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A fundamental problem in the design of data transmission systems is the
synthests of pulse-shaping networks which satisfy specifications in both
the time and frequency domains. This paper considers the problem of
destgning a network to shape an arbitrary input pulse into a band-limited
pulse having minimum intersymbol interference. The design procedure uses
the zeros of the metwork iransfer function to achieve the band-limiting
properties (using a modified Temes and Gyi constraint) while the transfer
function poles are optimized with a computer to give the desired lme response.

By limiting the specifications on the shaped pulse to anabsolute minimum,
very accurate resulis are achieved with simple networks. Some sample
designs and experimental results are included. For example, an 11th order
transfer function 1s designed to shape rectangular pulses for a synchronous
baseband pulse amplitude modulation system. The shaped pulses have a
bandwidth 20 percent in excess of the Nyquist bandwidth and a theoretical
worst-case distortion of 2.1 percent. An active realization of this transfer
function achieved a worst-case distortion of about 2.5 percent.

I. INTRODUTION

A fundamental problem in the design of data transmission systems
is the synthesis of pulse-shaping networks which meet both time and
frequency domain specifications. This paper considers the problem of
designing, for a synchronous system, a network whose response to an
arbitrary input pulse is a band-limited pulse with minimum inter-
symbol interference.! The design procedure uses a slightly modified
Temes and Gyi procedure to keep the pulses band-limited;? the time
response is optimized by using a computer. By focusing attention only
on the important instants of time, very efficient and accurate designs
result. We include some sample designs and experimental results.
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II. PROBLEM DESCRIPTION

Consider a baseband pulse-amplitude modulation system in which
information is coded as the amplitude values of a single pulse shape
x(#). Assume that a pulse is transmitted every T seconds over a chan-
nel, which for the present is ideal. The received signal, s(?), is

o0

s(t) = 20 au(t — nT),

n=—uw

where a, is the amplitude of the nth pulse. The receiver samples s(£)
at T second intervals to determine the a,. If one requires that the
amplitude of any particular transmitted pulse can be determined by a
single sample of the received signal, that is, for all integers m,

o0

stmT + 7) = 2 ax(mT + 7 —nT) = a, ,

n=—0o0

then z(¢) must be a pulse with zero intersymbol interference; that is,
z(nT + 7) = by, (1)

where 7 is some appropriate reference time and §,, is the Kroneker
delta function.

Insofar as detecting the transmitted amplitude is concerned, no other
specification on z(t) is required. However, in most situations it is
desirable, if not mandatory, to band-limit the spectrum of z(f) to
frequencies less than some cutoff w, . Of course, the smallest allowable
value for w, is =/ T, the Nyquist frequency. Such a band-limiting con-
straint might result from a requirement to limit adjacent channel
interference. In many cases band-limiting is the only frequency domain
specification which is required. These simple time and frequency domain
specifications represent the minimum requirements that a pulse-shaping
network must meet in order to be useful in many pulse amplitude
modulation systems (see Fig. 1). It is important to observe that such
specifieations do not uniquely define z(f) except for the case where
w, = w/T.

Given these specifications, the problem now becomes that of generat-
ing a realizable rational transfer function which can achieve the specifi-
cations for a given input; that is, the approximation problem must be
solved. With this problem solved, the physical network can be con-
structed using known techniques.

There are numerous ways of solving the approximation problem both
in the time domain and the frequency domain. However, a more complete
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Fig. 1 — Minimum time and frequency domain specifications.

specification is generally required to use these techniques. For example,
a standard frequency-domain approach is to completely specify a
satisfactory 2(f) and to form the ideal transfer function of the network
as X (w)/¥ (), where ¥ (w) is the Fourier transform of the network input.
This transfer function is approximated by a rational function. The
disadvantages of this straightforward approach are (7) whatever fre-
quency domain measure of approximation accuracy is used, errors in
the frequency domain are not easily related to errors at the sampling
instants in the time domain, and (47) completely specifying z(t) requires
the network to perform more shaping than is actually necessary. A
particular selected x(f) might give a transfer function which is more
difficult to approximate than some other equally acceptable z(f). Since
the 2(f) most easily approximated is not known, specifying a particular
z(t) may require a transfer function of unnecessarily high order to achieve
acceptable results.

