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A lens system for a periodic light-beam waveguide is proposed and
analyzed in which gas is enclosed in a circular cylinder heated with a
cos 2¢ temperature distribution. We show that this temperature distribution
may be produced by cutting a cylindrical hole in the cenler of a square block
which has two opposite sides of equal lemperature above the ambient tem-
perature, and two sides of a lower temperature. Heat conduction across
the gas produces an index of refraction variation which, in two orthogonal
azimuthal planes, increases or decreases as the radius squared. The effect
of thermal convection is analyzed by solving the governing equations as an
expansion n powers of the Rayleigh number; the solution reveals that
convection effects can be made negligible over a praciical range of lens
parameters. The major atiribules of the lens system are that only tempera-
ture conlrols are required and the aberrations associated with thermal
convection can be readily minimized.

I. INTRODUCTION

A gas lens system to transmit a light beam through a tube should
have a favorable refractive index, negligible aberrations, and a simple
construction. The favorable refractive index must be such that all
light rays parallel to the tube axis, but of varying distances from that
axis, converge at approximately the same point on the axis, the dis-
tance being called the focal length. Within the paraxial ray approxi-
mation it is easy to show that an »? variation of the refractive index
has this property (see, for example, Refs. 1 and 2).

Berreman obtained a refractive index (which varied approximately
as the square of the radius) by flowing a gas through a cold eylinder
enclosing a warm helix aligned on the axis?® The interior of the
helix has the desired refractive index. Marcuse and Miller simplified
Berreman’s lens by considering a cool gas flowing through a heated
cylinder of uniform temperature (the Graetz problem).:?
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In order to reduce the distortion resulting from spherical aberra-
tions, Berreman built a counterflow arrangement composed of two
back to back tubular lenses.* Marcuse calculated the prineipal sur-
faces of a flow type lens noting that the one with the light beam
parallel to the flow differs only slightly from that of the beam anti-
parallel to the flow.? He then numerically calculated the fate of a
beam as it passes through a large number of flow lenses and compared
the results with those with a counterflow arrangement.® This arrange-
ment decreased the distortion. Kaiser later found that this configura-
tion also lessens the asymmetrie distortion due to thermal convection.®

The major drawback to the flow-type lens is the need for control of
the flow. Gu performed a compressible flow analysis and found that,
as a result of the wall friction, choking could oceur for the optimal
flow rate in a few hundred meters.” This could be overcome only by
further complexities in the system.

A conduction-type lens was proposed by Suematsu, Iga, and Ito,
in which they analyzed a configuration composed of hyperbolic, con-
vex inward walls, two of which are at one temperature and the other
opposing two at a lower temperature.® The concomitant temperature
distribution varies as the square of the distance in the transverse di-
rection. Then the refractive index bears the r? variation* in two
orthogonal planes, being convergent in one and divergent in the other.
This guadratic variation has two highly desirable characteristics.
First, within the paraxial approximation, the focal length of every
ray passing through a quadratic lens is independent of the radius,
and hence the field reproduces itself after each period.* Second,
Marecatili has shown that the eigenfunctions associated with a quad-
ratic lens are Gaussian. Therefore a laser beam which is also Gaus-
sian can be mode-matched to a waveguide consisting of quadratic
lenses. This means that all the energy will remain in the launched
mode; the only mode conversion that would take place is that result-
ing from higher order variation, that is, aberrations.

The advantage of the conduction lens is that only temperature con-
trols are required since no gas flow is involved. However, thermal
convection is present in this lens and although Suematsu, and others,
observed a degradation of their lens at high temperature differences
they did not analyze the thermal convection effects.

* For negligible pressure changes the refractive index is virtually only a fune-
tion of the temperature; for small temperature variations the changes in refrac-
tive index are directly proportional to and of opposite sign from the temperature
changes.
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We will consider a quadratic conduction-type lens, which is formed
by imposing a cos 2¢ temperature distribution on the wall of a ecir-
cular cylinder. For sufficiently small temperature variations the change
in the refractive index is approximately quadratic and lensing action
similar to that of Suematsu, and others, is obtained. The three cen-
tral questions considered are: (i) What are the effects of thermal con-
vection on the quadratie distribution? (ii) How does one readily
obtain a cos 2¢ wall temperature distribution? (ii¢) What are the opti-
cal properties of a waveguide consisting of these lenses?

