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We calculate the granular quantizing notse for a delta modulator thai
has unequal positive and negalive step sizes. The asymmelry leads lo a
highly colored motise spectrum. We perform this calculation by adding a
ramp funclion of time to the input of a symmetrical coder. The resulting
formulas can also be used for uniform DPCM and PCM coders. The
idle-channel spectrum consists of discrete lines which scatler somewhat
trreqularly in amplitude and frequency; they can be regarded as the result
of sampling (aliasing) a sawtooth wave. These lines are phase-modulated
by a coder input. For a sinusoidal input, discrete side frequencies are
produced which again have an irregular progression of amplitudes. Gaus-
sian inputs lead to gaussian line shapes; the lines broaden as input power
is increased. A fotally white spectrum (as is often assumed in connection
with delta-modulation-system considerations) cannot be atlained, however,
before the onset of slope overload. We give a numerical example that uses
a coder sutlable for telephone applications. One can see that step asym-
metry can be very advantageous in attaining low noise.

I. INTRODUCTION

While Laane and Murphy? were investigating the encoding of speech
using delta modulation (AM)? it hecame apparent to us that existing
theories of granular quantizing noise®* were seriously deficient; they
did not take into account, except in a very elementary way, the asym-
metry of the positive and negative integrator step sizes. This work in-
tends to correct this deficiency.

Figure 1 is a block diagram of a AM coder-decoder. An input signal
1s compared with a locally reconstructed version of itself and the
differential, or error, is quantized into a one-bit code, transmitted, and
integrated at a receiver to recover the original signal. Quantizing
noise is produced by the coding process and is also recovered at the
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Fig. 1 — Delta-modulation coder plus decoder (codec).

receiver; this noise is the subject of this paper. We limit our considera-
tion to single-integration systems.

In the past, considerations of AM noise have been broken into two
distinet areas: calculation of quantizing noise accompanying a typical
signal,® and caleulation of idle-channel (zero-input-signal) noise.* As
Fig. 2 shows, there is no idle-channel noise for a coder in which the
plus and minus quanta (steps) fed to the integrator are exactly equal
in magnitude. The integrator output spectrum contains only the out-
of-signal-band Nyquist frequency, fy (one half the sampling fre-
quency, f,) and its harmonics. In any real coder, however, it is
impossible to balance the plus and minus steps perfectly, with the re-
sult that the output contains oceasional double-plus (or double-minus)
steps, as Fig. 3 shows. In general, this waveform has signal-band com-
ponents. Wang calculated the noise for this case but his results, while
adequate as far as they go, are incomplete and nonrigorous.* Van de
Weg’s calculation of noise in the presence of signal was for an equal-
step (symmetrical) coder.® We do the caleulation for an unequal-
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Fig. 2 — Integrator-output wave from a symmetrical (equal-step-size) coder.
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Tig. 3 — Integrator-output wave from an asymmetrical (unequal-step-size)
coder, shown with |, | > |o-|.

step (asymmetrical) coder and show that there are significant differ-
ences.

In much of the literature on delta modulators, where noise is treated
casually, the assumption is made that the total average noise power
is more or less uniformly distributed in the band from zero frequency
to the Nyquist frequency. This assumption is a very good approxima-
tion for multibit PCM and DPCM but, as we show, can lead to
colossal errors for AM.

Results presented for gaussian input are in terms of time-averaged
noise power. In this form they are directly useful for speech systems
and typical data systems but are of more limited value for video
systems, where details of the waveform are perceived.

In Sections IT and III, we set up the method of attacking the prob-
lem. Then in Section IV we treat zero input (the idle channel), in
Section V a sinusoidal input, and in Section VI a broadband gaussian
input. The appendixes contain various mathematical developments
necessary for logical completeness but not important to the reader
interested in engineering understanding and application of the main
results (with the possible exception of Appendix D).

1I. QUANTIZING RULES

The function of the coder (Fig. 1) is, at each clock time or sampling
instant, to add a positive step (¢,) to the integrator output (g) if this
output is less than the signal input (y) or to add a negative step (o)
if the output is greater than the input. If the integrator has instanta-
neous response and infinite time constant, the output is a sequence of
rectangular pulses, as in Figs. 2 and 3.

If y, is the value of the input at the nth sampling instant, and g.
is the output value just before this instant, the operation ean be sum-
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marized:

Yn — (n Gn1

+ qra+f7+
- n + o

As we mentioned, it is not possible to make the magnitudes of o
and o_ exactly equal in a real coder. Let us therefore define

g, = 0o + ¢ o = —a + ¢ (1)

where o, the average step size, is a positive quantity. The coder opera-
tion can then be summarized in a single equation:

Gusr = Gu + o 5g0 (Yo — g.) + € 2

We are actually interested in the error, or noise, * = ¢ — y, which
accompanies the reconstructed signal. (Appendix A shows that z is
usually uncorrelated with ¥ and is therefore noise under any circum-
stances.) Substituting for ¢ in equation (2) gives the noise as a funetion
of the input:

Ty — T+ o8gN T = —Yuur + Yo + € 3)
= —[Yors — (0 + De] + [y. —ne]l  (4)
= —yna + Un . (5)

Thus we are led to a crucial principle: The noise outpul of an asym-
metrical (e # 0) AM coder can be calculated as the noise output of a
symmetrical (e = 0) coder, tf the input is taken as the actual input plus
an appropriate ramp or staircase function of time.

