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This paper discusses an analysts of the radiation from a parallel-plate
waveguide to determine the effects of loading the waveguide with dielectric
plugs near the aperture. We devole special attention to the situation in
which the higher order modes, generated by the aperture discontinuily,
propagale inside the dielectric plug but are evanescent in the unloaded
waveguide region. We show thal the dielectric plug may funciion as a
resonant cavity for this type of wave mode. When one of these modes is at
resonance, it is strongly exciled by the incident wave; the presence of this
resonance is manifested by the appearance of sharp spikes in the reflection
coefficient either as a function of the frequency or the plug thickness. We
also discuss the relation between the resonances in a single waveguide and
in array configuration.

I. INTRODUCTION

The radiation from a parallel-plate waveguide with infinitesimally
thin walls is one of the relatively few electromagnetic boundary value
problems for which the Wiener-Hopf integral equation technique may
be applied to obtain a closed form solution.! Unfortunately, this ele-
gant mathematical technique quickly loses its usefulness even when
rather minor modifications of the physical system are introduced,
such as, for example, by allowing the waveguide to have finite wall
thickness or loading the waveguide with a dielectric material.

The somewhat simpler problem of determining the radiation admit-
tance of a waveguide terminated in an infinite conducting plane has
been treated by several workers using the variational technique.®?®
The field of the incident wave is used to approximate the true aperture
field in these calculations. The results thus obtained appear adequate
for engineering purposes. The implication is that the radiation admit-
tance of an empty waveguide is rather insensitive to the approxima-
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tion used for the aperture field distribution. There is no way, how-
ever, to ascertain without more elaborate calculations how well the
aperture field is approximated by that of the incident wave.

The variational technique has also been widely used in a broad
class of scattering problems. Although it seems that useful approxi-
mate answers are often obtainable even when rather erude approxima-
tions are used for the trial funnctions, there are numerous instances,
notably in the area of phased arrays* and in problems involving di-
electric material ® wherein it has been found that good approximations
of the trial funetions are necessary to obtain meaningful results. An
important factor contributing to this knowledge undoubtedly is the
widespread availability of high speed electronic eomputers, which have
made it possible to perform elaborate computations hitherto regarded
as too time-consuming and costly to be practical.

In this paper, we discuss the radiation properties of a waveguide
which is loaded with dielectric plugs near the aperture and is termi-
nated in an infinite conducting plane. A waveguide antenna has the
advantage that it can be flush mounted. This feature makes it attrac-
tive for applications such as missile and aircraft antennas. Dielectric
plugs, moreover, provide convenient covers to protect the antenna feed
system against environmental influences. The introduction of dielec-
tric material, however, makes it possible to excite the wave modes
which have a surface wavelike field distribution within the wave-
guide because they propagate inside the dielectric plug but are
evanescent in the empty waveguide region. (This excitation is caused
by the aperture discontinuity.)

‘We show that because of the excitation of this type of wave mode,
the antenna impedance (or the reflection coefficient) exhibits resonance
characteristics versus both the frequency and the thickness of the
dielectric plug. These resonances occur when the parameters are such
that the impedances of a surface wavelike mode (or “ghost mode”)
satisfy a transverse resonance condition. The implication of this ob-
servation is that the dielectric plug acts like a resonance cavity for
the surface wavelike modes. When the combination of the parameters
is such as to permit one of these modes to resonate, the effect is to
cause rapid variation in the radiation impedances (or reflection coef-
ficient) which are manifested as sharp spikes.

The radiation patterns generally show smooth variations versus
the angle of observation. Only when the parameters are in the close
vicinity of a resonance such that the higher order mode is exceedingly
strongly excited do pattern dips appear. Moreover, the dips are rather
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broad and shallow. It is therefore necessary to exercise extreme care
in order to detect resonances by examining the patterns alone.

An earlier analysis of phased arrays using the waveguide at hand
as the radiation element has revealed that resonance characteristics
also exist in both the reflection coefficients and the mutual coupling of
the array.®” These resonances are related in certain ways to those of
the present problem. We briefly discuss the relationship with the view
toward using a single waveguide for the detection of the resonances in
an array configuration.

The boundary value problem is formulated in two ways, one in a
pure integral equation with the tangential magnetic field as the un-
known and the other in an integro-differential equation with the aper-
ture electric field as the unknown. It appears that no known analytical
method is available for solving either equation. It is possible, how-
ever, to use numerical technique to determine approximate but ac-
curate solution from the latter equation. We discuss the method of
obtaining solutions by the method of moments; we also point out cer-
tain salient features with regard to the formulation.