We show that the cos 2¢ distribution can be achieved very simply by
boring a eircular hole in a square block in which two opposite sides bear
a higher temperature than ambient and the other two bear a lower tem-
perature. If sections of the above lens are placed in tandem, each con-
secutive one rotated by 90 degrees, there then exists in one plane a
series of alternating, convergent-divergent lenses. In the perpendicular
plane this series is, so to speak, 180 degrees out of phase. We may
then use Miller’s® analysis of a sequence of alternating gradient
lenses,* and determine criteria for the optical properties as a function
of the parameters of the system.

We study the effect of thermal convection by using a straightfor-
ward perturbation analysis which is found to be in agreement with
preliminary results of an experiment. We investigate the method of
producing the wall temperature distribution by constructing an ap-
proximate solution which reveals how the wall temperature distribu-
tion can be established, as well as discuss the experimental program
in progress and compare this lens and the other cited above.

II. ANALYSIS

2.1 Analysis of Thermal Convection

Consider a circular cylinder with the geometry given in Fig. 1. The
governing equations for the steady motion of the gas within the
cylinder are:

(7) continuity equation,
V- (pu) = 0; (1)
(1) equation of motion,

p(u-V)u + Vp — pg — uV'u = 0; (2)

* Alternating gradient focusing in gas lens systems was first proposed by A. R.
Hutson .2



2284  THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1069

Y

Fig. 1— Geometry of the lens cylinder.
(771) energy equation,

pu-V(c,T) = kV*T + u-Vp + ud. 3)
Here,

p is the density,

u the velocity,

p the pressure,

g the gravitational acceleration,

g the viscosity,

¢, the specific heat at constant pressure,

k the thermal conductivity, and

® the dissipation funection (associated with the frictional work).

The boundary conditions at the cylinder surface are

T(a, ) = To(l + ‘g,T cos 2¢) )
and
u(a, ¢) = 0, (5)

where AT is the maximum excursion about the average wall tempera-
ture, T,.

At this point we use the Boussinesq approximation which consists
of two elements; the density changes are significant only in the body
force term, and these changes are a function of temperature only. The
latter element amounts to neglecting the product of the isothermal
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compressibility, «, times the pressure change in comparison with the
product of the volumetric expansivity, B, times the temperature
change. In other words, for p = p(p, T)

dp l(ap) l(ﬂp)
e _ 2 (%2) dp 4 = |=£) ar
P paprp+p T/,

=g dp — BdT,
and the Boussinesq approximation requires the second term to be
much larger than the first term but still small enough so that

p = poll = B(T — T.)l, (6)
where the subscript denotes conditions at the center of the cylinder
in the absence of fluid motion.

We nondimensionalize the variables in the hope that a perturbation
scheme for a solution to our problem may be suggested. We define

u _ _Tr-T
U=t X° X/a, 0= "5 @

Since the density changes are considered important only in the body

force term, equation (1) yields the incompressible continuity equa-

tion,

v-U = (8)
The pressure term can be eliminated from the equation of motion by
taking the curl of equation (2). The result of this operation leads us
to define the velocity components in terms of the stream function ¢ so
that in cylindrical coordinates we have
_1ay _ 9y
Uo=>5e, U= % )
The continuity equation, (8), is identically satisfied, and the equa-
tion of motion becomes

oY+ - (Q‘ﬁi_a‘,’a)v\b—a?\(cm w——smtﬁi)ﬂ. (10)

ar dg dg ar r Ay
where
o= k” . the Prandtl number, and
A = B ATge,,pna ., the Rayleigh number.

pk
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Fig. 2 — Contour plot of the first approximation for the stream funection with
values of ¢ on indicated contours:

A = 0.00001 F = 0.0005 M = —0.002 Q = —0.0001
C = 0.00005 G = 0.001 N = —0.001 R = —0.00005
D = 0.0001 H = 0.002 O = —0.0005 T = —0.00001
E = 0.0002 P = —0.0002

If the velocities are sufficiently small then the viscous dissipation
can be neglected and the energy equation, (3), in terms of the new
variable becomes

2 _1(09 8 9Y 6‘_) _
e r(6r6¢ aqsarg‘o' (1)
The boundary conditions, (4) and (5), become
6(1, ¢) = cos 2¢ (12)
and
ay _ 9 _
(Lo =350y =0 (13)

In the case of a small Rayleigh number it is fruitful to seek a solu-
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tion in powers of A;

\(I:A\b(”“i‘h?“b(m_]' (14)

and

=04 n" + NP+ - (15)

This expansion is valid in the limit, A = 0, and an upper bound of A
for the validity of the expansion will be obtained subsequently.