If equation (5) is summed from { = — % to just before the nth in-
stant [assuming 2(— ) = y(— =) = 0],

n—1

T, + o Z sgn x; = —1, (6)

or

g = —a Z sgn ¥, . )
The resulting summation in equation (7) must be an integer alternat-

ing between odd and even values as a function of n. We can, without

loss of generality, take it even for even n. [In equation (11) we include

an arbitrary initial value of amplitude for the ramp; this covers the
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possibility that the odd-even assumption is consequential.] If we assume
that the coder does not go into slope overload (that is the input slope
stays between the limits ¢, /7, and ¢_/7.), then ¢//c is the nearest odd
integer to (¥’ + €)/o for the odd sampling instants and the nearest
even integer for the even instants. y, 4 e appears, rather than y;,
because the error must range from ¢ + e to —o 4 € rather than from
+¢ to —a. The effect of this added e is simply that the coder transmits
a de level of € in addition to other signals and noise. Since AM systems
normally suppress de, as is mentioned in Section IIT in connection
with other reasons, this added e is dropped in the succeeding mathe-
matical development. If it is desired to include it, x — e should be
substituted for z in what follows.

We have seen that a AM coder has two quantizing functions which
alternate in time. Figures 4 and 5 show these functions; both the input
and output are normalized to ¢.

¢.(y) and ¢/(y) were called E(y) and O(y) by van de Weg who cast
them into contour-integral form and used them directly.” We prefer
to follow the suggestion of Rice and use the error functions, z(y),
also shown in Figs. 4 and 5.° These functions, periodic in y, are con-
veniently represented by their Fourier series:

z, = 3 5 exp (milg), )

=0
and

z0 = 2 (=1)' = exp (rilg) (9)

=0

where ¢ = y'/a. For a AM coder then,

z, = 2 (=" = exp (rilg)) (10)
= 2 5 e rilln + g)] (11)
= X e milldy + (L= 9 + g.l], (12)

where we have introduced

g,E%, 0 ==, gy = —- (13)

a a a

The last part of equation (13) takes into account an arbitrary initial
amplitude for the ramp.
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Fig. 4 — Quantizing and error functions for odd sampling intervals.

There is actually nothing in equation (12) which constrains the
change in integrator output to be equal to one step per sampling
interval. Indeed, the quantizing functions in Figs. 4 and 5 are perfectly
valid for uniform DPCM systems where changes =0, =3¢, --- ,
+=(2N — 1)¢ are allowed. Thus the formulas developed in this paper
can be used for DPCM (and PCM—see Appendix B) with the provision
that they are useful for input signals with up to 2N — 1 times the
maximum slope of the AM system. This provision is not trivial, how-
ever; when signals range over many steps per sampling interval the
errors tend to be uncorrelated, the noise spectrum tends to be white,
and the structure (important for AM) calculated here is negligible.

III. NOISE FORMULA

Results in this paper are given in terms of frequency spectra of
noise (two-sided unless otherwise identified). It is well known that
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the spectrum of a pulse sequence can be broken into a factor which
contains the information about the pulse shape and a factor which
contains information about the area of each pulse and the periodicity.
The “shape” factor (called also the “structure” or “aperture” factor)
depends on the details of the coder eircuit response. This factor is
frequently negligible, because the low pass filter it represents normally
does not contribute any significant distortion in the signal band. Thus
we need only consider a §-function representation of the sampled-
signal, integrator-output, and noise pulse trains, as did van de Weg.*
The noise wave with the proper area for each pulse is

oo

W) = 1, Z_ x, 8(t — nr), (14)
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Fig. 5 — Quantizing and error functions for even sampling intervals.



2366 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1969

where 7, is the sampling interval (=1/f,). If x(f) is defined as a con-
tinuous wave with samples z, = x(nr,), equation (14) can be written

WD) = ral) 3 ot —nr) (15)
—a() 3 exp @nikf.). (16)

A convenient form for x(t) is, using equation (12),

a(t) = 2 =5 exp (willd, + (1 = )Lt + 9]}, (17)

where

o) = 10, (15)

Combining equations (16) and (17) gives

o0

W) = X 3 Zexp [n'wu + om(’(l L k)f ’ +mlg(t)]- (19)
150 k=—o0

Thus the noise wave (before filtering by the shape factor) consists of

a collection of lines of frequency

(=D 4 by,

each phase-modulated by the input signal through a time-dependent
angle, #lg (¢). These lines are examined in Section IV.

It is well known that the power spectrum of equation (14), and
therefore equation (19), is periodie in frequency, f, with period f,.
We can thus concentrate on the band from —fy to fy. Because of the
aliasing or folding problem, all useful signals lie in this band (or any
band of width f;). The total power in (—fy, fy) 1s ¢®/3, which is also
equal to the mean square error, (z?). Appendix D treats these matters
explicitly.

Equation (19) gives the noise generated at the coder, while one is
ordinarily interested in the noise at a (distant) decoder. Unless the
decoder has exactly the same step sizes as the coder, the noises are
different. If the o’s are different, there is some linear gain or loss in
the system; signal and noise are affected equally and their ratio, the
really significant figure of merit, is not affected. If the #’s are different,
the noises will differ only by a drift or ramp function of time. To get
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rid of this ramp (and also because it is necessary to damp out the
effect of errors in transmission) real systems have low-frequency (be-
low-signal-band) cutoffs, called leaks, built into the integrators. The
high-frequency cutoffs of the coder and decoder integrators may also
be different, In the event that these cutoffs affect the signal band
they can be taken into account as separate factors in determining the
spectrum. Thus equation (19) ean be used to calculate noise at the
decoder output.