Solving the approximation problem in the time domain permits
more direct control of time domain errors. Ulstad has achieved good
results in this manner; however, he completely specified z(¢).2 In gen-
eral, time-domain approximation procedures provide no direct control
of the band-limiting properties of the network and one msut rely upon
an accurate approximation of a completely specified z(¢) to achieve
the band-limiting. Furthermore, when added weight in the approxima-
tion procedure is put at the sample times, the band-limiting properties
of the network become increasingly difficult to control. This conflict,
between approximating in the time domain with stress on sample times
and achieving given band-limiting properties, seems to be common to
most time-domain approximation techniques.

Jess and Schiissler considered the optimization of pulse-forming
networks simultaneously in the time and frequency domains.* Their
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approach, although a step in the right direction, minimizes the tails
of the pulse; this does not necessarily give an acceptable value of
intersymbol interference when the rate at which pulses are transmitted
is a significant percentage of the Nyquist rate for the bandwidth
available.

What is required is a method of approximating in the time domain
which constrains the frequency domain behavior to be band-limited.
Temes and Gyi show how to develop transfer functions which have
band-limited impulse responses.? These ideas can be applied, with
some modification, to give a useful solution to the problem of pulse
shaping.

III. PULSE SHAPING USING THE TEMES AND GYI CONSTRAINT

For convenience, Appendix A reviews the manner in which Temes
and Gyi develop a low-pass transfer function which has an equal-
ripple stopband behavior. This is accomplished by expressing the
transfer function in partial fraction form and constraining the re-
sidues to depend on the poles in a particular manmner. If G(s) is a
transfer function with one zero at infinity, it is expressed as

N R'
G(s) = ;;Ts—‘_, (2a)
where
N
R = Kz, [ 215 (2b)

i

and 22 = s% + o, Re z; = 0; w, is the low-frequency edge of the stop-
band and K is the maximum gain in the stopband. It is important that
this transfer function has all its zeros on the jw axis and is therefore
minimum phase.

In general, and specifically for the case where the input to the pulse-
shaping network is a rectangular pulse, a minimum-phase transfer
function does not have enough freedom to shape a pulse into a Nyquist
pulse. (If a Nyquist pulse has a bandwidth of (1 + a)#/T, where 0 <
a < 1, then its Fourier transform must have linear phase over the
frequency interval from zero to (1 — a«)x/T. To see this, compute the
Fourier transform of the sampled pulse. This linear phase condition
cannot be achieved, in general, with a minimum-phase shaping net-
work.) To remedy this, the transfer function of equation (2) is multi-
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plied by an all-pass transfer function which has the form,

N+L —a,
Hs = [ =2=%; Res <0. (3)

i=N+1 § T 8

The transfer function resulting from the product of equations (2) and
(8) is band-limited and has arbitrary low-pass gain and phase char-
acteristics. Observe that all the zeros of the transfer function G(s)
H(s) (half of the available degrees of freedom) are constrained to be
functions of the poles in order to get the band-limiting behavior. The
poles (the remaining degrees of freedom) can now be used to optimize
the time behavior of the pulse.

Assume for the present that the pulse to be shaped is rectangular,
that is,

y() = u(®) — ut — To), (4)

where w(t) is the unit step function and T, the pulse width. From
equations (2), (3), and (4), the output pulse z(t) is

N+L+1

z(t) = 2. ®efu(t) exp (sit) — u(t — T,) exp [s:(t — T)]},  (59)

where
.R.'H(S.') , 1 g ?: 5 N
8
N+L X )
@ =100 T Z&ts) Ny <isN+L (5h)
8 iinm (i — &)

i

kG(O), ?: = N + L + 1 (3N+L+1 = 0)

and only simple poles are assumed to occur.

Equation (5) gives the output pulse in terms of the network poles.
The pulse can now be optimized in the time domain using a digital
computer and an appropriate optimization technique. For the particular
application considered here, only the values of z(f) at equally spaced
intervals of time are important, that is, ¢ = kT + {,, where k is a
positive integer, T is the sampling interval, and —T < ¢, £ 0. By
concentrating on these instants of time rather than on the entire pulse
waveform, excellent pulse-shaping networks can be designed which are
not excessively complex.

The pulse shaping networks given in the following examples were
designed by using a general purpose optimization program written
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by Mrs. J. M. Schilling. The program used a steepest descent minimi-
zation technique. Typical running times on an IBM 7094 were about
three to four minutes.