When we insert equations (14) and (15) into (10) and (11), the
coefficients of like powers of A must individually be set equal to zero
for the equations to hold as A is varied. Beginning with the lowest
order we obtain from equation (11)

7' = 0. (16)
The solution to the equation, with the boundary condition given by
equation (12), is

8 (r, ¢) = +° cos 2¢. (17)

Next, from equation (10) the lowest order contribution to the
stream function is obtained from

90" sing¢ 86"

ar r d¢

with the boundary conditions given by equation (13). Inserting equa-

tion (17) into equation (18) and expressing the biharmonic operator
in cylindrical coordinates yield

Vi = cos ¢ (18)

(3422 L2412
at Trat et Mo
8 1 a ) .
—_ 5 T1 =3 2r
7 08 or + rz 9 o & —|— - ¥ [2r cos ¢. (19)

The solution to this mhomogeneous biharmonic equation is

[EV]
D
w

v, ¢) = = [, — 2" + 1]r cos ¢. (20)

Figure 2 is a contour plot of the stream function, equation (20).

Finally we wish to determine the perturbation on 6. This will
indicate the effect of thermal convection in distorting the lens and
afford an estimation of the upper bound of the Rayleigh number.
Again, from equation (11) we get
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Fig. 3— Contour plot of the (a) zeroth approximation for the temperature
distribution with values of 6 on indicated contours:
A=01=-R D=04=-0 G =07=-X
B=02=-8 E=05=-V H=08=-Y
C=03=-T F=06=-W I =0.9=-Z
(b) first perturbation for the temperature distribution with values of > on indicated
contours:
A =0.0001 = —§ C =0.005=-0U E=0015=-W G=0025=-Y
B=0001 =-T D=001 =-V F =002 =-X H=0028 = —Z

() first approximation for the temperature distribution (A = 10%) with values of
0 + AW on indicated eontours:

A

=0.1 = —-R D=04=-0T G =07=-X

B=02=-8 E=05=-V H=08=-Y

C=03=-T F=06=-W I =09 = -%

1 (a‘l/“) Y 61#(” aatu))
2, _ = e S
Ve =; d¢p  or ar  dp (21
with the houndary condition

6" (1,¢) = 0. (22)

Inserting equation (17) and (10) into equation (21) yields
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o 18 1.3 . 2 :
(‘4‘;54‘;67)2 8"V = —2¢' — 2* + 1)rsin ¢ cos 2¢

+ 2(5* — 6r° + 1)r cos ¢ sin 2¢. (23)
The solution which satisfies equation (22) is

0V, ) = (D) — £(D] sin g — (D) + (1)) 5 sin 3

+ £.(r) sin ¢ cos 2¢ + f.(r) cos ¢ sin 2¢, (24)

where
_ (32 48
fi) 96; (379 2041"")
and
_ 8@ 32(11) )
1) = 155 (2 “ooar C T T Tt 2

A numerical caleulation reveals that the maximum value of 6V is
approximately 3 x 10 Since ' is bounded by unity, the expansion
should be valid for Rayleigh numbers less than the order of 10%. Figures
3a, b, and ¢ show contour plots of 4, 1), and #©@ + A1), respec-
tively. In Fig. 3¢, A = 10° to demonstrate the distortion possible.

Experiments are being conducted to verify the foregoing results and
to better understand thermal convection in other circumstances. Fig-
ure 4 is a photograph of the streamlines made visible by the introduc-
tion of cigarette smoke into a circular cylinder having a cos 2¢
temperature distribution. The Rayleigh number is 575. Notice the re-
semblance between this pattern and the contour plot of the preceding
analytical results (Fig. 2). The slight shift upward of the smoke
streamlines can be attributed to higher order terms in # and y. The
steadiness of the observed flow supports our seeking time-independent
solutions of the equations of motion.

2.2 Establishing the cos 2¢ Wall Temperature Distribution

If one imposes a linear temperature distribution across a slab by
heating one face and cooling the other, and then if one drills a
cylindrical hole parallel to the faces of the slab, it is well known that
a temperature distribution varying as cos ¢ will appear on the wall
of the eylindrical hole. Extending this to a square region with one pair
of opposite faces heated and the other pair cooled one might presume
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that a cos 2¢ temperature distribution would appear on a cylindrical
hole cut in the center of the square. To determine the degree of ap-
proximation of this presumption the heat conduction problem in a
region bounded on the exterior by a square and on the interior by a
circle is analyzed in the following paragraphs. Figure 5 shows the
geometry of the problem.