IV. IDLE-CHANNEL NOISE

The term “idle-channel noise” is used here as if it were synonymous
with “zero-input noise.” We recognize that this terminology is some-
what loose, in that an idle channel is actually characterized by a
thermal or other noise input. Nevertheless, this usage seems established
in the literature and the distinetion is not significant for most cases of
practical interest.

Figure 3 shows the integrator output of an asymmetrical coder. An
approximately sawtooth-shaped wave with peak-to-peak amplitude
=~ ¢ is clearly visible (Wang's “first envelope function”).* Other not-
so-evident sawteeth are also usually present.

Putting ¥ = 0 into equation (4), we see that the idle-channel noise
output of an asymmetrical coder ean be calculated as the noise out-
put of a symmetrical coder with a ramp input. Figure 6 illustrates
this. The error wave in Fig. 6 is the same as the wave in Fig. 3 ex-
cept for an inconsequential difference in the pulse shapes.

The idle-channel output is ealeulated by setting ¢ = 0 in equa-
tion (19):

w(l) = 2 2 ﬁ exp [ﬂ'lﬂo + 2m(£2 (1 -9 + k)f.t] (20)

190 k=—c0
which describes a collection of discrete lines. Figure 7 shows a number
of these lines; the symmetry of the spectrum about all integral multi-
ples of fy is apparent.
For any given value of [, there is only one value of k which leads to
a line in the Nyquist interval (—fy, fy). This line, of frequency fi, can
be defined: Let

Q(a) = a — N(a) (21)
where

N(a) = integer nearest a.
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Fig. 6 — Input, output, and error waves for a (negative) ramp input to a sym-
metrical coder.

Then
fi = Q(l(l ‘”)f.. (22)

Ignoring lines outside the Nyquist interval, and combining terms of
+1 and —I,

0

vn(l) = 3 27 sin (el + 2efit). 23)

I=1
If we now think of the spectrum as one-sided, we have a collection
of lines of frequency

f=lfil (24)
and power
2
P, = "l (25)

These lines will subsequently be referred to as “main lines,” “original

lines,” ‘“‘carriers,” or ‘“I-lines’’ (2-line, 5-line, and so on).
) ) ) 1
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Figure 8 is an example of the spectrum, bringing out some of the
important qualitative features. One can see that the terms for which
[ = 2, 4, and so on, are the components of the sawtooth, of peak-to-peak
amplitude ¢ and fundamental frequency ¢f,, evident in Fig. 3. If we
choose those values of I which equal aN, where a is a positive integer
and N is the odd integer nearest 1/, we have the components of another
sawtooth of peak-to-peak amplitude 20/N =~ 2¢ and fundamental fre-
quency |1 — N#|f./2 (Wang's “second envelope function”). In Fig.
8, N = 19.

Notice that either the (N — 2)-line or the (N 4 2)-line has a fre-
quency equal to that of the 2-line minus that of the N-line and a power
about equal to that of the N-line (the 21-line in Fig. 8). This line may
also be thought of as the fundamental of a sawtooth, as may all lines
at the lower end of the spectrum.

There is another interesting way of looking at the idle-channel noise
spectrum. Recalling equations (15) and (17), it is apparent that vo()
can be thought of as the result of sampling, at a rate f, , the wave

() = 2 = exp {milldo + (1 — 9)f.11) (26)

which describes a sawtooth of peak-to-peak amplitude 20 and funda-

l
1-1 L=, k=0 a =] l=1, k=0 1,1
- | E
3
a
s
<
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-3,1 3.4
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o O vl 1
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Fig. 7— Example of an idle-channel noise spectrum. All lines for |I]| = 1, 2,

3, 4, and 12 are given; notice their symmetries. Selected other lines are included
to show the progressions involved.
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Fig. 8 — Example of a one-sided idle-channel noise spectrum, for ¢ = 5/96.
The most powerful 25 lines are shown along with selected others, in particular
the harmonics of the 17-line, 19-line, and 21-line. These and the 2-line plus its
harmonics make up sawtooth waves.

mental frequency (1 — #)fy . In Fig. 9 this sawtooth is superimposed
on the wave of Fig. 3.

