Mobile Radio Diversity Reception

By E. N. GILBERT

(Manuseript received January 24, 1969)

This paper examines a particular kind of diversity system, under
conditions of multipath fading, when there is interference from either
random noise or from an unwanled station. The transmitter sends a pilot
wave along with the modulated signal. The receiver’s mizer stage heterodynes
the signal with the pilot (instead of with a locally generated tone). Doppler
phase distortion, which affects the signal and pilot in nearly the same way,
cancels out during mizing. The diversity system with N antennas adds the
outputs from N such mizers. This kind of diversity tends to add the N
signal oulputs in phase, while random noise components as well as certain
other interferences add powerwise. In the presence of an interfering station,
diversity smooths out amplitude fluctuations. It thereby reduces the prob-
ability that the interference will override the desired station.

I. INTRODUCTION

D. O. Reudink, in an unpublished work, has suggested a diversity
system especially suited for mobile radio. In his system the transmit-
ter sends a pilot wave along with the modulated signal. The receiver’s
mixer stage beats the signal against the received pilot (instead of
against a locally generated tone). Doppler distortion, which affects
the signal and pilot in nearly the same way, cancels out during mix-
ing. The diversity system with N antennas adds the outputs of N such
mixers and demodulates the sum by means of an ordinary AM or FM
detector.

The receiver obtains a signal-to-noise advantage by adding signal
components from the N mixers in phase while adding most interfer-
ence terms powerwise. To obtain this advantage under multipath
propagation conditions, the receiver’s IF' (that is, the difference f
between the signal and pilot frequencies) must be chosen small enough.
It suffices to make f so small that the propagation times along the
different paths all agree to within a small fraction of 1/f (see Section
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2.2). The analysis presented in this paper is only valid for the situa-
tions in which signal components add in phase.

The effectiveness of these receivers is most clearly seen by examin-
ing the signal and noise levels at their outputs. Here the noise in
question may be either random noise or an unwanted beat from an
interfering station. Several kinds of signal-to-noise ratios can be de-
fined because the signal and noise levels fluctuate as the receiver
moves. The ratio snr of output signal power to output noise power
depends on the receiver’s position. Here snr is regarded as a random
variable and its probability distribution function is derived. A simpler
ratio, called SNR, is obtained by dividing the mean output signal
power by the mean output noise power. SNR is simply a fixed number
but it gives less information about receiver failure than the distribu-
tion of snr does.

The probability distribution of snr is derived for cases in which
the signal experiences rayleigh fading. The rayleigh fading model
is known to agree well with experiment within small areas, say ten
wavelengths across, although it cannot account for largescale effects
like shadowing by buildings and hills.* SNR is derived without as-
suming rayleigh fading.

Table I gives excerpts from more complete tables which follow. It
compares receivers under rayleigh fading conditions by giving trans-
mitter powers needed to keep snr above 3 dB or 10 dB with proba-
bility 0.99. The transmitter powers are given in decibels above a com-
mon level which need not be specified at this point. Of course the
required powers depend on the interference power and on the propaga-
tion losses, but these terms are the same in all cases; they contribute
a constant number of decibels to all the tabulated values. Only dif-
ferences in decibel values need be considered when comparing re-
ceivers.

The table considers four kinds of interference and gives the signal
power needed to keep snr at the given level for each separately. Ran-
dom interference is supposed to be gaussian noise. In diversity re-
ceivers an interfering station produces three noise signals having
different properties. These are called 2PS’, 2P'S, 2P'S’, the letters
denoting the components which beat to produce the noise. Thus 2P’S
is a beat between interfering Pilot and desired Signal. For comparison,
the conventional receiver has only one kind of output noise. Notice
that the relative strengths of the three noises in the diversity receiver,
and hence the character of the combined noise, depends both on N and
on the signal level. Even a two-antenna diversity system has a noise
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TanLe [—RELATIVE TRANSMITTER PowERS (DB) REQUIRED FOR
0.01 ProBABILITY OF snr = 3 pB or 10 pB

Diversity Receivers
sNIr Conventional
(dB) Interference N =1 2 4 8 Receiver
3
random 26.0 14.3 6.6 1.4 20.0
2PS 23.0 12.5 6.3 1.9
station 2P'S 23.0 12.5 6.3 1.9 23.0
2P'S’ 21.5 13.5 9.3 6.8
10
random 36.0 24.3 16.6 11.4 30.0
2PS’ 30.0 19.5 13.3 8.9
station 2P’'S 30.0 19.5 13.3 8.9 33.0
2P'S’ 25.0 17.0 12.8 10.3

advantage over the conventional system and has immunity to doppler
distortion too.

