Computer Study of Quantizer Output Spectra

By G. H. ROBERTSON
(Manuseript received January 25, 1969)

This article describes a method for accurately calculating the output
spectrum of a quantizer. The method was developed for knoun erpressions
defining the output spectrum of an arbitrary quantizer with gaussian tnput
of arbitrary bandshape. Results obtained for a variety of conditions,
however, suggest that the calculations are valid even though the input has
only a minor gaussian component. When sampling is also used, at the
Nyquist rate or a little higher, the quantizing noise folded into the input
band is almost flat even when the input bandshape is sharply peaked. When
inlerference at the input is increased, the quantizer (preceded by AGC)
appears to operale like an increasingly moisy linear transducer up fo a
breaking point beyond which its performance (for small signals) degrades
rapidly and becomes difficult to analyze.

I. INTRODUCTION

Several authors have deseribed formulas for calculating the output
noise spectrum from a quantizer when the input is a gaussian wave-
form. References 1 through 4 are characteristic and contain representa-
tive bibliographies. Evaluation of the resulting expressions is difficult
because they contain multiple infinite sums of terms containing
Hermite polynomials whose order increases without limit. Conse-
quently simplifying assumptions are made about the input spectrum
and quantizer characteristics, or only a few terms are evaluated and
the rest assumed negligible, to get results.

This article describes a more fruitful approach in which the Hermite
polynomials are evaluated in conjunction with other parts of the ex-
pression such that the combination tends to zero as the order increases
to infinity. The convergence is slow and many terms are needed to get
sufficient accuracy in the noise spectrum. Tt is possible to get results
even when the quantizer is not linear or symmetrical, and for arbitrary
input spectrum shapes.
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For quantizing steps no greater than o (the rms gaussian compo-
nent) an interesting and useful result is that even when the input
spectrum is sharply peaked, if the quantized waveform is also sam-
pled uniformly at up to a few times the Nyquist rate for the input
band, the resulting quantizing noise appearing within the input band
is nearly flat. Many systems can therefore be evaluated quite ac-
curately with much simpler calculations than those needed to define
the quantizing noise spectrum.

Study of quantizers having uniform steps less than o in amplitude
show the output spectrum to be practically independent of the loca-
tion of the gaussian mean if it is at least ¢ from the overload limit.
Consequently, added signals (whose waveform defines the gaussian
mean) have a negligible effect on the quantizer output noise as long
as they do not approach within ¢ of the limit. A quantizer with many
steps activated thus produces a noise spectrum virtually independent
of relatively large signals added to the gaussian component.

II. DEFINITION OF QUANTIZER

Figure 1 shows the transfer characteristic of the quantizer where
the “staircase” relates the output voltage (ordinate) scale to the input
voltage (abscissa) scale. Assuming that the input waveform is gaus-
sian about some arbitrary mean value, the probability that it is Z or
more above the mean value is

Q: = ﬁ [ ew (—2/20 a. M

Figure 1 shows that when the input waveform reaches a “riser” of
the staircase, the output waveform changes abruptly from the value
on one tread to the value of the one on the other side of the riser. For
convenience, number the treads and risers starting with 1 at the left.
There is one more tread than the number of risers, so if the last riser
is k, the last tread is k + 1. Let @, be the probability that the input
waveform is greater than riser », and the output voltage of step r be
W.. The mean value of the output is

S = Wl(l - Ql) + Wz(Q1 - Qz) + -+ Wk+lQ.&‘ (2)
The mean squared value is

V= Wf(l - Ql) + W:(Ql - Qz) + - 4+ W:+1QE . (3)
The variance of the output is
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V:—§ =P (4)
Assuming unity impedance, P is the output power after subtracting the

component caused by the displacement of the mean value of the input
waveform from zero.

III. QUANTIZING NOISE SPECTRUM

Velichkin showed that the correlation function of the quantizer out-
put can be written*

)

R(r) = Y l:;z:; A, exp (—a;/26")H, _.(%):lz Be(r) (5)

3 .
=1 2me "ﬂ!

R, (7) is the input correlation function, ¢® is the input variance, there
are v treads, Ay is the output voltage difference between treads &k + 1
and k, a; is the input voltage at riser k, and H,(z) is the Hermite
polynomial

- lep (—2/2)] ©®)

Also, where [r/2] is the greatest integer <r/2,°

H,(2) = (—1)" exp (*/2)

- —— ——— —— —QUTPUT SCALE—~ ——— —— ——— =

Fig. 1 — Quantizer transfer characteristies.
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[r/2]

HG) = 3 (-1/27™ %@ @)

By the Wiener-Khinchine theorem the power spectrum of the
quantizer output is

() = 4 f " Ry(r) cos (2xfr) dr

J”‘ H""(%) 2 1

2 o0
= ;21; A; exp (— ak/..a')[(—‘ﬂ o
j; () cos 2xf7) dr. (8)
Equation (8) can be written
Q) = Zl 2(r) cos 2rfr) dr, (9)

in which the quantizing factor terms F, depend only on the properties
of the quantizer and n. When n = 1 the component Q,(f) is the input
spectrum multiplied by F;/¢?. All other n give components whose
bandwidth exceeds that of the input [because the integral in equation
(9) then represents multiple convolutions of the input band], and
their sum Q,(f) may be called the quantizer error spectrum. The
quantizer output spectrum is

o) = () + 0. (10)

So far only amplitude quantizing has been considered. Sampling,
at a rate f,, is generally also used,* and the output spectrum be-
comes proportional to?