All the I-lines are distinet if # is irrational, which is expected to be
the normal ease. Appendix B treats rational .
V. SINUSOIDAL INPUT

Let us calculate the noise output of a AM coder for a pure sinu-
soidal input, setting

g() = A sin 2rfot + @), (27)

where ¢ is an arbitrary constant phase angle. We put equation (27)

L= T+€

The
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Fig. 9— Error wave of Fig. 3 with superimposed sawtooth. The heavy dots are
the sampling points. Section II explains the vertical offset (e).
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into equation (19) and make use of the Jacobi-Anger formula:®

exp [wilA sin (2rf,t + ¢)] = i J . (wlA) exp Crimfot + img), (28)

where the J,, are the Bessel functions of integral order of the first
kind. The result is

20 kd

) = 25 3 30 5 Julwld)

1#0 k=—w m==—o

-exp (rild, + 1me) exp {2wi[<l(1 9) + k)f + mfo] } (29)
If we define

fi = (Z(l -|— k1, m))f (30)

where k(l, m) is chosen so that f; + mf, is in the Nyquist interval, we
can write (for this interval)

Pxainl(l) = 12 > % J ol A) sin 127(f + mfo)t + 7l + me]. (31)
1 m=—w

Equation (31) describes a collection of lines consisting of the original
lines of the idle-channel noise spectrum (or their replicas, fi + kf.),
each with a set of uniformly spaced (z£mf,) satellites. The total power in
an l-group (all the lines governed by the index I) is constant. J 2(wlA) of
the power remains in the main line; the mth satellite gets J 2(wlA) of the
total power. From the symmetry of the spectrum one can see that for
every [-line satellite which falls outside the Nyquist interval there is a
corresponding satellite in the Nyquist interval arising from a carrier
outside the interval.

The nature of the Bessel function is such that main lines go through
a series of peaks and nulls as a function of A for a given I, and [ for
a given A. The satellites, in addition, fluctuate in amplitude as a func-
tion of the index m. As a result, for the typical case of a signal band
which is a small fraction of the Nyquist interval and for an input
frequency of the same order as the signal bandwidth, the signal-band
noise power is determined by relatively few lines and can be expected
to fluctuate irregularly as a function of input amplitude and frequency.

Jn(2) goes fairly rapidly to zero as a function of m for m > z.
Thus the full width of an l-group is

Af ~ 2nlAf, . (32)



2372 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1969

4|

1

T
—

8
2
[
3
[
>

< af

af —
l—_{
]FT‘ k=-1 1=1, k=0
m m

0
FREQUENCY

Fig. 10 —The ! = 1 and ! = 2 lines of the spectrum of Fig. 7, modulated by a
sinusoidal input with fo = f»/40 and 74 = 5. The other lines are omitted for the
sake of clarity. (The lack of symmetry in this figure, and in Fig. 11, is due to the
omission of the image groups: | = —1, —2.) Equation (32) gives Af.

Figure 10 gives an example of the spectrum which attempts to bring
out the points made above. If f, and f, are not rationally related, the
lines are all distinct. Appendix C treats the case of rational fo/f,.

VI. BROADBAND INPUT

As first discussed by Bennett, the average noise performance of a
coder in the presence of a broadband input signal is best caleulated
by using an input signal of random phase.” This test signal should
have the same power spectrum as the input signal under consideration.
Appendix D gives the mathematical manipulations.

Briefly the procedure is to calculate the noise power spectrum,
W(f), by finding the Fourier transform of the autocorrelation fune-
tion, R(r), of the noise wave. The averaging procedure in the defini-
tion of R(r) is carried out assuming the input, g(t), is a gaussian
variate. This gives R (r) in terms of the autocorrelation coefficients,
ar, and the mean power of the sequence of input samples; we deter-
mine the a; from the Fourier transform of the input power spectrum,
U(f). We show that, under an assumption that usually holds in prac-
tice, the dependence on U(f) reduces to a dependence on the rms time
derivative of the input. A parameter S, which is this time derivative
normalized to the average maximum slope of the coder, of,, charac-
terizes the input in the following (equivalent) formulas:
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) = X 5 %o [ -5 sy, + 2 D) |y

150 k=—cw

0 - 5 5 e[ o i+ 52 4 0) |

190 p=—oc T

(34)

Terms of different ! do not interact in equations (33) and (34);
therefore, one may use either formula to calculate the power density
for a given I. Equation (33) converges faster for high values of /; equation
(34) for low values. The crossover occurs at [ ~ 1/ (m)}8.

One can see [most easily from (34)] that the spectrum consists of the
lines given in Section IV for the idle-channel noise spectrum, each now
broadened to a gaussian. Notice that some of the power in the wings of
each gaussian falls outside (—/y , fy). Conversely, lines centered outside
this band have in-band wings. The total in-band power of each I-group
is constant.

One can easily see that the full width of an I-group is

Af = 184, . (35)

Thus for IS <« 1 one has a relatively sharp line, while all groups for
which IS = 1 sum to a white background. Figure 11 shows the im-
portant qualitative features of the spectrum.

As S approaches one, equations (33) and (34) lose their usefulness
because of the onset of so-called slope-overload noise. (Strictly speaking
equations (8) and (9) do not apply under overload conditions; but
because the errors resulting from overload and quantization are prob-
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Fig. 11— The ! = 1 and ! = 2 lines of the spectrum of Fig. 7, modulated by a
gaussian input with § =~ 3%. The other lines are omitted for the sake of clarity.
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ably largely uncorrelated, one should be able to calculate them separately
with reasonable precision.) To give some idea of the effect, we quote
Protonotarios’ signal-to-overload-noise ratios for various input spectra:
3to17dB for S = 1 and 16 to 31 dB for S = 1.® These values are lower
limits, and probably poor approximations for high-quality voice sys-
tems, because the total noise was used. Nevertheless, it seems safe
to say that the occurrence of slope overload will prohibit inputs strong
enough to whiten the 1-group and, usually, the 2-group as well.