II. THE DIVERSITY RECEIVER

The transmitter sends a pilot tone A cos 2=Ft along with the modu-
lated signal AB cos[2(F + f)t + 6]. Here f is an intermediate fre-
quency, small compared with F but large enough so that the signal
spectrum does not overlap the pilot. B and 6 are an amplitude and a
phase, either one of which may be varied slowly to represent the
modulating signal. The receiver (see the block diagram, Fig. 1), con-
tains elements S which square received antenna voltages. Fach
square contains a component at frequency f which results from a beat
between the pilot and the modulated signal. This component contains
the modulation, AM or FM, of the original transmission. The N
squares are added and the sum is filtered to remove other components
at frequencies far from f. The filtered sum is an IF signal to be de-
modulated in the usual way.

2.1 Single Path In Phase Addition

In effect the transmitted pilot tone replaces the loeal osecillator tone
which a conventional receiver generates internally. The advantage is
that any doppler distortion affects the pilot as well as the modulated
gignal. As a result, the circuit of Fig. 1 tends to add IF components
in phase if f is small. This may be seen as follows.

Figure 2 shows N antennas receiving a signal which arrives from
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Fig. 1— Diversity receiver.

the direction indicated by the arrow. Suppose for the moment that
this is the only incident signal (no multipath effects). Now consider
two typical antennas, say 1 and 2. Let the difference between the
lengths of the paths from 1 and 2 to the transmitter be called s.

If the voltage in antenna 1 is

A cos (2xFt + ¢) + AB cos 2n(F + )t + ¢, 6y

then the voltage in antenna 2 is

A cos [2rF(t — s/c) + ¢] + AB cos [2r(F + f)(¢t — s/c) + ¥, (2)
where ¢ is the velocity of light. After squaring, the IF components are
1A4®B cos (2rft + ¢ — o) from antenna 1, and $A°B cos (2nft + ¢ —
¢ — 2rfs/c) from antenna 2.
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Fig. 2 — Reception by N antennas.
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These two components differ in phase by 2rfs/c radians. To keep
this angle small, s must be a small fraction of ¢/f, the wavelength at
IF. For instance if the IF is f < 1 MHz and if no two antennas are
more than ten feet apart, then s is less than 0.01 wavelength and the
N beat components are in phase to within 3.6°.

2.2 Multipath Inphase Addition

Under multipath conditions cross beats occur between pilots and
modulated signals received via different paths. This section derives a
more stringent sufficient condition for inphase addition. Now the
lengths of all major propagation paths from transmitter to receiving
antennas must agree within a small fraction of the IF wavelength.
For example, if the IF were 100 kHz, the wavelength in question
would be 3000 meters. Path differences of hundreds of feet would still
permit nearly inphase addition. Path differences of this size might
occur if only nearby buildings serve as reflectors. The data which
W. R. Young took in New York City shows that some longer path
dierences can be expected there.?

The voltages in antennas 1 and 2 of Fig. 2 are now sums of voltages
received over different paths. The kth path contributes terms like
(1) and (2) but with parameters A, , ¢x, ¢+, and s, which depend on k.
Suppose the kth path has length L, . Then ¢, is a sum of phase shifts
at reflections plus a propagation term —2xFL,/c. Likewise ¥, is a sum
of the same phase shifts at reflections, a propagation term —2=(F +
f)L/c, and the modulation angle 6. Then ¢, = ¢. + 6 — 2xfL,/c. At
antenna 2 the kth pilot is P, = A, cos (27Ft + ¢, — 27Fs,/c) and the
kth modulated signal is S, = A,B cos [27(F + ) + 0 + ¢ — 2xfL,/c —
2x(F + f)si/c]. At antenna 1 the kth path produces voltages of the
same form but with s, = 0.