The problem of a square with a hole in it cannot be solved exactly,
as we show. An approximate solution could be sought in either cartesian
or cylindrical coordinates. However, considering the problem in cy-
lindrical coordinates allows one to compare the relative magnitude of
the portion of the distribution, which varies with cos 2¢, to that as-
sociated with higher order terms. Secondly, the solution is more nearly

Fig. 4 — Convective motion illuminated by cigarette smoke.
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Fig. 5— Geometry for conduction problem in solid cross section of gas lens.

exact on the cylindrical hole if the approximate solution is sought in
cylindrieal coordinates. Furthermore, since the heating arrangement
has a certain amount of symmetry, only a sector #/4 < ¢ = 7/2 need
be considered.

For steady two-dimensional conduction in a material having constant

thermal conductivity the heat conduction equation becomes

3% 138 , 130

W+;5+;5§—0. (25)
The boundary conditions are:

at rsing = b, 8 = —0; (26)

af
at r=1, ar = 0; (27)
at ¢=§, 6 =0; (28)

T a8
at ¢ =5, a¢—0. (29)

Notice that 8 = (7' — T,)/AT as before, where T is the tempera-
ture excursion desired on the cylindrical hole. Consequently, ® =
(T, — T,)/AT where T, is the wall temperature. The insulated condition,
(27), assumes that the heat lost to the gas in the hole is negligibly small
compared with the heat conduetion in the solid. This is reasonable as
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long as kuoiza 3> kems-* Condition (29) results from the symmetry about
7/2. The radius r is normalized with respect to the cylinder radius
as in the Section 2.1.

Assume a separable solution of the form

0 = R(r)®(s), (30)

so that
PR" 4+ rR' — a'R = 0, (31)
& + o’ = 0. (32)

The solution of equation (31) and (32) is

6 — A(?-“ + E;)(Csin g + oS ad). (33)
h

The insulated condition (27) is satisfied if B = 1. To satisfy both
conditions (28) and (29) simultaneously, C = 0 and

a = 2n, n=12325" .. (34)
Therefore,
9, = A,,(r?" + ?%)(cos one), n=1,375 ---, (35)
where 4, is determined to satisfv equation (26), that is,
-0 = i A (—b:n— + sin™ q&) cos 2ng (36)
w53 T8I ¢ )

Because of equation (26) our problem in # is not a Sturm-Liouville
system and we have no assurance that equation (36) will converge
even if the A,'s could be determined in general. In what follows we
determine the first few A,’s so that equation (36) is satisfied in
two different senses as accurately as our needs dictate—colloeation
and minimization of the error in a least-squares sense.*®

In the collocation method the error is made to vanish at, say, three
particular points on the boundary r sin ¢ = b. This gives us three
simultaneous equations through which 4,, A3, and A; can be deter-
mined. For two different sets of collocation points, the corresponding
coefficients are listed in Table I for the ratio of the side length to the

* The k for most plastics is a factor of 10 greater than that for air. For formed
plastics ka1 = kgan and the behavior of 8 at r =1 can be assessed from the solution
for conduction in a square with two sides at © and two sides at —©.
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TaABLE [ —COEFFICIENTS FOR APPROXIMATE SOLUTION BY COLLOCATION

Collocation points = 60°, 75°, and 90°

b =2 b =4 b =6
ax 1.03531 1.08889 1.09191
a3 —0.11082 —0.10469 —0.10434
as 0.01083 0.01155 0.01159

Collocation points = 50°, 70°, and 90°

b=2 b =4 b=286
a, 1.04521 1.09927 1.10232
g —0.14096 —0.13457 —0.13421
as 0.03046 (.03101 0.03104

cylinder diameter, b = 2, 4, 6. These coefficients are normalized with
respect to ©. Furthermore, some of the dependence on b is suppressed
when the coefficients are defined as:

2n
a, = ‘—%’— , @37)
so that
%E E@ﬁ%(ﬂ“-{—?—j—") cos 2né, E ¢ = g (38)

Figure 6 contains a plot of 8(r = b/sin ¢, £/b) using both sets of col-
location points. This illustrates the degree of approximation entailed
at the outer boundary where —(6/0) should equal unity over 0 =
X/b < 1.