II. FORMULATION OF THE PROBLEM

Consider a parallel-plate waveguide, terminated in an infinite con-
ducting plane as illustrated in Fig. 1. The waveguide is loaded with
a dielectric plug (or window) near the aperture. We consider the sys-
tem to be excited by the lowest TE mode incident upon the aperture
from the waveguide side, and assume the fields to be invariant with
respect to y. Under these conditions, it is easily shown that the scat-

Tig. 1— A flush mount parallel-plate waveguide with dielectric plug.
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tered fields consist of TE modes alone. We determine the radiation
characteristics of the antenna by using the integral equation approach.

2.1 Integral Equations

The problem may be formulated in terms of integral equations hav-
ing as the unknown function either the tangential electric field or the
tangential magnetic field in the plane z = 0. In order to do so, we
must first introduce suitable representations for the tangential fields
in the regions both inside and outside the waveguide. The application
of boundary conditions using these field representations across the
common z = 0 plane then leads to the desired integral equations. We
derive first the equation with the tangential electric field as the un-
known.

2.2 Integro-Differential Equation for Aperture Electric Field

By virtue of the equivalence principle,® the fields in z = 0 may be
derived from an equivalent magnetic dipole M = E, X % situated
above a perfectly conducting plane, where E, denotes the tangential
electric field which exists at the aperture and £ is a unit vector in the
z direction. According to the image theorem, these fields are equal to
twice the fields produced by the same equivalent source in free space.
Since E, = §E,(z', 0), M = %E,(z’, 0). The vector potential due to
this source distribution may be determined easily to be

F =] f HOGR)E,, 0) do, (1)
A

where A denotes the waveguide aperture, H{” (u) is the zeroth order
Hankel function of the second kind, and R = [(z — 2/)* + 2°]'. We
use the time convention exp jwt, which is suppressed for brevity.

The electromagnetic fields in z = 0 may be derived from F by

E= -V XF,
(2)

1
— [K°F -F)].
o B F + V(V-F)]

li

In particular, we find that the tangential field components are given by

Efe,2) =L [ B, 002 HOWR) do,

2 A oz (3)
az
ax’

H.(x,2) = 1 (ke_'_

2wy

) [ B, 082 0R)
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Notice that the integrals in equation (3) have to be evaluated care-
fully when z approaches 0. In particular, the differentiation and inte-
gration in the second equation may not be interchanged when z — 0,
because in doing so the integral becomes divergent.

The fields inside the waveguide are most conveniently expressed
in terms of the waveguide modal functions. The presence of dielectric
plugs near the aperture may be accounted for by using appropriate
modal admittances which are derivable by applying the transmission
line theory. Assuming that the incident wave originating in the region
2z < — d has unit modal voltage, we may write the tangential electro-
magnetic fields at the aperture as

B, 0) = 2 Veela),
n=1

] @
H:(En 0) = —2 ?1901(3') + Z ?nvnion(x)’
n=1
where ¢, are the orthonormal modal funetions, and
- iy D D
P, - yr etihmnad,
» + 7Y, tan oy )

7. = L

Y2 cos a'id 4+ §V, sin o'id !

with
D
Y, =2 and ¥P =
Wy Wity
(a® and a, being the nth propagation constants in the waveguide region
with and without a dielectric, respectively). The V, are the modal
voltages at the aperture. When the modal voltages V, in the empty
waveguide region are desired, they may be obtained by using the fol-
lowing formula

Y? =
Y2 cos a’id + jY, sin o'd

V.=

2Y, sin o’d
Y? cos ald + jY, sin a'd

+3 b1n (6)

where 8,, is the IKronecker delta. The reflection coefficient R is obtain-
able from

1+ R=1V,. (6a)
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The orthonormality of the waveguide modal functions may be applied
to the first equation of (4) to obtain

_ f B, 0)en(a’) da.