Figures 2 through 12 show the results of two sample designs and
some experimental measurements. The first example (Figs. 2 through
6) is a seventh-order network which shapes a rectangular pulse into
a Nyquist pulse with 50 percent excess bandwidth.* The network
stopband rejection is 40 dB and the output pulse has a worst-case
distortion of 0.38 percent.! The second example (Figs. 7 through 12)
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Fig. 2—Time response of a seventh order pulse-shaping network (one all-pass
section) resulting from a rectangular input pulse of unit amplitude and of five
seconds duration. The network has 40 dB stopband rejection, 50 percent excess
bandwidth, and worst-case distortion of 038 percent. The Nyquist frequency is
0.1 Hz (T = 5 seconds).

shapes a rectangular pulse into a Nyquist pulse with 20 percent excess
bandwidth. The worst-case distortion is 2.1 percent. For this example
experimental measurements are shown for an active network realiza-

tion using Tow’s technique.®

*For a 50 percent excess bandwidth pulse, the low frequency edge of the stop-
band is at (1.5/27) Hz.

t Worst-case distortion is defined as kr' | (kT + t.) |, where z(k.T + &) = 1,

#ka
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Fig. 3 — Pulse spectrum amplitude for time response shown in Fig. 2.
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Fig. 4 — Gain of the network giving the output pulse shown in Fig. 2.
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Fig. 5 — Delay of the network giving the output pulse shown in Fig. 2.
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Fig. 6 — Transfer function data for the network of Figs. 2 through 5.
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Fig. 7— Time response of an eleventh order pulse-shaping network (two all-
pass sections) resulting from a rectangular input pulse of unit amplitude and of
five seconds duration. The network has 35 dB stopband rejection, 20 percent ex-
cess bandwidth, and worst-case distortion of 2.1 percent. The Nyquist frequency
i8 0.1 Hz (T = 5 seconds). Note: 356 dB network stopband rejection gives 40 dB or
better rejection of signal energy when a rectangular pulse of five seconds dura-
tion is the network input.
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Fig. 8 — Pulse spectrum amplitude for time response shown in Fig. 7.



2434 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1969

|

NETWORK GAIN

\

\

\

0 h—

) 0.4 0.8 12 16 2.0
FREQUENCY (Hz X 10°1)

Fig. 9 — Gain of network giving the output pulse shown in Fig. 7.
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Fig. 10 — Delay of the network giving the output pulse shown in Fig. 7.
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Fig. 11 — Transfer function data for the network of Figs. 7 through 10 and 12.
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Fig. 12— Experimental data on an active network realization of the transfer
function given in Fig. 11. (a) Response of the network to a rectangular input
pulse. The Nyquist frequency for the filter was 1800 Hz. (b) Eight level eye
patt?rnsdgenerated by a random sequence of rectangular pulses with eight distinct
amplitudes.



NETWORK SYNTHESIS 2437

It should be stressed that although the design procedure used here
gives excellent results, they are not necessarily optimum in any par-
ticular sense. It is clear from the complex way in which the poles
enter into the time response of the output pulse that the error between
the pulse samples, realized by equation (5) and the desired pulse
samples, may not have a unique minimum; therefore, the computer
program used to optimize the pole locations may actually converge
to a local minimum. However, with a little experience the initial pole
positions can be selected to give very satisfactory results.

IV. EXTENSIONS TO SHAPING ARBITRARY INPUTS

So far, only the shaping of a rectangular pulse has been considered.
There are many situations where nonrectangular pulses must be
shaped. For example, consider the ecase where the network is to shape
a rectangular pulse to be transmitted over a channel which is no longer
ideal as has been assumed so far; now the channel is assumed to in-
troduce a known, fixed amount of amplitude and delay distortion. In
this case, the pulse at the receiver is unchanged if the pulse-shaping
network and the channel are interchanged (see Figs. 13a and b). Now
the pulses presented to the shaping network from the channel are no
longer rectangular. By having the network shape the channel output
into a Nyquist pulse, the overall cascade connection of the pulse-
shaping network and the channel shape a rectangular pulse into a
Nyquist pulse. It is assumed that a solution to this problem is theo-
retically possible. A case which does not have a solution occurs when
the channel is band-limited to less than (1/27) Hz.