The least-squares method requires that the mean square error over
the boundary » = b/sin ¢, 7/4 = ¢ = /2, be as small as possible.
Defining

e=0— (—06); (39)

we then wish to minimize
f e do. (40)

For convenience we take only the first two terms of equation (35) for
8 and note that »** > 1/r™ close to the outer boundary so long as
b = 2. Consequently,

6= Ay’ cos 2¢ + A, cos 6o, (41a)
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and

cos 2¢ s COS ﬁqs.
sin® ¢ + Asb sin® ¢ (41b)
Inserting equation (41b) into integral (40), performing the integra-
tion, and setting the derivative with respect to A, and As equal to

zero we find that:

(% =~ 13118 '6;1218 (rz + ;15) cos 2¢ — 0'1b8305 (r° + 1%) cos G¢. (42)
Figure 6 also has a plot of equation (42) evaluated at r = b/sin ¢.
Apparently the collocation method yields a much closer approxima-
tion for heat conduction problems. (The square of the temperature
has no particular physical meaning.)

Returning to the collocation solution (Table I) the temperature
distribution on the eylindrical wall, for b = 6, is given as

e A,b°

(1, ¢; 6)  2a, cos 2¢  2a, cos 6 | 2a; cos 10¢
@ = 62 + 66 + 6!0

‘ :
LEAST-SQUARES
METHOD ,_——]

4

1

1.0
COLLOCATION AT
609 75% 90°——
| 1

0.8 i

)/

COLLOCATION AT ___ _+
507 70 90°

. |
\

0.2

[+ JEN

Fig. 6 — Comparison of approximation at outer boundary in conduction problem.
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= 0.06066 cos 2¢ — 0.0447 X 107* cos 6¢ (43)
+ 0.0383 X 107° cos 10¢,

and we see that the distribution varies as cos 2¢ within one part in
10,000. For b = 2 the deviation is somewhat greater, being

W = 0.5176 cos 2¢ — 0.00346 cos 6¢ + 0.02115 X 107" cos 104.
(44)

Similar results can be obtained from equation (42).

Recall that this solution is for k.15a > ke - When ko150 & Kgas the
deviation of 6(1) from cos 2¢ can be evaluated from the analytical
solution for a solid square two sides at © and two other sides at —@, v.""
In doing this we found that the deviations from cos 2¢ are of the same
order as those cited above.

The power necessary to operate the lens can be readily found from
integrating along the radial line at ¢ = /4. The heat flow rate @
through one sector is given by

: *198

Q = —k AT ! r(%(h

n=1,3,5

which is nearly independent of &. In terms of the collocation coef-
ficients, where the b*" term has been neglected,

Q .,
@ AT = 2a, — Sa; + 32a5 . (46)
Forb =4
Q = 338k0 AT = 338 k(T, — T.). (47a)
Since

0(1, 7/2; 4) = —0.1360 = —0.136(%55) —1, (47

then for a AT of 1°C excursion T'yay — T, = 7.4°C. For a gas lens
whose solid portion is made of polystyrene (k = 0.1 W/m°C) the heat
flow rate would be @ = 2.5 W/m for each sector; then the power re-
quirement would be 10 W/m for 1°C AT across the lens. If a foamed
polystyrene could be used the power requirement would be 3.5 W/m°C.
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2.3 Optical Properties of the Conduction Lens

With the effect of thermal convection in mind we now consider how
to evaluate the optical properties of a gas lens characterized by the
lowest order temperature distribution (that is, r* cos 2¢). We wish
to determine these properties as functions of AT, cylinder radius a,
and lens section length L; we are constrained by the requirement of
minimizing AT so that the distortion depicted in Fig. 3¢ shall be toler-
able. In the following paragraphs we only write down the relevant
equation; we do not establish explicit design criteria.

The system of lenses consists of a sequence of sections with each
succeeding one rotated 90 degrees. Therefore, for any angle, ¢ (see
Fig. 1), as one marches axially, the sections act alternately as diver-
gent and convergent lenses. Since the temperature varies angularly,
as well as radially, so does the refractive index; hence, in addition to
the ray bending toward or away from the axis it will, in general, be
twisted. However, at ¢ = 0 and =/2 the refractive gradient has no
angular gradient and, hence, rays originally in either of those planes
remain there; they undergo convergent and divergent displacements
alternately. All other rays have radial displacements intermediate
to those at ¢ = 0, =/2.