When the antenna 2 voltage is squared, cross beats between the
jth and kth paths occur. The IF part of P,S; is

P.S; : LA, A;B cos [2rft + 6 4+ ¢; — ¢
— 2xfL;/e — 2x(F + f)s;/e + 2xFs,/c].

There is also a P;S; beat, and the sum of the two beats contains the IF
component

P.S; + P;S, : ALA;B cos [2nft + 6 — #f(Ly + L; + s, + s,)/c]
- COs [¢, - ¢A— - TI'f(L,- - Lk + 8; — Sk)/c - 27|'F(8,' - Sg)/c].
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The same expression gives the IF component of P,S; + P;S, at antenna
1 when s; and s, are replaced by zero. In this expression the first cosine
contains the time dependence while the second cosine is purely an
amplitude factor.

Now suppose, as in Section 2.1, that s, , s,, - - -, are all so small that
the terms =fs,/c are small angles. Then the first cosine in the P.S; +
P, 8, contribution is nearly the same at antenna 2 as it is at antenna 1.
However the second cosine contains the large angle 2rF(s; — s.)/c at
antenna 2 only. Indeed one ean construct numerical examples to show
that further assumptions are needed to make the total IF outputs of the
two squarers be inphase. It will suffice to assume that the path lengths
L,, Ly, -+ , are nearly equal, differing from one another by only a
small fraction of ¢/f. Under this extra condition, the first cosine factor
is approximately cos (2rft + 8 —2xL,/c) for all k, j and at both anten-
nas. For a given k, j the second cosine factor can still have opposite signs
at the two antennas. However, when all beats are combined, the ampli-
tude at antenna 2 is approximately

3 E A, AB cos [p; — ¢ — 20F(s; — s1)/c]
ki
= 1B Re 2 A.A4; expilp; — ¢ — 2nF(s; — s:)/cl
k.1
= 1B Re | Z A; exp ilp; — 2xFs;/c] |,

which is positive. The same argument with s; = 0 gives a positive
amplitude at antenna 1; the two sums are inphase.

In New York City large path differences are observed. There it may
be difficult to make f small enough to satisfy always the condition just
derived. However if the total number K of paths is small, there is still
some tendency for the phases from squarers 1 and 2 to be close. For
although the P.S; contributions from antennas 1 and 2 differ in the
K(K — 1) cases with j # k, the argument of Section 2.1 shows that the
two antennas give equal contributions in the K cases with j = k. One
can analyze simple models in which L, and other parameters are ran-
domly chosen and still conclude that the IF outputs from the two
squarers are correlated, but to an extent that decreases as K increases.
However I omit those details and assume from now on that signal
outputs from the squarers add inphase. I also assume that F is large
enough, say about 1000 MHz, so that the phases of noise received in
antennas placed a few feet apart can be considered independent.



DIVERSITY SYSTEM 2479

III. RESPONSE TO RANDOM NOISE

This section considers the effect of random noise on diversity re-
ception and gives expressions (16), (17), and (18) for output noise
spectra. Multipath fading effects make the output signal to noise
ratio, snr, depend on the position of the receiver. A single mathe-
matically convenient figure of merit is the ratio of expected signal
power to expected noise power. This ratio is called SNR here. Before
the mathematical details begin, some of the results will be summarized.

SNR increases linearly with the number N of antennas [equation
(20)]. For a given amount of total transmitter power, the largest out-
put signal power is obtained by transmitting equal amounts of power
in the pilot and modulated signal. The diversity system will be com-
pared with a conventional system using the same transmitter power.
If N is small, the conventional system has a slight noise advantage be-
cause it uses the full transmitter power for the modulated signal (the
pilot is generated in the receiver). The diversity system with N = 3
has about the same SNR as a conventional system. However, the
probability distributions of snr for these receivers are very different;
the one for the diversity receiver is more sharply peaked. As a result
a diversity system, even with N = 2, produces a small snr less often
than the conventional system (compare with Table I).