For this example one might ask why the design process is rearranged
in this manner. A more straightforward approach is to caleulate the
channel input required to give a particular Nyquist pulse at the chan-
nel output. The channel input is then approximated by the output of
the shaping network. This approach has two disadvantages: (i) the
channel output is over-specified, and (i) the shaping network must
approximate the channel input at more time points than is necessary
in the other case.

In order to determine the output of the shaping network, z(t), re-
sulting from an arbitrary input, ¥ (¢), one must perform a convolution.
In general, a convolution is a very time-consuming ealculation to carry
out on a digital computer;* however, because the pulse-shaping net-

* A convolution must be performed many times when the poles of the pulse-
shaping network are optimized by using a digital computer.
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work is band-limited and we are interested in only equally spaced
samples of the output pulse, this convolution can be made very ef-
ficient even without resorting to fast Fourier transform methods.

Since the pulse-shaping network is band-limited, an ideal band-
limiting filter with the same bandwidth can be placed in front of it
without appreciably affecting the shape of the output pulse (see Fig.
13b and c). Some effect oceurs because the pulse-shaping network is not
ideally band-limiting; this effect is small for reasonable stopband re-
jection levels. Now the input to the pulse-shaping network is band-
limited. Since this is the case, the convolution can be performed using
samples spaced at intervals of (7/w,.) seconds or less, where w, is the
cutoff frequency of the pulse-shaping network (see Figs. 13¢ and d).
There is some aliasing error because the pulse-shaping network is not
ideally band-limited; but this can be made small.

The bandwidth, w,, of the pulse-shaping network in all cases is
greater than (r/7") radians per second (7 is the time between successive
pulses) and is usually less than (2x/T') radians per second. For this situ-
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Fig. 13 — Approximately equivalent systems.
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ation the output of the network can be found most conveniently by
performing the convolution with samples spaced at intervals of length
T, = T/2. Although a larger T,(T, = 7/w.) could be used, it requires
interpolation to find the output at required sample times.

Figure 14 shows the results of the design of a pulse-shaping network
to shape a nonrectangular pulse. The filters of a vestigial-sideband
data transmission system were designed using a standard frequency-
domain approach. The system was then simulated on a digital com-
puter (assuming an ideal channel) and a binary eye pattern generated
as Fig. 14a shows. The system was not ideal, as the figure indicates,
because of errors introduced by the filters. The worst-case distortion
was 64 percent.

The low-pass filter which follows the demodulator of the system
was then designed, using the time-domain procedure deseribed here.
The order of the filter was kept the same. The portions of the data
transmission system preceding the low-pass filter assumed the function
of the channel as shown in Fig. 13. Figure 14b shows a binary eye
pattern generated by a computer simulation of the data transmission
system which incorporates the filter designed in the time domain. The
worst-case distortion was 16 percent. The results in Fig. 14 oceur with-
out the aid of an automatic transversal equalizer.® When such an
equalizer is used the results for both cases improve significantly and
the advantage offered by the network designed in the time domain is
reduced depending, of course, on the number of taps on the equalizer.

V. CONCLUSION

This paper has discussed a method of designing networks to shape
arbitrary input pulses into band-limited Nyquist pulses. A modified
Temes and Gyi constraint is used to keep the shaped pulses band-
limited; the time responses are then optimized only at those time in-
stants of interest. The resulting networks accurately realize both time
and frequency domain specifications with minimum network com-

plexity.
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Fig. 14 — Computer generated binary eye patterns for a vestigial-sideband data
transmission system. (a) Results occurring when the filters are designed using
frequency domain techniques. (b) Results occurring when the low-pass filter fol-
lowing the demodulator is designed by the technique described in Section 4.



NETWORK SYNTHESIS 2441

APPENDIX

Arbitrary Passband, Equal-Ripple Stopband Transfer Function of
Temes and Gyi?

This appendix explains the procedure used by Temes and Gyi to
develop G(s), a low-pass, equal-ripple stopband, arbitrary passband
transfer function. A rational G(s) should (¢) realize a gain less than or
equal to some constant K for frequencies in the stopband, | w | Z w. and
(#2) have an arbitrary gain in the passband, | @ | < w,. . This is achieved
basically by using the poles of G(s) to give the desired passband gain
and the zeros of G(s) to give the desired equal-ripple stopband gain.