When the result is substituted into the second equation of (4), we
find

Hir,0) = =2V ) + 3 Tese) [ DB, 0 def. ()

=1

Notice that the summation and integration in equation (7) are not
interchangable. The reason is that when the summation is brought
under the integral sign, the resulting kernel has a singularity of the
form 1/(x — 2’)2, which is nonintegrable in the usual sense. In order
to circumvent this difficulty and to put equation (7) into a form suit-
able for combination with equation (3) when the boundary condition
is applied, we use the following relation

Pu@ee) = (24 1) 2 e, ®

Equation (7) may then be written as

H.(z,0) = —2¥,0\(x) + ( =+ k)

: L [i L wﬂ(w)wn(:v’)}Ey(z', 0) dx’.  (8a)

n=1 “n
An application of the continuity condition on H, across the aperture
leads to

2

2V o) = (21 ) ) [zf en()en(x’)

n=

+ HP k| v — 2 }}:lE,,(x’, 0) da’ for zeA. 9

2w
This is the integral equation having as the unknown function the
tangential electric field which is nonvanishing only over the aperture
region.

Notice that the step introduced in equation (8) to facilitate the
interchange of integration and summation is not essential in our later
application of moment method for solution. The procedure, however,
enables us to obtain a compact integro-differential equation from
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which a pure integral equation may be derived, thus permitting a
solution by different techniques.

2.3 Integral Equation for Tangential Magnetic Field

We next consider the integral equation using the tangential magnetic
field at z = 0 as the unknown function. The derivation in this case
follows the same procedure as discussed in Section 2.2. We first rec-
ognize that the fields in z = 0 may be expressed in terms of the tangential
magnetic field as follows

B2 = f HPR)H, (!, 0) da’,

W2 = -1 [ 2 a@emE.E,0 d, (10)

i
2

_i (70 pe ' ’
H.(x,2) = 5 f_w p HP(kR)H (', 0) dx’.

The limits of integration extend from — e to « because H.(z', 0)
has values over the entire z = 0 plane. The fields inside the waveguide
are given by

H.(x, 0) = i Len(x),
n=1 (11)

Eu(-T; 0) = _QZlﬁpl(T‘) + Zﬂ _ntpn(:r‘) ]

s

where
Iy, D
Zn = I/Yﬂ 1) Zl = §) DAIZI. . D '
Z7 cos ard + jZ, sin aqd
Again, the I’s are the modal currents defined at the aperture, and

the modal currents I, for the empty waveguide region are related to
I, by

D

— J“ T

- D . . Dq*n
Z% cos a2d + jZ,sin a,d

Iﬂ
97, sin a3d

ZP cos ad + jZ, sin a2d

The reflection coefficient may be caleulated using

1—R=1,. (12a)

+ bin . (12)
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Equation (11) may be rewritten by making use of the orthonormality
relation between the ¢’s. Thus,

Bz, 0) = —2Zp,(z) + L [i Z..qou(x)tpﬂ(:c’)]H:(:c’, 0)dz’.  (13)

n=1

In obtaining equation (13), the integration and summation have been
interchanged. This is permissible because the kernel

2 Zoon(@en@’)

behaves like In |z — 2’ | so that the integral is absolutely convergent
for physically acceptable solution H,.

We are now ready to derive the integral equation by applying the
boundary condition using equations (10) and (13). The limits of in-
tegration in equation (13) may be extended from A to (—oo, o0) with
the understanding that the ¢’s are defined to be identically zero out-
side the aperture. We thus obtain

221@1(-’”) = f—w [2 Zn@n(-’f)‘ron(-'v’)

-+ ﬂ;—“ HPk |z — 2 )]HI(.’C’, 0) da’ —w <3< ™, (14)

Notice that equation (9) and (14) may be cast into variational form
for the input impedance and admittance, respectively.

IIT. SOLUTIONS OF THE INTEGRAL EQUATIONS

Equations (9) and (14) constitute a pair of alternative integral
equations for the radiation from a parallel-plate waveguide into a
half space. One of the equations has as the unknown function the
tangential electric field, while the other has as the unknown function
the tangential magnetic field. Since there is no known method for
solving these equations analytically, we have to resort to approximate
techniques. Because of the infinite limits associated with the equa-
tion for the magnetic field, which is usually rather difficult to handle
numerically, the one for the electric field is much preferred.

