that the total reflected energy is
greater in the LE case. This is not unexpected if one examines the dis-
continuity in the geometry encountered by the electric field intensity
for both cases.

4.2.2 Gradual Bends

For a very gradual bend situation we chose square waveguides with
r,/b = 250. This very gradual bend simulates the curvatures encoun-
tered in the waveguide eonnection between receiver and antenna of the
Bell System TD-2 microwave relay system (one must realize though
that waveguides with cireular eross sections are used there). Tables II
and ITI give some pertinent results. Again a frequency scale is super-
imposed, this time corresponding to a 2.4 inch guide. This value was
picked so that the fundamental mode in the straight guide with a square



2278  THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1969

cross section would have the same propagation constant as the funda-
mental mode of a straight guide with a circular cross section, 2.812
inches in diameter. This we felt, permits us to stimulate, at least quali-
tatively, the situation encountered with circular cross section guides in
the TD-2 system.

The coupling in the reverse direction (reflected power) was at least
60 dB down for both LE and LM fields regardless of which mode was
incident; hence these tables do not give them. The H-plane bend
(Table II) forward couples power (=40 dB down) into modes adjacent
to the one corresponding to the incident mode only at the higher fre-
quencies. The E-plane bend (Table III) exhibits much larger forward
coupled power into such modes (=30 dB down) at these same higher
frequencies. The levels of the undesired forward coupling at the lower
frequencies is much less (=250 dB down). The results suggest that with
such gradual bends reverse coupling is totally insignificant and only
forward coupling can have a meaningful effect.

All the results discussed in Section 4.2 have been based on the ex-
citation from the straight guide side of the junction. The results for
excitation from the curved guide side are of the same form, and hence,
have not been given for the sake of brevity. However, forward cou-
pling into the straight guide from the curved guide may be deduced
from the data already presented by realizing that the power forward
coupled into mode m of the straight guide from mode 7 in the curved

TABLE II—INTERMODAL CoOUPLING RESULTING FROM A
LoNGITUDINAL MaGNETIC MODE INCIDENT IN
Srraigar GuipeE wiTH 7, /b = 250

I Excited Mode
(b = 2.4 inches) Incident Excited Power Level

b/N GHz Mode Mode (dB)
0.813 4 LM;O LM;5, 0.00
1.22 6 LM:O LM5, 0.00
LM3, —55.84
LM}, LM:, —55.84
LM;O 0.00
2.24 11 LM;U LM, 0.00
LM3, —41.54

LM, < —60

LM3, < —60
LM3, LMfo —41.54
LM, 0.00
LM, —47.59

LM, < —60
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TABLE III—INTERMODAL CoUPLING RESULTING FROM A
LonGiTrupinaL ErLecTtrRic MopE INCIDENT IN STRAIGHT
GuipeE wrtH r,/b = 250

b Excited Mode
(b = 2.4 inches) Incident Excited Power Level
b/ GHz Mode Mode (dB)
0.813 4 LE, LE§, 0.00
LEY, —50.06
LEY, LE;, —50.06
LES, 0.00
1.22 G LEg, LE§, 0.00
LE:, —39.39
LE;l < =60
LE;, LE:, —39.39
LE:, 0.00
LE;, —55.46
2.24 11 LEg, LEg, —0.01
LE:, —27.38
LE;, <—60
LE3, < —60
LES, < —60
LE;l LETu —27.38
LE:, -0.01
LE;, —39.88
LEE, < —60
LE, < —60

guide is the same as the power forward coupled into mode n of the
curved guide from mode m in the straight guide (reciproeity).!

V. CONCLUSION

This paper has investigated the coupling of electromagnetic waves
between straight and curved rectangular waveguides. Numerical re-
sults have been obtained by using a numerical method which leads to
solutions applicable for sharp as well as gradual bends. Two represen-
tative examples have been given. One was a sharp bend and could be
used to depiet the coupling that takes place, say, in standard C-band
guides. The other was a very gradual bend; this was used to obtain
some insight into the coupling that occurs in the waveguide connec-
tions between the receiver and antenna in typieal microwave networks,

The coupling discussed has been confined to a one junction struc-

T This modal reciprocity, although surprising at first glance, is a direct con-
sequence of Maxwell’s equations, the lossless character of the guides, and the
orthogonalities hetween the modes as discussed in Section 2.1,
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ture, that is, a straight to a curved guide or a curved to a straight
guide. In any practical system, however, at least two junctions gen-
erally occur, that is, one encounters straight-curved-straight or curved-
straight-curved connections. For very gradual bends it is merely neces-
sary to account for the forward coupling at each junction since any
reflections are negligible. Sharp bends, on the other hand, require one
to account for multiple reflections; this appears to be most effectively
handled by the scattering matrix approach.
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