To develop a transfer function with the desired gain properties, we
consider the function G(s)G(—s). For s = jw, G(s)G(—s) equals the
magnitude squared of G(jw). Now consider the mapping of equation (6)
which maps the s-plane to the z-plane:

=8 4+w, Re(=0 z=2z+jy. (6)

This mapping causes the stopband portion of jw axis in the s-plane to
correspond to the entire jy axis of the z-plane and the passband portion
of the jw axis in the s-plane to correspond to a portion of the z axis of
the z-plane. The function G(s)G(—s) can be transformed by equation
(6) to the z-plane and, as will be shown, can be made to have equal-
ripple stopband behavior by giving it the form of H(z) in equation (7),
where

K2

1+ ROR(—2) (72)

H(z) =
and

R(z) = 2F(2)/E(2). (7b)

R(z) is a z-plane reactance function, and E(z) and F(z) are even
functions, By transforming H (z) to the s-plane and properly factor-
ing it into G (s)G(—s), the equal-ripple stopband transfer function
is generated.

The z-plane reactance function in equation (7b) is written as an
odd funetion over an even function. The reactance function could be
the reciprocal of equation (7b); but, this form would not yield a ra-
tional G (s). Since a reactance function has alternating poles and zeros
on the jy axis and is pure imaginary there, H (jy) has equal-ripple
behavior ranging between K? when jy is a zero of E(2) and zero when
7y is a pole of R (z). If F(z) and E(z) are the same order, E(z) has a
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pole at infinity; therefore, G(s) has a zero at infinity. If F(z) is of
order two less than E(z), R(z) has a zero at infinity and G (s) is not
zero at infinity.

To determine G (s) explicity, H (z) is transformed into the s-plane
and factored. To do this, H(z) is written, using equation (7), as

K*E*(z) _ K°E*(z)
HE) = 576) — 210 ~ ) — FOIEG + F@T

Since zF(z) /E(z) is a reactance function, E(z) + zF(z) has roots in
the left-half z-plane and E(z) — zF(z) has roots in the right-half
z-plane. Assuming that the polynomial E (z) + zF(z) is nth order and
the coefficient of z” is unity, equation (8) can be factored into

K*E*(2) K’E*(z)

1os [ﬁ (@ — Z)][ﬁ (z: + z)] ) 1_11 [} — 2]

i=1 i=]1

where z; are the roots of E(z) — zF(z) = 0. Using equation (6) and

s? = 2 — w?, the s-plane version of H(z) becomes

H(S) — Kz-"?a(z) =’=a=+m: — K‘?(Z) s'na'+w: KE(Z) |z’-=u'+w:
H (s — s ‘I-II (s — 8;) . ‘I:Il (—s — s8))
= G(5)G(—s).

The s; are the left-half plane images of the z; . Therefore,

G(S) — K'If‘(z) 2?=32+w, (9)
‘1;]1: (s — s)
is a realizable, rational transfer function. Note that E(2) is an even
function of z and thus is a rational funetion of s. Also all the zeros of
G(s) lie on the jw axis in the stopband.

The construction of G(s) is such that the poles, s;, can be arbitrary
(of course constrained to occur in comples conjugate pairs in the left-
half plane). The numerator of G(s) is found as a function of the poles by
computing the polynomial

EG) — 2F@) = II G — 2),
i=]

where 22 = 52 + 1, Re (z;) > 0. The even part is taken and transformed
back to the s-plane.
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G(s) can conveniently be expressed in partial fraction form as

(s = Zs—f—s (10a)
p - - KEG) (10b)
H (3-' - 3&)

where all the poles are assumed to be distinet and » is odd, so that
(3(s) has a zero at infinity. E(z;) can he simplified:

K@) + 2F(z) = iI (2 + 2),

H(z) + z.F(z)

2, fI (2 + 24),

andd
E(—z) — 2:F(—z) =0 = Ez) — z:F(z,).

The last equation is true since E (z) and F(z) are even funetions of z.
Adding the last two equations gives

E@z) =z II (2 + 2.,

whieh results in

R = Ke [1212 (10¢)

Thus, if the poles s; are given, the residues R; found from equation
(10e) give a transfer function with equal-ripple stopband behavior.
Using this result the impulse response of G'(s) becomes, for odd =,

n—1

g(t) = R, exp (s.t) + Zz: exp [Re (s:)i]

-[2 Re (R,) cos {Im (s,)t} — 2 Im (R.)sin {Im (s;)¢}]. (11)

The real pole is s,.
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