When making SNR comparisons one must also recognize qualitative
differences between the output noises from different receivers. The
conventional receiver has a steady noise output resulting from input
noise beating against the steady local oscillator signal. In the diversity
system the output noise results largely from input noise beating
against fluctuating pilot and modulated signals. During fades the
output noise from the diversity receiver also fades while the noise
from the conventional receiver does not. Thus, the diversity receiver
has acceptable snr more often than a conventional receiver with the
same output SNR.

3.1 Noise Spectra

The mathematical treatment will begin with the case N = 1; the
extension to more antennas will be easy. The input to the squarer is
the sum of three voltages:

Pilot P(t) = A cos 27FL + o), (3)
Signal S(t) = AB cos 2r(F + )it + ¢, (4)
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Noise n(t) = 2 n; cos (2nfd + E). (5)
Here the noise is represented, as by 8. O. Rice,? as a sum of sinusoids
with random phases & and amplitudes n;. Rice studied the effect of
squaring a random noise; this section adapts his work to the present
problem.

The received pilot power is 144% (into a one ohm load); likewise
the signal has power 14A2B2 The noise has a one-sided power spec-
trum function w(v) such that

we) Av=3% D ni
r<fi<r+Av
represents the noise power in the frequency band from v to v + Av.
The shape of the function w(v) is determined by the tuned circuits
(not shown in Fig. 1) which filter the antenna signal before squaring.
Figure 3 shows a typical case

'w(];)={Nﬂ‘ F_béyéF"’_f_!_a:

0, otherwise,

(6)

which uses a band-pass filter slightly wider than necessary to pass the
pilot and signal at frequencies ¥ and F + f.

Squaring P + S + n produces six terms; P?, §*, n?, 2PS, 2Pn, 28n.
P2 and 8¢ contribute nothing to the output after the output filter re-
moves components remote from frequency f. The other contributions
are

A’B cos 2rft + ¢ — ¢) from 2PS, )
A D n;cos 2x(fi — P+ £ — o] from 2Pn, (8)
AB Y. m; cos 2x(fi — F — )t + & — ¢] from 28m, ©)]
PILOT | SIGNAL
> A28 (v-F) 1AZ828 (v-F-f)
No NOISE
F-b Ftf+a

Fig. 3 — Power spectra at the input to a squarer.



DIVERSITY SYSTEM 2481

2. nm; cos [2a(fe — [l + & — &) from n°. (10)
i<i
The 2PS contribution is the desired output; its power is 14A4*B2
The speetra of the other contributions appear in Fig. 4. The spectral
density functions are

A*wl + F) from 2Pn, (1)
A’Bw(F + { + v) from 28n, (12)
2 jm w(@)wl + ) dr from n’. (13)

Functions (11), (12), and (13) assign some power to negative values
of v; these are to be aliased to positive frequencies. This aliasing ac-
counts for the peculiar discontinuities in the spectra at low frequencies.
The dotted lines show functions (11), (12), and (13) before aliasing.
The values of @ and b will be assumed smaller than f so that, as in
Fig. 4, the noise power densities at frequency f are AN, for Pn noise
and A2B*N, for Sn noise,

In the case of gaussian noise, the phases £ in functions (8), (9),
and (10) are independent. It then follows that the three kinds of out-
put noise components at a given frequency v are uncorrelated. Then
these noises add powerwise and the total noise spectral density is the
sum of funetions (11), (12), and (13).

3.2 Noise in Diversily Syslem

In a diversity system the same kind of analysis applies for each of
N antennas. The amplitudes and phases would now be written as

A, niy i, @r, and £ where the subseript & (8 = 1, - - -, N) specifies
the antenna. All these random variables are independent of one another
except for ¥, and ¢, which satisfy ¢, — ¢, = ¥ — @3 = -+ = Yy —

¢y = 0 because, as discussed in Section II, the 2PS terms have a com-
mon phase angle . Thus the N signal components add voltage-wise
and the expected signal power at the output is

IB'E(D A} = $B°E(NE(AY) + N(N — D[EA4"]).
Let %, denote the (dimensionless) ratio
k, = E(AY)/IE(AY)]. (14)

For rayleigh fading, k&, = 2. For no fading k&, = 1. The expeected output
signal power is



2482 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1069

PILOT X NOISE

1
i L
-bob f f+a
SIGNAL x NOISE
o - ]
-f-b 0 a f f+b

NOISE X NOISE

TOTAL

¢} f
TFig. 4 — Output noise spectra.