) = o) + z: @, =+ f). an

If f, is at least twice the highest frequency of the input band, only Q.
can add more noise by fold-over into the range of the input band.

These results are all known but now follow what are thought to be
new contributions enabling equation (9) to be evaluated for an
arbitrary choice of input spectrum shape. Equation (9) can be writ-
ten

* The result is independent of which is done first.
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o) = X 52 [ R
- Fﬂ G v
= > Lo by, (12)

where C,_;[s(f)/2] is the (n—1)th convolution of the cisoid power
spectrum s(f) /2. The sinusoid power spectrum is s(f), corresponding
to the autocorrelation function R, (7).

The significance of equation (12) is that whereas the direct calculation
of R*(r) may be impossible for an arbitrary spectrum shape, C,_,[s(f)/2]
can always be caleulated if s(f) is defined. Appendix A describes the
methods used to calculate C,_,[s(f)/2] in the computer program written
to evaluate equation (9).

If G(t) represents the input waveform, the autocorrelation fune-
tion at zero lag is

1
R.(0) = lim o | G(t) dt

= ¢ + S (13)

where 8 is the mean value of the input waveform and ¢* is the variance
as used in equation (1). Figure 1 shows that the value of the quantizer
output for a given input waveform is independent of the scale on the
input axis. For convenience, relabel this seale so that the input mean
is zero. Consequently,

R.(0) = ¢ (14)
Normalizing the input power that now contains no de, so that ¢* =
1, gives

R1(0) = 1 (15)
for all n. By the Wiener-Khinchine theorem the total output power
Pr is

Pr= [ at)df
= R,(0)

=1 (D)
[2 A, exp (—d2/2) Tﬁfﬁ;] (16)

=in

l\D‘._

using equation (5). Py is the same as V? given by equation (3) so the
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accuracy of computing the quantizing factor terms F, can be checked
by computing the total power by both these methods. The method of
equation (3) gives high accuracy very easily, but the F, terms are
needed to compute the quantizer error spectrum 2.(f) of equation
(10). Appendix B describes the methods used to compute F, for values
of n up to 10,000, the limit used in the program.

Recall [after equation (9)] that when n = 1 the resulting component
of Q(f) is the input spectrum multiplied by F,/c? where the gain
factor is

r—1 2
F, = L [E A, exp (—a§/2az)] . (a7
2r LA
When ¢* = 1, the total quantizer error power is
P,=P—TF,, (18)

where P is given in equation (4). Both P and F, can be computed
easily and accurately, so Py can be determined accurately with little
computational effort. Note that this shows Py to be independent of
the input spectrum shape.

A computer program, using the techniques described in Appendixes
A and B to compute Q(f), simulated the effect of sampling (without
holding) by pivoting Q(f) about the sampling frequency and its
harmonics, and computing the contributions thus folded into the
original band. The total Py is folded into a bandwidth equal to half
the sampling frequency; and when the latter was less than a few
times the Nyquist rate for the input band, the level of the error com-
ponent resulting from Pp was nearly flat over the input band even
when the input spectrum was sharply peaked.

This result is very useful because the performance of quantizers can
now be evaluated quite accurately using only the simple calculations
indicated by equations (4) and (17). The error spectrum after sam-
pling was flatter when more levels were used in the quantizer.

IV. SIGNALS ADDED TO INPUT

Signals added to the gaussian noise at the input cause the mean
value of the latter to vary according to the signal waveform. Com-
putation shows that under static conditions the gain factor F; and
the total error power Py remain nearly constant when the step size
is about ¢ and the mean is no closer than « to the overload limit.
Under these conditions the position of the mean has negligible effect
on the shape of the quantizing noise spectrum. Assuming a signal wave-
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form uncorrelated with the gaussian noise, and of a magnitude such
that the mean rarely approaches within ¢ of the overload limit, it is
thus quite accurate to assume that the quantizing error is independent
of the signal when the step-to-¢ ratio is constant and less than unity.
A sampling rate, up to a few times the high end of the input band,
further improves the accuracy of this assumption as the quantizing
noise then becomes almost flat across the input band even when the
input spectrum is sharply peaked.