Figure 12 illustrates caleulated noise spectra of a coder suitable for
telephone applications." Notice the enormous differences in power in
the voice band for different #’s. For ¢ = 0.02 the 2-line, 4-line, and
6-line centered at 30.88, 61.76, and 92.64 kHz, respectively, can be
seen. The broad line centered at 38.6 kHz for & = 0.05and S = 27" is
the sum of the 19- and 21-lines. Although the spectra are white for
S = 277 in the frequency range shown, they are not independent of S.
The 2-line is still spreading out and the 1-line is just starting to spread in.

Figure 13 presents the results of Fig. 12 in the form of noise power
in dBrnC versus speech input power in dBm. The unit “dBrnC” means
dB above one picowatt of integrated noise passing through a filter with
C-message weighting.” Briefly, this filter, which weights noise according
to its subjective effect in a telephone circuit, has a pass band with a
transmission averaging about —0.5 dB from ~ 800 to ~ 2500 Hz;
the noise bandwidth is /2 2070 Hz.

The parameter S is turned into speech power as follows: de Jager
(see p. 447 of Ref. 2) showed that the ratio of the rms slope of the
average speech spectrum'® to the rms amplitude is given by

_ (@Y, .
r = m ~ 2r-800 Hz = 5000 rad per s. (36)
Thus, speech power is given by
P, = (3. @

In Fig. 13, this quantity is plotted in units of dB above 1 mW. The
structure in Fig. 13 is best interpreted by referring to Fig. 12.

VII. SUMMARY AND REMARKS

We have developed a AM quantizing-noise formalism for the case
of unequal positive and negative integrator step sizes and have given
the noise spectrum for zero, sinusoidal, and gaussian coder inputs.
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In AM systems, as contrasted with multibit PCM and DPCM,
the signal typically does not change more than a small fraction of a
step size in one sampling interval. As a result, the sample-to-sample
errors are strongly correlated and the noise spectrum is highly colored.
The main contributions of this paper are to point out that the spectral
distribution of power is strongly dependent on the step unbalance and
to provide a means of calculating the spectrum precisely.

A typical AM system has a signal bandwidth very much smaller than
the Nyquist bandwidth. The consequences of this situation for the
idle channel (zero input) are best seen by referring to Figs. 7 and 8.
There are extreme system-noise variations depending on whether or not
the system parameters are such as to bring into the signal band one
of the stronger spectral lines. The | I | = 2-line, which has =15 percent
of the total Nyquist-interval power, is especially important in this
regard.

Coder inputs phase-modulate the idle-channel lines; the frequency
breadth of the sideband structure is proportional to the rms slope
(roughly, root power times frequency) of the input. Thus, as power is
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increased, there may be an abrupt increase in noise as the sidebands
of a strong line come into the signal band. Figure 13 illustrates such
a situation.

At very high input powers most of the idle-channel lines are
broadened to the point where they make an easily calculable white
contribution to the spectrum. Unfortunately, the most powerful lines

(] 1] = 1 with 61 percent of the Nyquist-interval power, |1] = 2, and
so on) can be broadened to whiteness only by inputs powerful enough
to force the coder into slope overload. It is possible, however, to mini-
mize noise in a given system by dithering, that is, the deliberate in-
jection of certain appropriate signals into the coder (including the
judicious choice of step unbalance). Dithering requires extensive
treatment and will be the subject of a future paper.
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APPENDIX A

Correlation of Error and Input

The error wave, v(t), consists in general of a part fully correlated
with the input, ¥(¢), and an uncorrelated part. The uncorrelated part
is noise in almost any conceivable system; whether the fully cor-
related part. is considered noise or not depends on the use to which the
system is put. Let us investigate the correlation by forming the cross-
correlation funetion of » and g (assuming zero mean for each):

R = lim 2 [ (g + ) d 39)

Inserting equation (19) gives

R,(7) = Z —7 ©XP (weldy) 11m QT

lwo T

f; ot + D ): exp |:2m(l(1 9 4 }c)f z] dt. (39)

The integral in equation (39) is zero unless g (f) contains components
locked to the idle-channel-noise frequencies (Section IV) or their
subharmonies. Thus for typical AM systems
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R, (r) =0 forall 7, (40)

and »(t) is a noise wave under any circumstances.

This conclusion is not applicable to the case of rational ¢, treated
in Appendix B, where I(1 — #)/2 4+ k = 0 for some values of { and
k; that is, some of the idle-channel-noise frequencies are zero. The most
extreme case is that of PCM (¢ = 1) where every value of [ contributes
a dc term to the summation in equation (39) and the summation is
therefore replaced by one. Let us calculate the two parts of »(t) for this
case.