E(Signal Power Out) = IN(V + k, — 1)[E(A")]'B*
= IN(N + 1)[E(A*)]*B*(rayleigh). (15)

According to equations (3) and (4), 3E(A") and 3B°E(A”) are the
expected received powers of the pilot and signal. With fixed transmitter
power [fixed 3(1 + B*)E(A*) = P,], the output signal, equation (15),
is maximized when the transmitted power is divided equally between
pilot and signal [B = 1, E(4*) = P,]. Then equation (15) becomes
E(Signal Power Out) = iN(N + k, — 1)P;.

The noise terms (11), (12), and (13) for the N antennas add power-
wise and the expected output noise power spectrum is a sum of three
terms

NE(AHw(» + F) from  2Pn, (16)
NBE(AHw(F + { + ») from  2Sn, (17)

and

2N j-w w(@w( + ) de from n’, (18)
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3.3 SNR Formulas

For a typical case, suppose w(v) is the function (6) with a < f
and b < f. Suppose also that the output filter in Fig. 1 has a narrow
rectangular transfer function with bandwidth Af about frequency f.
Then the expected output noise power is

E(Noise Power Out) = 2NN,[P, + N, (a + b)|Af (19)

where again P, = V(1 + B*)E (A?) is the total expected power which
an antenna receives from pilot and signal. In this case the output
noise power does not depend on B and the choice B = 1 maximizes
not only the output signal power but the output signal to noise ratio
as well. With B = 1, equations (15) and (19) combine to give

N+k —1_ PJIN, Af)
4 1+ (a+ bN,/P,’

where k, is given by equation (14) (k, = 2 for Rayleigh fading).

If the input noise spectrum is not flat as in Fig. 3, the output noise
contributions (16) and (17) do not combine into the term 2NN P,Af
which appears in equation (19). In that case the value of B which
gives the best output SNR may not be one but will depend on the
input noise power densities at F and F+ f.

Formulas (11), (12), and (13) also apply, with slight reinterpre-
tations, to the conventional receiver without diversity. 164* is the
power of a local oscillator and 15A*B* is the received signal power.
Then A has a well determined value, but B is a random variable
having perhaps a Rayleigh distribution. Now P, is E (1%A4*B*). The
desired output signal has amplitude A°B and so has expected power
E (Signal Power Out) = 14A*E(B®) = A®P,. The local oscillator is
deliberately made much stronger than the incoming signal or noise;
then the output noise components (12) and (13) are negligible com-
pared with formula (11). For the output filter of bandwidth Af,
E (Noise Power Out) = A*w(F + f)Af. When w(v) is the function
(6) again,

SNR = (20)

SNR = P./(N,A]). (21)

The output signal to noise ratio in equations (20) and (21) differ
by & factor

(SN R) conventiona l/(SN R)divernity
= 4[1 + (a + b)N./P,J/(N + k, — 1). (22)
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The term (@ + b)N,/P, represents that part of the input noise to
signal ratio which results from noise arriving outside the band F =
v = F + {. Then this term will be small in any useful case. The remain-
ing factor 4/(N + k, — 1) gives the conventional system the advantage
unless N = 5 — k,. When Rayleigh fading holds, a three-antenna
diversity system has the same output SNR as the conventional system.

3.4 snr Distribution

As mentioned in Section 3.3, the signal and noise levels of conventional
and diversity receivers fluctuate differently as the receiver moves. In
the case of Rayleigh fading one can obtain the probability distribution
funetions for snr = (Signal Power Out/Noise Power Out) for the two
receivers. Again take the simple input noise spectrum of equation (6)
with small values of @ and b.

Expressions (7), (11), and (12) show that sor = (4N,Af)™" D A2 for
the diversity receiver (B = 1). Each Rayleigh amplitude 4, may be
expressed in terms of independent gaussian variables z;, y, of mean
zero and unit variance by means of A} = 3P, (2} + vi).