Assume now that an AGC unit is used to maintain constant power
into the quantizer so that the waveform representing the sum of the
gaussian component and large signal (interference) very rarely ex-
ceeds the overload limits. As the level of the interference increases,
the ratio of quantizer step to gaussian rms (rms,) also increases.
Assuming no correlation between the interference and gaussian com-
ponents, the degradation from quantizing noise can be estimated from
the way the parameters F; and Py vary with the position of the mean.
The greatest variation in these parameters occurs between the values
when the mean is at a riser (see Fig. 1) and when it is midway be-
tween risers.

Figures 2 and 3 show the results obtained for a 16-level quantizer
with a flat input spectrum and with a sharply peaked input spectrum,
respectively, in caleulations carried out for these limiting cases. Up to
a breaking point (where the two curves diverge) the quantizer ap-
pears to act like a linear but noisy transducer for input signals. Note
that the breaking point seems to be independent of the spectrum
shape. When the interference level is high enough to cause operation
beyond the breaking point, the spectrum becomes difficult to analyze
and depends on the interference waveform. At all points on the abscis-
sas of Figs. 2 and 3 below the breaking point, F; and Py were found
virtually constant for all positions likely to be occupied by the input
mean (determined by the AGC unit). Since the quantizing noise level
was flat it was therefore proportional to Py. The input copy was
proportional to F;; the curves in Figs. 2 and 3 show the ratio of the
level of input copy plus quantizing noise to the level of the input copy
alone. The degradation these curves indicate, as the interference in-
creases, results from the decreasing ratio of o to quantizing step size
caused by the AGC unit preceding the quantizer.

V. COMPARISON WITH MEASUREMENTS

A sharply peaked spectrum was produced in the laboratory by
filtering the output of a noise generator, and the resulting waveform
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Fig. 2 — Quantizer performance (static) versus relative interference (flat input)
for 16-level quantizer with flat input spectrum (gaussian); overload at 3 X (MS,;
+ MS)% set by AGC; MS, = gaussian component (rms)2; MS; = interference
(rms)?; output sampled at 3 X high end.

was radically clipped before being submitted to a spectrum analyzer.
A 1910-A recording wave analyzer (made by General Radio Company)
was used, and several successive traces were superimposed by the
recorder as the narrowband (10 Hz) filter was slowly swept across
the spectrum. The spectrum before and after elipping were determined
in this way; the final results were obtained by drawing a smooth curve
through the mean of the superimposed traces. Figure 4, where the solid
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Fig. 3 — Quantizer performance (static) versus relative interference (peaked
input) for 16-level quantizer with peaked input spectrum (gaussian); overload
at 3 X (MS; 4+ MS,)% set by AGC.
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curve is the computed clipper output spectrum when a copy of the
input is given by the dashed curve, shows the results. Values of the
measured output spectrum appear as circles and agree well with the
computed curve.

Another check between computed and measured results can be
obtained for a uniform step 16-level quantizer. A band of noise, nearly
flat from zero to about 330 Hz and falling rapidly at higher frequencies,
is added to a sinewave at 160 Hz and passes through an AGC unit
before quantization. The quantizer overload limit is set near four times
the rms value of the AGC output, and the results are recorded on a
magnetic tape for various ratios of the sinewave-to-noise power. In
this eapacity the sine wave acts as an interfering signal. A computer
program processes the tape using a version of the east Fourier trans-
form algorithm to produce estimates of the spectrum level at the
quantizer output up to half the sampling rate of 1024 Hz.® Since the
input spectrum level at 500 Hz is much lower than in the flat part
below 300 Hz, the increase in noise level estimated at 500 Hz is taken
as a measure of the quantizing noise introduced as the interfering
signal increases. Assuming this noise to be flat from 512 Hz to zero it
is possible to estimate the degradation in signal-to-noise power suf-
fered by a small signal in the flat part of the input band.

Figure 5 shows the results, as circles superimposed on the solid
curves, which are computed for a 16-level quantizer sampled at three
times the high end of an input band of noise flat to zero frequency.
The quantizer is preceded by an AGC unit and its overload is four
times the rms input.
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Fig. 4 — Clipper output spectrum.
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Fig. 5— Quantizer degradation for flat input spectrum for 16-level quantizer;
overload = 4 X input (rms) set by AGC; flat input gaussian component (0 to
330 Hz); sinewave interference (160 Hz) ; output sampled at 1024 Hz.