The trajectories of the rays in the ¢ = 0, /2 planes may be caleu-
lated analytically and turn out to be sinusoidal and exponential in the
convergent, and divergent sections, respectively.

Although a numerical solution must be used for the other trajec-
tories, some qualitative observations may be made. In the neighbor-
hood of ¢ = 0 the angular component of the refractive index causes
rays to be twisted away from that attitude, while near ¢ = =/2 rays
are restored to that angular position. Therefore, as one moves down
a section the density of rays tends to inerease near ¢ = =/2 and to
decrease near ¢ = 0.

In order to obtain the intensity of the beam through a lens section,
the Helmholtz-type equation with the appropriate refractive index
must be solved. This was done by Mareatili*? for an asymmetrical
but convergent-type refractive index.* He established conditions for
the stability of a lens system and calculated the foeal length.

For our present purposes there is no need for a detailed solution of
the field equations but rather for the ray displacement, stability
criterion, and foeal length. Toward this end Miller’s” analysis of the

* Mareatili informed us that there is no basic reason why his analysis could not
be extended to include divergent sections.
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ray equation is applicable.! He obtained these quantities by solving
the difference equations which govern the passage of the rays through
the sequence of lenses. If we only consider the ¢ = 0, »/2 planes, then
the sections act as alternating convergent and divergent lenses, with
the rays remaining in their original planes; we may then apply Mil-
ler’s results.

Miller obtained the ray displacement after the nth convergent and
mth divergent lens for an initially convergent and an initially diver-
gent sequence. He also found the stability condition which keeps the
ray trajectory bounded after an infinite number of lenses. This con-
dition is

0<%<2. (48)

Here, to serve as an example, we only display the expression for the
ray displacement after the nth convergent lens for an initially con-
vergent lens:

r, = 1,k cos (n § —¢,) + rjLk, sinn & (49)

where r, and 7/ are the initial displacement and slope, respectively, and

- 1L\ 2
5=ms1|:]—§(f—)], k, = I

(50)

_ -1 3,—1 — .
¢ = |cos” ki |, and k, s
Furthermore, we must stipulate that the ray does not intersect the
cylinder wall, that is,

T'n
P < 1. (51)

The relationship between the focal length and the refractive index
may be obtained from Marcuse and Miller.! For a thin lens the focal
length is given by*

t We are indebted to Marcatili for several clarifying remarks on this subject.

* A thin lens is one in which the principal surface generated by rays incident
from the left coincides with that surface constructed by rays incident from the
right, Since there is no preferred direction with the conduction-type lens it is
thin; the flow-type lenses cited in Section T may be approximately thin.
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2

f =148 55 (52)
where 8, = 2x/A, A is the wave length of the light, and A¢ is the dif-
ference of the phase of a ray incident a distance r from and parallel
to the axis after traveling a distance L, compared with a ray on the
axis traveling the same distance.

To calculate A¢ in terms of the refractive index, we invoke the
paraxial approximation in which the rays are regarded as approxi-
mately parallel to the axis. Then the required phases are easy to
calculate, that is,

L
b2 =8, [ n@) ds = pn()L (53)
and
¢(0, 2) = B.n(0)L. (54)
The refractive index at ¢ = 0 is
T, n, — 1
nfr,0 =1+ (n, — I)T(r,(}) =1 +___—ATr
1 + p
T (55)
~ LT "
=N, — ( — l) (I. ,
where 7, is the refractive index at the axis at temperature T',.
Hence,
AT
A¢ = Bon, — ); % (56)
and the focal length is obtained from equation (52):
1 a’T,
f= 2 (n, — 1) ATL (57)

independent of r.

With the aid of equations (48), (49), (51), and (57) we may deter-
mine the focal length and ray displacement as a function of the lens
section and radius and temperature excursion. For a complete dis-
cussion of the foregoing subject, see Ref. 9.

To establish precise design ecriteria the foregoing equations must be
solved on a computer. However, for illustrative purposes and as one
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aspect of the problem we shall make use of some of Miller’s simplified
expressions valid in certain limits.?

If we use equation (49) with the value of the section length to
focal length ratio which yields the smallest value of the maximum ray
displacement and, furthermore, insure that the rays do not intersect
the wall, AT obtained is unacceptable for three major reasons (z) the
power requirement is excessive, (17) the moderate Rayleigh number
will cause appreciable distortion, and (i) the temperature excursion
is sufficiently large so that section end effects may be significant.