Then snr = (x3x/8)(P./N.Af) where x;y = X7 + -+ + Xy +
¥? 4+ ... 4+ Y3 has the chi-squared probability distribution with
2N degrees of freedom. The same result might be obtained by inter-
preting the receiver as a maximal ratio combiner.?

Expressions (7), (11), and (12) also apply to the conventional re-
ceiver if, as explained above, 4 is a fixed number while B is a small
rayleigh variable. Only 2Pn noise need be considered; then snr =
(2N,Af)T'A’B* = 1x;(P,/N,Af), where again x3 has the chi-squared
distribution, now with two degrees of freedom.

Suppose the system fails when snr is below some known ecritical
value. Suppose such failure can be tolerated only a small fraction @Q of the
time. The given value of @ is reached at some x” value which can be read
from probability tables. To achieve the desired small failure probability
the ratio P,/(N.Af) (a kind of input SNR) must be

P,/(N, Af) = {(8/ Xzn) SO (diversity)
1(8/x3)sor  (conventional)

Table II gives 10 log (8/x3y) as a function of Q. Thus for a 0.01
probability of failure, P,/(N,Af) must exceed the critical snr by 26.0 dB,
14.3 dB, 6.87 dB, and 1.39 dB for diversity systems of one, two, four,
and eight antennas. The conventional receiver requires 26.0 — 6.0 =
20.0 dB and so is intermediate between diversity systems with N = 1
and 2.
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TABLE II—VALUES oF 10 1.0G (8/x-x") FOR WHICH PROBABILITY
oF FAILURE = @

Number of ¢

Antennas 0.001 0.005 0.01 0.025 0.05 0.1
1 36.0 29.0 26.0 22.0 18.9 15.8
2 19.5 15.9 14.3 12.1 10.5 8.78
3 13.3 10.7 9.62 8.01 6.89 5.60
4 9.74 7.75 6.57 5.65 4.67 3.60
5 7.36 5.70 4.95 3.92 3.08 2.16
6 5.61 4.15 3.50 2.59 1.85 1.03
7 4.23 2.96 2.35 1.53 0.86 0.12
8 3.15 1.92 1.39 0.64 0.02 —0.63

IV, INTERFERENCE FROM A SECOND STATION

Suppose a diversity system tries to receive a desired signal while
another station uses the same channel. The pilots and modulated
signals of the two stations produce a variety of beat components,
three of which cause interference at IF [functions (23), (24), and
(25) below]. Two sound like doppler-distorted versions of the modu-
lated signals from the desired station and its competitor. The third
is an undistorted copy of the modulated signal from the competing
station.

Under multipath conditions, the two doppler-distorted beats have
phases which are uncorrelated from antenna to antenna. The output
SNR'’s for these noises grow linearly with the number N of antennas
[equation (26)]. The third components from the separate squarers
add in phase. Then the SNR for this interference is not reduced by
increasing N [equation (27)]. However, increasing N reduces the
variability of the power levels of the output signal and noise. Thus,
if the desired station is a few decibels stronger than the competing
station, increasing N reduces the chance that multipath fading will
allow the competing station to override the desired station (Table
II1).

One may reuse much of the formalism of Section III. A single
antenna again receives a pilot [equation (3)], modulated signal
[equation (4)], and a noise which is a special case of equation (5).
The noise now has only two components. One is a pilot P'(f) of
frequency F, phase ¢/, and amplitude A’. The other is a modulated
signal §'(t) of frequency F + f, phase y/, and amplitude A’B’.

Squaring produces IF components which are obtainable from fune-
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TasLe IIT—VaALUuEs oF 10 Loc F SucH THAT PROBABILITY
oF FatLure = Q (2P'S’ NoisE)