It is easy to show that R,,(r) is a maximum for » = 0 and that we
need consider only instantaneous correlations. This result is physically
reasonable when one considers that no delay from input to output
was introduced in the formulation of »(f). If we let ( )., stand for
the integrating-limiting (averaging) process defined in equation (38)
we can write

(g)er = R,,(0). (41)

The correlated part of v(£) is ay (f), where « is a constant for a given
y (t). The uncorrelated part is then v(t) — ay(¢), and the condition for
determining « is

<(V - ay)y>nv = 0) (42)

or

I/ (7)o
S N (43)

Substitution of a specific input waveform into

G = 2 = exp (@ild)(g(t)e " V), (44)
1=0 ML

will show that ay is generally negligible compared with v unless (g%)ay

< 1; that is, the signal-to-noise ratio is low. This conclusion is quite

plausible because of the (g% dependence of « and because the oscilla-

tory character of the second factor in the averaging bracket in equa-

tion (44) makes the bracket tend toward zero as g increases,

For rational values of ¢ # 1, the summation in equation (44) is only
over multiples of an integer L (as shown in Appendix B) and ay is
negligible for even smaller values of {(g*). L = 2 for the van de Weg
case, ¢ = 0.
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APPENDIX B

Rational Step Unbalance

If the fractional step unbalance, ¢, is a rational number, the l-lines
of Section IV are not all distinet. Indeed, if L is the least positive integer
for which (L/2)(1 — ) is an integer, it is easy to see from equation
(22) that

fier =F and frop = —fi. (45)

Let us sum up terms of frequency =f; in equation (23), ignoring for
the moment the cases | = L and ! = L/2 (if it exists). Then

d 2 .
voni(t) = E msm [r(l + VL), + 2nfil)

d 20
+ X n =1+ TD

A little manipulation of the indices in the second summation gives

sin [1(L — 1+ VL) — 2«fut].  (46)

o) = 30 s sin (sl + VD)0 o+ 2l @)

& T
= X na+ 7D P!
From Jolley’s series Nos. 534 and 535 it is easily established that'*

ifr(@ + VL), + 2nfit]} + c.c.*. (48)

) iny
€ _ ia(r—y)
“_E_ﬁ e ese are for 0 < ¢ < 2m. (49)

Using this to do the sum in equation (48),

o C8C (ZE Tr)

voxi(f) = L exp [’L.(‘EI_TI' — xld, + 7l + 21rf13)] + c.c. (50)
(&)
2 csc A I
= ———L*—Sin (7r 7 wlty, + wlde + 21rf1t-) , (51)
where
L3, = least positive quantity = L&, mod 2. (52)

* By c.c. we mean complex conjugate.



2380 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1969

The power at f = | f; | is thus

: i 2 (z )
26" csc 77
L (53)
Let us compare this with the sum of the powers of the same lines as

given by equation (25):

r = 202 ng '
Pi = 12 (rz(l + l’L)2 + WB(L — 14+ l'L)ﬂ) (54)

Again, index manipulation yields

0 20_2
,,;m (1 + D)
This series is easily summed by means of cotangent residues (see
Section 7.4-4 of Ref. 6) to give

2¢° cse’ (lz w)

LE L]
which is identical to equation (53). Thus, all lines with the same fre-
quency, f, where 0 < f < fy, are phased such that their powers add.
As a result one need not take line degeneracies into special account
when considering the noise power spectrum. We assume, without proof,
that this statement is true of sidebands as well as main lines; it is
elementary that the power in a sine wave is not changed when its
phase is modulated.

If L is even there is a line at fr/s = fx, on the border between the
Nyquist interval and higher frequencies. If one starts from equation
(20) rather than equation (23), so that the higher frequencies are
taken into account, equation (51) with I = L/2 will result.

For !l = ' L we get f; = 0, that is, a de component. Summing up
these terms of equation (23},

P = (65)

P, = (56)

Ll

vons(t) = ‘Z = Lsm 'L, . (57)

Starting from equation (49), subtracting the n = 0 term (1/a) from
both sides, letting @ —> 0, and combining terms of +n and —n, gives

z“’:smnw

S T =¥ for 0<y<o2m (59)
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Using equation (58) in equation (57) gives

(1 — L#,), (59)

a
VoveL L
where ¢, is defined in equation (52). Thus, the de component fluctuates
as a function of &, or & . If it is averaged uniformly over this parameter,
the mean value is zero and the mean square is ¢°/3L°. The latter is the
sum of the powers of the I'L-lines. The de¢ power varies from zero to
o/L?. Thus, for rational ¢, the total noise power in the Nyquist interval
(counting one-half the power at fy) is not always ¢”/3 but can vary
from this total by —¢”/3L% +2¢°/3L°. For small # and correspondingly
large L this variation is not very significant. In any case, as Section III
explains, the usual AM system suppresses de at the decoder.

If the I'L-lines are modulated, we have

o

wilt) = 3 %sm VL 4 g(0)] (60)

= 21— L), @)

where ¢,(f) is defined by using ¢, -+ ¢(t) in equation (52) in place of
& . If the excursions of g(f) are significantly greater than 1/L ({g°) >
1/L?, which covers nearly all cases of practical interest) equation (61)
can be time-averaged uniformly over 8,(t). As stated above, the mean
square will be ¢°/3L". That is, for a practical input signal, the power
in the I'L-lines is dispersed into sidebands, and the total power in these
sidebands is equal to that which would be calculated using the formulas
for irrational ¢. This argument is used to justify the assumption that,
except for de power, the noise spectrum for rational # can be calculated
as indicated in the text for irrational #.

There are two cases of rational ¢ which are of special interest. One
is ¢ = 0, calculated for gaussian input by van de Weg®. In this case all
the even-l lines are centered at zero frequency and all the odd-I lines
at f . As one can see from Section VI and Figs. 12 and 13, this is a good
approximation only for a baseband with a width much greater than #f, .