In order to overcome these objections we now examine the case of
weak foeusing, that is, 2f/L > 1. We consider the initial conditions
guch that

r, K rif. (58)

(The opposite inequality for weak focusing yields a trivial design
problem since it does not involve the focal length.) From Miller the
maximum ray radius, rmay, i °

Tmax = 217 . (59)
To insure that the ray does not intersect the wall we have

[25

Tmm!
4> (60)

L

Inserting equations (57) and (59) into equation (60) yields
1> Cl’._ 411"_1.! .

=L@m,— 1) AT °

As an example we use the following values, where air is the medium
of the lensing action

(61)

T, = 290°K,
n, — 1 = 0295 X 1077,
and
A (Rayleigh number) = 9.15 X 10" ATd’

with AT in degrees Celsius and a in meters. In addition, let 7, = 107%
a =3 X 107 °m, and L = 0.5 m. Then from inequality (61) we obtain

AT = 0.59°C. (62)
Hence, A = 2.9. Consequently,
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| AHH) i < 10 3 & | th) Imnt i

It should be borne in mind that with the above values of @ and L, the
weak focusing limit is satisfied for AT < 5°C. In addition, to safisfy
inequality (58) with the foregoing values we must have

r, € 1lf = 1.5 X 107 m (63)

which is easy to satisfy.
Using equation (47a), we obtain for the heat flow rate through one
sector
Q =15W/m

which results in a power requirement of 6.0 W/m. The required ex-
terior wall temperature is calculated from equation (47b) as T, =
T, + 4.4°C. Therefore, in the limit of weak focusing the temperature
excursion is sufficiently small to make the lens system promising.

Considering the flow-type lens of Marcuse and Miller to have the
same characteristies as the above conduction type lens, we calculate
the power expended at optimum flow rate to be 1.14 W.* Hence, the
lens proposed here requires somewhat more power for heating than
those previously investigated. However, the flow-type lens also re-
quires power to drive the gas.

Since the input beam will be more complicated then was assumed
above, the foregoing calculation is very cursory. However, the rea-
sonable magnitudes of a and L together with the small Rayleigh num-
ber lend encouragement to a more detailed analysis.

III. CONCLUSIONS AND RECOMMENDATIONS

The conduction-type lens proposed here is found to be feasible on
the basis of negligible distortion resulting from thermal convection
and reasonable power requirements to maintain the desired tempera-
ture distribution. Although the lens design illustrated was predicated
on the weak focusing limit a wider range of parameters can be found
by using Miller's complete expression.®

The effect of thermal convection was caleulated from a two di-
mensional analysis, which is certainly valid away from the ends of
the section since a/L < 1. For the temperature excursion required
and the lens illustrated, the convection effect was found to be negligi-
ble. However, at, the interface between the sections, the axial tempera-
ture gradients could be large depending on the spacing left between
sections. Axial gradients were present in the experiments of Suematsu
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and others for their hyperbolic shaped conduction-type lens system.®
They found that no significant aberration existed as long as AT <
42/a** (a in millimeters) so that the effects of the axial gradients
must have been insignificant.

The analyses presented indicate that a system of conduction-type
lenses might be practical for an alternating gradient light-beam wave-
guide. Such a system would require straight square rods with a eylin-
drical hole. Two sides of the rod would be heated while the other two
would be held at a uniform and constant temperature. This could be
done by attaching aluminum fins which project into a constant tem-
perature heat sink to the cooled sides. Such a heat sink is available
for buried systems since, at depths greater than about five feet, the
surface temperature changes are virtually damped out. Therefore,
cooing is not required.

The hole in the rod would be of the order of 6 mm in diameter and
the exterior could be as small as 2.4 em across a face. Larger hole
dimensions could be used but, for the same size beam and lensing ac-
tion, the temperature difference and power requirement would in-
crease proportionately.

After only a preliminary design analysis, where the simplest of
Miller’s expressions have been used, parameters have heen obtained
in the weak focusing limit which yield a power consumption some-
what greater than but of the same order of magnitude as flow-type
gas lenses.” Additional investigations are, of course, necessary. The
distortion of a gaussian beam as it is launched through a lens system
should be numerically calculated (similar to Marcuse’s study for the
flow-type lens.?) The effect of the axial gradients that will be present
at the interface between two lens sections will have to be assessed
through experimental measurements of the optical performance of
such a lens system.
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