Number of h

Antennas 0.001 0.005 0.01 0.025 0.05 0.1 0.256 0.50
1 30.0 23.0 20.0 15.9 12.8 9.54 | 4.77 0
2 17.3 13.6 12.0 9.82 8.05 | 6.14 | 3.14 0
3 13.0 10.4 9.27 7.64 6.31 | 4.84 | 2.50 0
4 10.8 8.74 7.80 6.46 5.36 | 4.13 | 2.14 0
5 9.56 | 7.70 | 6.88 | 5.71 4.79 | 3.67 | 1.90 0
6 8.35 6.92 6.19 5.16 4.29 |1 3.32 | 1.73 0
7 7.73 6.33 5.70 4.75 3.94 | 3.04 | 1.58 0
b 717 5.86 5.29 4.42 3.69 | 2.88 | 1.49 0

tions (7), (8), (9), and (10). The desired signal component is fune-
tion (7) again. The 2Pn component, function (8), has two parts, one
of which [P(t) beating against P’(t)] contributes nothing. The re-
maining IF contribution from funetion (8) is

AA'B cos Ornft + ¢/ — o) from 2PS§'. (23)
Likewise functions (9) and (10) contribute only
AA'B cos (2xft + ¢ — ¢') from 28P’, (24)
and
A"”B’ cos 2xft + ¢’ — ¢') from 2P'S’; (25)

the 288’ and 5’2 terms do not contribute at IF.

The three interference terms (23), (24), and (25) have different
characteristics. The 2P8 and 2P’S’ components carry the modulation
(AM or FM) of §'(f) and act like interfering stations at IF. Likewise
the 2SP’ term sounds like a station with the desired modulation of
S(f). As the receiver moves, the two angles ¢/, and ¢ undergo different
doppler shifts. Then the 2PS’ component contains a residual doppler
distortion. Likewise the 2SP’ component is doppler distorted and so
will be considered a noise. By contrast, as in the 2PS term. the doppler
shifts in the 2P’S’ term cancel out leaving an undistorted interfering
signal.

Because the 2P’S component has both the desired modulation and
doppler distortion it is not clear whether it should be treated as a
signal term or as a noise term. If it were counted as part of the sig-
nal, the 2P’S term would be a source of fluctuation of the output sig-
nal level (it differs in phase from the 2PS term by a random amount).
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To ecall the 2P’S term a kind of noise is probably overconservative if
the system uses FM of index high enough to make the doppler distor-
tion unimportant. It turns out that the power levels of the 2PS" and
2P’S terms have the same probability distribution. Thus, whenever
other interference terms are small it does not matter much whether
2P’S components are treated as signal or as noise.

4.1 SNR Formulas

As in Seetion 3.3 one ean compute an SNR, defined as £(Signal Power
Out)/E(Noise Power Out), for each of the three interferences. Again
multipath fading conditions will be assumed so that pilot amplitudes
and phases from the N antennas are independent variables. The con-

ditions Y, — ¢1 = 2 — @2 = - = Yy — on = f and ¢] — ¢ =
Wi — @b = -+ = ¥ — ¢} = 0 relate the signal phases to the pilot
phases.

The expected signal output power is given by equation (15) as before.
The expected power from the N terms of type 2PS’ is E(Q_ LAAPB™)
= INB”E(A*E(A”). Likewise the 2SP’ power has expected value
AINB’E(A*)E(A"). The SNR’s are SNR = (N + k, — 1)(B/B")’E(A%/
E(A”) for 2P&' interference and SNR = (N + k, — 1)E(A®)/E(A™)
for 2SP’ interference [recall the definition of %, given by equation (14)].
When B = B’ = 1 and the expected received powers from the two
stations are P, and P!, both interferences have

SNR = (N + k, — 1)P,/P:. (26)

The expected power of 2P’S’ interference is given by equation (15)
with A’ and B’ replacing A and B. Then, if B’ = B, the SNR for 2P'S’ is

SNR = (P./P))* (27)

The two expressions (26) and (27) have interesting differences. They
depend on N in different ways because the 2SP’ and 28'P components
from separate antennas add with random phases while the 25'P’ com-
ponents add in phase. The input signal to noise ratio P,/ P’ appears with
different exponents in equations (26) and (27) because equation (26)
relates to beats between the desired station and the interfering one,
while equation (27) relates to beats of the interfering station with itself.