The other case of interest is # = 1. This is equivalent to using the
even-instant law of equation (8) for all sampling instants, which is
equivalent to ordinary uniform PCM (with a step size of 20¢). Let us
consider a typical PCM speech system, for which (see Section VI)

@) = @)-@rs0H)  (6)
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and

f. = 8 kHaz. (63)
Then (Appendix D)
S ~~ 0.63(g*)". (64)

Useful input signals are many steps high in amplitude ({g°) >> 1); thus
8 > 1 and the noise spectrum is substantially white. (See Section VI.
This range of S is permissible for PCM, since slope overload does not
oceur.)

If ¢ = 1 is inserted into equation (31) the result can be shown to be
equivalent to that of Schouten and van’t Groenewout for a sinusoidal
input into a PCM coder if one allows for:'* (¢) their nonunity shape
factor, (¢7) their particular choice of phase (p), (77%) replacing the last
sine factor in their expression (17) by a cosine, and (¥) multiplying
their expressions (15), (16), and (17) by 2.

APPENDIX C

Rational Input-to-Sampling Frequency Ratio

If the ratio of f, to f, is a rational fraction, there exists a least posi-
tive integer M for which Mf./f, is integral. In this case it is easily
seen, from equation (29), that terms for which the values of m differ
by a multiple of M have the same Nyquist-interval frequency. Sum-
ming up these equal-frequency terms, we replace equation (29) with

] M

ll) = 2 O 2= 3 TmsweulwlA) exp [i(m + m/M)g)

T S (Y Rl

-exp {m:w" n zm'[(l(l + k)f + mfn] } (65)

One can therefore see that a given [-group consists of a total of M lines,
the original and M —1 satellites spaced uniformly throughout (—fx, f).
The sum over m’ in equation (65), which is the relative amplitude
coefficient of a satellite [B. (2, ¢, M), where z = =lA] can be turned
into a finite sum:
Tt is easy to verify that

M .
_I_.Eexp(w)_l if p=m+ m'M
M = M

It

0 otherwise, (66)

where m, m’, M, and p are integers.
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Thus
Baleso M) = 3 Jusw () 0xp [iGn + m')el 67
R T

(69)
The sum over p is given by equation (28). Thus

M 9, ;
Buler o, M) = 3= 3 exp [izs‘m( - “—ﬂ’}”’) + 2”;}‘”"]- (70)
n=1

We note the dependence on the phase (¢) of the input signal, which
indicates that this result could not have been obtained by adding the
powers of the equal-frequency terms. Indeed, it can be established
easily from equation (67) that

i fu 1 Bulie, ) e = > Thrwu); @

that is, the sum of the term powers is given by the true satellite power
averaged uniformly over ¢.

In order to emphasize this dependence on phase, let us examine the
highly artificial but simplest nontrivial case, fo = fy. In this case
M = 2 and each main line has one satellite spaced fx away. Then

Bo(z, ¢, 2) = Bi(z, ¢, 2) = cos (z sin o), (72)

and
B.(z, v, 2) = isin (z sin ¢). (73)

For ¢ = 0, the satellite power is always zero and we get the undis-
turbed idle-channel-noise spectrum. That this is to be expected can be
seen from equation (27) where ¢ = 0 is the condition under which the
sampling instants fall precisely on the zeroes of the input wave. For
¢ = x/2, where the sampling instants fall on the crests, the power for
any given ! oscillates between main and satellite as a function of
amplitude. This result may be compared with the incorrect one ob-
tained by summing powers:

1+ Jo(22)
2 1

1 2T
o |1 Buteon ) I de = (74)
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and
1 [ 1 — Jo2
o [ 1B e dp = L=, 75)

APPENDIX D

Calculations for Broadband Input

The autocorrelation function of v(f) [defined in equation (14)] is
given by

Re) = tim o [ (i Bars 8(¢ = 7))
-(miw Tty 8(1 — mr, + 1-)) dt (76)

2 sT/7e S(T+7)/7s

> > zgu.dlr+ (0 — m)7].  (7)

T—w ~T az—=T/rq mZ(—T+7)/Ta
We can replace T'/r, with a positive integer N without loss of general-
ity. Let us concentrate on values of r lying between (k — 1/2)r, and
(k + 1/2)7, where k is an integer. Only terms for which n—m = —k
fall within this interval. Thus

N
RG) = 7, lim 2}\, 3 s s = br)
for bk —Hr,<r=@k+Pr.. (78
Defining
(LT = hm Z TnZnik 79

and joining together the segments of the function given by equation
(78), we have

R(r) = 7, E (Xnrny 8(r — k7,). (80)

The Fourier transform of R(r) is the noise-power spectral density,
first given by Bennett (see pp. 460-464 of Ref. 7):

W) = 1. 3 (eatass) xp (2mikfr.). (81)

k=—o0

It is eagy to see that
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"W df = @ = @ (82)

-IN

that is, the total noise power in the Nyquist interval is given by the
mean square of the sequence {x,}.

Next, let us connect (T,%n+x) With the input signal. Using equation
(12)

(:E,,:U,.H) = Z Z - 1r_;5\-

1#0 A#0
-exp {mi[(l + N + ([ + Nl —8) + k(L —3) + lgas + 7\9..]%)-

(83)

We carry the averaging bracket inside the summations and examine the
various factors of the exponential. Since n and g, are uncorrelated, the
factors containing them can be averaged separately. Let us examine the
factor

(exl'(l-#l}n(l—l?)).