Strictly speaking, equation (9) is an integro-differential equation.
We may derive from it a pure integral equation in a similar vein as
Hallen did for the dipole antenna. The usefulness of this approach is
currently being investigated. We discuss solutions of equation (9)
directly by the method of moments.”** To do so, we first approximate
the aperture electric field by the following representation
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N
E, (', 0)~ 2 bU.@"), (15)
where U,(2’) is a set of linearly independent functions which are
chosen to satisfy the boundary conditions on E, at both ends of the
aperture, that is
IP:J(O) = [’rn(a') = 0' (16)
Substituting equation (15) into equation (9) gives

27 1p,(2) & é bn(_;);:g + "f‘-z) ./; [i gﬂ ea(@)ea(a”)

n=1 T

+ L oG e — o ) U@ . Q)
2wpo

We next require the difference between the left and right sides of
equation (17) to be orthogonal to another set of functions
Wn(x): ﬂ‘=1121"':N

with W,(0) = W,(a) = 0 (for reasons Lo become apparent presently).
This last step then converts the integral equation into a set of algebraic
equations

N
EAqnbu=fa: q=1:2:"':N: (18)

p=1

where

i a 3 Pn ) ©n 'p)
+ _,jol‘;f dx W ('c)( 5 + k*) f do' HP(k |z — ' |)U,"), (19)

ju = 2}-’1 f diE Qol(x)Wq(I))
with
Vo) = [ da WiDe@).

For the evaluation of A,,, it is desirable that U,(x) be chosen such
that the integration of U,(x) and Ho(k |z — 2’ |) can be carried out in
closed form. Unfortunately, such functions which will also satisfy the
boundary conditions (16) are not easy to find. This being the case, we
shall manipulate the expression in equation (19) into forms which are
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more convenient to implement for numerical integration. Thus, by in-
terchanging one differentiation with the integral with respect to 2, and
then integrating by parts twice (once with respect to 2’ and once with

respect to ), we find

82
fd;z: W, (x) ’§f de’ H®(k |z — 2" U, (")
4 dx” J,

T (!
— _f dx d”’ U(J j da’ H{(,“(A, | ' D (___ILdP(;r_) ,
M v
where we have used the relation

a d ,
L PGz — ) = — g Pk |2 = 2 ])

and the fact that the integrated terms vanish on account of the bound-

ary conditions.
Using this result, we may rewrite equation (19) as

= i ?H(Wﬂ |§9n)(¢’n 1 U:J)
+5om [xs“ f de () f A HO |z — 2 DU

_ f dr T2 f de HO(k | w — o' ) 20 )] (20)

The double 1nteg1'a,ls in equation (20) may be converted into single
integrals by a transformation of variables. If the waveguide modal
functions are chosen as both the basis and testing functions and if
the fact that only modes of even symmetry with respect to yz plane
are excited is accounted, we obtain

-V _l__f (2)
Aw - } q aap + 2“’}-‘-(} A ds HO (kS)qu(S), (21)
where
2 e P gy i OT :|
(qz_pz)ﬂ_[k,,gsmas r’ﬂ,;,pSlnas qg#Ep
F“(S) = 4 , Si.IlPEEI
1 20 pr [ 2 (H) ] a _
ajk,,(a s)cosas-i— k4 4 P_"IJ ¢g=7p
a
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k2 = ) — (?I)E
p a -

The last integrals in equation (21) may be evaluated numerically.
We have found that a fast, accurate, and yet economical way is to
apply the Simpson’s rule with the values of the Hankel function ob-
tained from the Tschebycheff representation.*

After the matrix elements are calculated, the set of equations (14)
is ready for a solution. An advantage of choosing the waveguide
modal funetions as both the basis and testing functions in the ap-
plication of the moments method is that the solutions are expressed
directly in terms of the modal coefficients of the aperture field. The
reflection coefficients are then easily caleulated by using equations
(6) and (6a).

The radiation patterns of the antenna may be obtained from equa-
tion (3). Introducing the asymptotic expression for large arguments
for the Hankel function, we find that the electric field in the far
zone is approximated by

with

1/2
B 0~ (G) e cos 0 [ B, 0t a2

It is easy to show that the magnetic field in the far zone is related to
the electric field through the free space admittance. Thus,

Hy(r, 8) = noli,(r, 8), for kr>1,

where 5, is the characteristic admittance of free space. For compari-
son, it is often desirable to normalize the radiation patterns. A com-
monly used normalization is to make the amplitude unity in the di-
rection of maximum radiation. We use a different normalization here,
however. Our patterns are normalized such that the integral of the
square of the amplitudes gives the radiated power when a unit power
is supplied to the incident wave. This way of displaying the patterns
is more advantageous because it shows the normalized radiation inten-
sity in addition to the information contained in the usual pattern
presentation; this provides a basis of comparison when the frequency
is varied. Thus, using expression (15) with {Uy(x)} = {W,(x)} =
{¢p(x)} and equation (22), we obtain for the normalized radiation
pattern
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cos (k 2 sin B)
2k al 2
T(0) = W cos@ Y, b, 5 = (23)
] e (n—"r)[l - (—asin 6) :I
a nA

where «; is the propagation constant of the incident wave.