VI. CONCLUSION

This article describes a new method of calculating the quantizing
noise spectrum when gaussian noise with arbitrary spectrum shape is
applied to an arbitrary quantizer. The novelty is not in the form of the
expressions that deseribe the noise spectrum but in the techniques used
to compute the results. Applying the method to a sharply peaked spec-
trum shows that if the output is sampled at the Nyquist rate, or a little
higher, the quantizing noise is folded back to cover the input band
with almost uniform intensity. A clipper (2-level quantizer) and a
16-level quantizer, preceded by AGC to keep the overload at three
times the rms input, operate like noisy but linear transducers for
added signals of power less than one tenth and less than twenty times,
respectively, that of the broadband background. These useful results
indicate that the performance of quantizers under such conditions
can be evaluated without the lengthy computations required to deline-
ate the quantizing noise spectrum.

APPENDIX A

Calculating the Imput Spectrum Convolutions

The input cisoid spectrum is defined and convolved with itself to
caleulate C,1[s(f) /2] when n is small. Because the input spectrum
is of finite width, the convolutions tend to take the form of a gaussian
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distribution as n increases. Since direct computation of the convolu-
tions becomes very lengthy when n is large, it is profitable to compute
a Gram-Charlier approximation instead (see pp. 257-260 of Ref. 5.)
This can be done if the moments for the desired convolution can be
obtained. The input cisoid spectrum is symmetrical about zero, and is
defined up to its limiting bandwidth, so all the moments desired can
be computed for it. If the input spectrum shape is normalized so that
it covers unit area and it is considered to define a probability dis-
tribution from which random samples are drawn, the nth convolution
is the same as the probability distribution of (n + 1) independent
samples of the original distribution.” The moments of the nth convolu-
tion can thus be obtained from the moments of the input spectrum
shape as follows. Since we desire ultimately standardized central
moments, note that the standardized central moments for the sum
and for the average of N independent samples are the same. Using the
appropriate multinomial expansion the general term for the vth such
moment is

- (2) ) =R =2

where
v = ip + gg + b, (20)
the right side being a partition of v, and*

J=14+jij+k— 1L

The sum is taken over all the partitions of v except those containing
unity (because the first central moment is zero). The term p, is the
pth standardized central moment of the original distribution. A pro-
gram was developed to compute such moments; but since the com-
putation rapidly becomes very lengthy when v increases, the number
of moments used to get the Gram-Charlier approximation was re-
duced as the convolution order increased. This ecan be done without
undue sacrifice in accuracy since the distribution tends to become
gaussian with increasing convolution order.

APPENDIX B

Calculation of Quantizer Factor Terms F,
Equation (8) shows that F, requires computation of terms like

* A partition of » is a set of positive integers whose sum is ». The terms 4, j, k,
P, q, and r are integers.



2402 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1969

Fi, = exp (—zi/2)H, ,(z)/[(n — 1) I}, (21)

where H,(x) is a Hermite polynomial for which the recurrence rela-
tion exists®

H,.(z) = zH.(x) — rH,_,(x). (22)
Therefore
Frininy = xkau/ﬂ} — Fin-nl(n — 1)/‘”]*- (23)
Sinee H,(z) = 1 and H,(z) = =z, from equation (21)
Fyp, = exp (—3/2) (24)
and
Fp = aF, . (25)

Therefore, by using equations (23), (24), and (25), a straightfor-
ward method exists for finding any F.,. When values are to be calcu-
lated using the same z; and many successive values of n, the pro-
gramming can be simplified by saving the computed values for n and
(n — 1) to be used in equation (23) when the value for (n + 1) is
desired. Taking advantage of this way of arranging the computa-
tions values were computed for n up to 10,000, enabling determina-
tion of the quantizing noise level at greater than 100 times the input
bandwidth for a 16-level quantizer. Since recurrence relations like
that in equation (23) sometimes result in rapid loss of accuracy, a
few values of Fy, were computed by an independent method, for high
values of n.

Hermite polynomials can be evaluated in terms of confluent hy-
pergeometric functions;® a sultable asymptotic formula for these

TaBLE I—VALUES oF Fy,

E n Recurrence Relation Asymptotic Formula
1.0 9999 0.3540125940E-01 0.35401259262E-01
1.0 10,000 0.60060871554397E-01 0.60060871554399E-01
1.0 10,001 —0.34798910623E-01 —0.34798910644E-01
2.0 9999 0.28830572153E-01 0.28830572171E-01
2.0 10,000 0.16057291188981E-01 0.16057291188984E-01
2.0 10,001 —0.28508000965E-01 —0.28508000983E-01
10.0 9,999 —0.62935376617E-12 —0.629353766E-12
10.0 10,000 0.1037121050651E-12 0.1037121050655E-12
10.0 10,001 0.73302922069E-12 0.73302922115E-12
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functions was obtained in Ref. 9. Although the asymptotic formula
would give adequate accuracy when n is large, the recurrence relation
permits much faster evaluations when values are needed over a large
range of n. Table I compares a few values of Fy, calculated by the
recurrence relation and the asymptotic formula. Very good agreement
is obtained justifying the use of the recurrence relation.
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