For irrational & this expression is zero unless I + A = 0, in which case
its value is one. Thus equation (83) reduces to

2
(TaZnis) = 2 #e"”‘“’“(em [ril(gn-r — gu)))- (84)

10

Notice that (see p. 66 of Ref. 12)

2 2
2y — g __ 2,
@)= T o= (85)

Let us now find the value of the averaging bracket in equation (84)
for a gaussian input:

(exp [mil(gner — g)])
= [T o britgues = 0IP(gure 00 s, (0

where P(gnir, 9a) is the joint probability density of two gaussian
variates, which is (see Section 18.8-6 of Ref. 6):

_ 1 _ _ gn — 20:0.800 + giw)
P(Q',..H‘ ’ gn) = m CXp ( 2(92>(1 _ ai) ' (87)
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where
o 0t e
(00000 = lim ok 3 g )
and
@) = (gagn)- (90)
Combining equations (86) and (87) gives
(exp [ril(gu-r — gn)]) = exp [—="I{g")1 — au)], (91)

a result first obtained by Rice.’® Substituting equation (91) into equa-
tion (84), and the result into equation (81), gives

W =T 3 I

1#0 k=—o0

-exp [-—rzlz(gz)(l — @) + 21rik(fr. -4 K}_'.é.—_i)):l (92)

This result, with # = 0, was given by van de Weg.” He also used as
an input a flat signal, band-limited to (—f,, , f.), for which

_ 8in (2xkfmt,)
b = 20kfnts ! (93)
and inserted
2
1 — o~ 9—"%’;&- (94)

This approximation is made possible by observing that the real ex-
ponential factor in equation (92) is appreciable only for small values
of the exponent. Thus, if one ignores the region of low signal-to-noise
ratios (that is, small (g%)), 1 — a; need only be accurately approxi-
mated for small values. (¢?) > 0.1 is high enough for the approximation
to be good for most purposes, and appears to cover nearly all cases of
practical interest.

It is not necessary for the input spectrum to be flat. We take a
spectrum, U(f), even in f and confined to the Nyquist interval. Ap-
pendix E shows that (gug..x) is given by R,(k+,), the autocorrelation
funetion of ¢(#). This autocorrelation function is the Fourier trans-
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form of the spectral density.

Gugnet? = [ U@ exp @rikir.) dy (95)

and [using the evenness of U (f) ]

@A — @) = f : Uf)(L — cos 2rkfr.) df. (96)

Using the reasoning given in the previous paragraph, and specifying
that U(f) be a smooth function of frequency (free of strong narrow-
band components which could make 1 — a; & 0 for isolated high values
of k), gives

@ =)~ g [ U ar )

It is well known that the integral in equation (97) gives the mean
square of the time derivative of g(=¢). Thus

B _EG) _ K
2 ~ _ —

Wil e~ =% = 2
where S is the rms time slope of the input normalized to the maximum

average slope of the coder (of,). Inserting equation (98) into equation
(92) gives

W = 5 5 Hrew | T Loy, + 2 9)]

10 k=—o2

(98)

which is equation (33).
Making use of the Fourier-series expansion of a picket fence of
gaussians,

e ) 3 2 .
2 2 T _ (7K 2rikx
n-z—oo &P [~ (I P-To) ] B k-Z—m 2 | Lo P l: (0’170) + To :| ’

(100)

we can rewrite equation (99) as

W = X S ﬁiuf—;]fexp[ (zé) (f“ = ;ﬂ)+P)2]

=0 p=—o

(101)
which is equation (34).
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Computationally more convenient versions of equations (99) and
(101) are, in one-sided form,

87,0
P(f) = =&

{i%ﬁ B " i exp (_@L@;ﬂz) coswlk(1 — &) cos kafr.]} ,

1=1 k=1
(102)

and

PG = 2«8 (I T, {e"p[ sy (f"“”“ « m)]

+ exp [—W (f'r. +p— L—;—@) ]}) (103)

In equation (102), 1/2 2(1/12) is left in that form in order that the
power density can be calculated separately for each I,

APPENDIX E

Autocorrelation—Function and Its Samples

In the absence of aliasing, the autocorrelation coefficients of a se-
quence of samples of a function are equal to the appropriate samples
of the autocorrelation of the funetion:

(gngnﬂc) = LI_I.E 'é-]v n; gngnH: (104:)
= lim 5 f o Z grdgtnr, + kr) 8t — nr) df (105)
= tim g [ gt + ke) 3 s —nryar (109
- hmgAlT— " el + kr) Z exp mipf.f) di (107)
= lim 5 f d(Dg(t + ke dt (108)
= R,(kr) (109)

where the transition from equation (107) to equation (108) is made by
agsuming that g(f) is confined to the Nyquist interval. For any given
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value of p # 0, equation (107) can be regarded as the correlation fune-
tion of g(t) and g(f) exp (2mipf,f). The latter represents a carrier wave at
| = pf. amplitude-modulated by g(f). None of the sidebands resulting
from this modulation overlap g(f) in frequenecy if g(t) is confined to the
Nyquist interval. It is well known that two signals are uncorrelated if
their frequency bands do not overlap (but not, in general, otherwise)."*

Dividing equation (109) by {(¢°) = R,(0) gives the lemma in nor-

malized form. The procedure given here is a slight generalization of one
given by Bennett for & = 0 (see pp. 468-469 of Ref. 5).
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