IV. RESULTS

We now present numerical results obtained by the method described
in Section III. The computations are actually performed with exp —
jwt time convention. Table I shows the type of convergence one may
expect for the reflection coefficient R versus N, the number of modes
used to approximate the aperture electric field. The parameters used
in this calculation are ¢ = 6, A/a = 1.5, and d/a = 0.544. This rep-
resents one of the worst situations encountered. Nevertheless, we find
the convergence is quite rapid.

The variation of the reflection coefficients versus the thickness of the
dieleetric plug is considered first. Figure 2 shows such a calculation
for A/a = 1.5 and ¢ = 6. With this value of a/A, only one mode can
propagate in an unloaded waveguide. The dielectric constant is chosen
so that the third order mode is propagating inside the dielectric. (The
second order mode will also be propagating; but this mode cannot be
excited because of the symmetry in the geometry.)

The reflection coefficient shows a smooth standing wave like variation
versus d/a over the entire range of d considered except in the vicinities
of d/a ~ 0.54 and d/a =~ 1.31 (where sharp spikes appear). Figure 3
shows the details of the reflection coefficient near these spikes.

The maxima (or minima) of the standing wavelike pattern are equally
displaced at a distance given by /a7, where o} is the propagation
constant of the nth mode of a dielectric loaded waveguide. The separa-

TaBLE I—CoNVERGENCE OF R VERrsus N

N IR| Fogrens)’
1 0.8031 —162.8
3 0.9213 —169.8
5 0.9306 —169.2
7 0.9348 —168.9
9 0.9372 —168.6
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Fig. 2 — Reflection coefficient of a waveguide antenna with dielectric plug (e =
6 and A/a = 1.5).

tion between the two spikes Ad is obtainable from the relation a%(Ad)
= . (Notice that the sharp spikes are frequently preceded by deep
dips such that they may appear like close-by double spikes as displayed
by the one at d/a = 1.31. See Fig. 3.) Figure 4 presents another calcula-
tion using a higher dielectric constant ¢ = 13. Since the propagation
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Tig. 3 — Details of B versus d/a for e = 6 and A/a = 15.

constants o and of are larger when a higher dielectric constant is
used, the maxima (or minima) and the spikes become more closely
spaced. Otherwise, the relation stated above remains valid. This ob-
servation suggests that ordinarily the third order mode is only weakly
excited so that the radiation impedance of the waveguide is determined
primarily by the fundamental mode. Only when the dielectric plug
has a certain thickness is the third order mode excited strongly enough
to influence the reflection coefficient of the fundamental mode. Figure
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5 shows the solutions for the third order modal coefficients versus d to
demonstrate that indeed this is the case.

From the regularity of the intervals between the spikes at which the
third order mode is excited sufficiently strongly to influence the radia-
tion of the waveguide, it seems reasonable to assume that the dielectric
plug forms a cavity for the third order mode. This cavity goes into
resonance only at proper combinations of the wavelength and the
thickness of the dielectric plug. To verify this conjecture we applied
the transverse resonance technique at the waveguide aperture using
the admittances pertinent to the third order mode. Let ¥ be the radia-
tion admittance when a ecompletely loaded waveguide is excited in the
third order mode. The admittance looking toward the negative z direc-
tion, that is, into the waveguide is given by the appropriate modal
admittance:

7— y? Yy + j¥Y7 tan afd
" ¥Y? 4+ jY, tan o2d
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Tig. 4 — R versus d/a for e = 13, A/a = 15.
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= 15.

The condition of resonance is given by*
Im (Y + 7) = 0.

Figure 6 shows a calculation of the imaginary parts of ¥ and Y as
functions of d. The graph clearly demonstrates that there are inter-
sections occurring at the values for which resonance behavior is ex-
hibited in the reflection coefficients.

We next consider the variation of the reflection coeflicient when the
frequency is varied. Figure 7 gives a calculation using e = 6 and d/a =
0.55. That there are two frequencies at which the reflection coefficient
displays abrupt variations is quite evident. The details of one of the
variations are illustrated in expanded scale in the inset. Examination
of the admittances pertinent to the third order mode again shows that
the transverse resonance condition is satisfied at both of these fre-
quencies. Another salient feature shown in this calculation is that there
are several frequencies at which the reflection coefficients are practically
zero. Therefore, when the parameters are judiciously chosen, the use of
a dielectric plug does not necessarily degrade the match characteristic
of the antenna.

* Strictly speaking, because of the radiation from the waveguide aperture, the

resonance condition should be (.S_.’ + ?) = 0. Since our interest is to obtain the
condition for maximum excitation of the third order mode as d is varied, this

should be a good approximation.
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The radiation patterns of the antenna have also been computed for
the various values of parameters considered. The results in general
display smooth variation versus the angle of observation 6. Only when
the parameters are such that the resonating higher order mode is ex-
ceedingly strongly excited do dips appear in the radiation patterns.
Figure 8 gives some typical results for smoothly varying patterns and
Figure 9 illustrates the patterns with dips. Notice that the pattern
dips are exhibited only over a very narrow range of the parameter
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Fig. 7 — Varintion of R with frequency for e = 6 and d/a = 0.55.
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Fig. 8 — Normalized radiation patterns 7'(8) of a waveguide with dielectric
plug for e = 6 and A\/a = 15.

d/a. Moreover, the dips are rather broad and shallow because the
aperture is small in wavelength, 15 < a/A < 1.

Figure 9 also shows the patterns for the situation when the wave-
guide is completely loaded with a dielectric and is excited in the
first or the third order mode. The aperture field in such situations
consists primarily of the incident wave. We observe that a relatively
small aperture with an aperture field distribution of the third order
mode is capable of producing a dip in the radiation pattern. Now,
when the third order mode is at resonance inside the dielectric plug
so that it is strongly excited, the aperture field contains high content
of both the incident dominant mode and the third order mode. The
relative amplitudes and phases of these two modes determine the
shape of the radiation pattern. The combination sometimes may be
such as to generate a pattern which exhibits a considerably suppressed
radiation in the broadside direction as shown in the curve for d/a =
0.545.

V. CONCLUSIONS AND DISCUSSIONS

The investigation of the effects of dielectric plugs on the radiation
from a flush mounted waveguide has shown that dielectric plugs can
function as a resonant eavity for the wave modes which are propagat-
ing inside the dielectric but evanescent in the unloaded waveguide
region. Such wave modes have interesting effects on the radiation
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impedances of the antenna. When one of these modes is at resonance,
it is strongly excited by the incident wave; the presence of the res-
onance is manifested in the form of sharp spikes in the reflection
coefficient,

Resonances have also been observed in the analysis of phased
arrays using the present waveguide with dielectric plugs as the radiat-
ing elements. They appear in both infinite and finite arrays. The oc-
currence of these resonances may be identified by the conditions of
total reflection of the incident power in infinite arrays® and rapid
variation of the coupling coefficients in finite arrays.” Although there
has been considerable discussion on array resonances in general, it
appears that no consensus has been reached yet about the basie
mechanism of this phenomenon. We hope that observation of reso-
nances and our analysis of their causes may shed some light on this
problem.

Another aspect which deserves some comment is the use of a single
array element for the detection of potential difficulty due to reso-
nances. This question is particularly important in array designs using
antenna elements which are less suseeptible to analysis. We realize
that this is an ambitious question which cannot be answered com-
pletely without a more elaborate analysis. The calculation so far,
however, has indicated that resonances observed in array configura-
tions are often not exhibited by the radiation characteristics of a

0.8 -
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Fig. 9 — Pattern dips due to strong higher order mode excitation for ¢ = 6 and
Ma = 15 (—-— 1st mode excitation; - - - - 3rd mode excitation).
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single element. For example, in arrays of waveguides with dielectric
plugs such as the one considered here,® resonances which are found
to occur as a result of the interaction with the resonating second order
mode are not displayed by a single element because this mode is
usually not excited in the latter situation on account of geometric
symmetry. When the dielectric constant is large enough to permit the
third order mode to resonate, it is possible that the resonance condi-
tions resulting from this mode may be uncovered. Even so, resonances
which are caused by the second order mode are still undetectable.
Moreover, there are other situations in which resonances do occur
without the use of dielectrics such as planar arrays of rectangular
and circular waveguides.2212 It therefore appears that it is not suitable
to use a single element in the prediction of potential array resonances.
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