Because of these differences, either kind of output noise can be the
more serious one, depending on the situation. For a given number of
antennas, the 28'P and 2SP’ noises are stronger than the 25’P’ noise
when P,/P! is large. As P,/ P! becomes smaller, all noises increase and,
at P,/P’ = N + k, — 1, they have equal powers. When P,/ P! is still
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smaller, the 28’P’ noise (undistorted copy of the interfering signal)
predominates. With Rayleigh fading and N = 4 antennas, the 28'P’
noise predominates at input signal to noise ratios of 7 dB or less.

In conventional systems, an interfering station produces only one
output noise component. It has

SNR = P,/P!. (28)

None of the noise components of the diversity system are as bad as
this unless the interfering station is stronger than the desired one.

4.2 snr Distributions, 2P'S’ Noise

Equation (27) shows that adding more antennas does not improve
the SNR for 2P’S’ noise. However, diversity helps by reducing the
chance that a large fluctuation of the interfering signal level will cause
the system to fail. To study this effect let A, , - -+, Ay be signal ampli-
tudes, as in expressions (7) and (8), received by the N antennas. Like-
wise let these antennas receive A!, - - - , A from the interfering station.
Under severe multipath conditions these 2N amplitudes may be re-
garded as independent random variables. Again take B = B’ = 1 so
that E(A}) = P,, E(A}*) = P. The desired and interfering stations
produce output signals with amplitudes > A7 and ) A{*. Then

snr = (D Aj/ 20 AP)* (29)

is the random variable which must be studied.

The probability distribution function for snr can be obtained easily
in the case of rayleigh fading. Each Rayleigh amplitude 4 may be
represented by the formula A* = X* + Y* where X and Y are inde-
pendent gaussian variables with variance E(X*) = E(Y*) = 3P, .

In these terms, the quantity

o (XEH VP XL+ o 4 VD/GP)

F = (P./P)sur”?,

is the ratio of two sums of 2N independent squares of gaussian variables
of unit variance. Statisticians use such ratios frequently and have
tabulated their probability distributions. Abramowitz and Stegun give
such a table.* In their notation the cumulative probability function for
F is P(F | 2N, 2N), a special case of their P(F |»,, ). Their Table
26.9 gives Q(F | »,, ») = 1 — P(F | v, v), so that snr has the dis-
tribution function

Prob {sor < (P,/P})*F*} = Q(F | 2N, 2N). (31)
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Table III reproduces part of Abramowitz and Stegun’s table after
converting F values to decibels. The numbers tabulated are values 10
log,F which are needed to make the probability of equation (31) a
small value Q@ = 0.001, 0.005, 0.01, 0.025, 0.05, 0.1, 0.25, or 0.5. To use
Table III one must first know how small snr can become before the
system will fail; one also decides on an acceptable probability @ of
failure. The table gives a corresponding value of F and the conditions
for not failing are met as long as the input signal to noise ratio P,/P},
satisfies

Fsnr'/?* < P,/P!. (32)

For example, suppose the system fails if snr becomes as small as
3 dB. Suppose failure can be tolerated only 1 percent of the time. The
tabulated values of F for @ = 0.01 and N = 1, 4, 8 are 20.0, 7.80, and
5.29 dB. Then inequality (32) requires the input signal to noise ratio
to be

20.0 + 1.50 = 21.5 dB for one antenna,
7.80 4+ 1.50 = 9.30 dB for four antennas,
5.29 4+ 1.50 = 6.79 dB for eight antennas.

In the case of one and four antennas at these signal levels, equations
(26) and (27) show that the other noise components 2SP’ and 2PS’ are
stronger than the 2P’'S’ component. Thus the snr for 28P’ and 2PS8’
noises must be considered later.

To show the advantage of diversity over a conventional system, one
may examine the probability distribution function for the conventional
snr. This function is not just equation (31) with N = 1. A conventional
system has snr = (AB)*/(A’'B")* = (X* + Y*)/(X"* 4+ Y"*) instead
of equation (29). To get a ratio of sums of squares of gaussian variables
with unit variance, one must now define ¥ = (P,/P!)/snr instead of
equation (30). The value of F for a given failure probability @
is again obtained from Table ITI with N = 1. The input signal to
noise ratio P,/ P! must then satisfy

Fsnor £ P,/P! (33)
instead of inequality (32). To have snr as low as 3 dB for only a fraction
Q = 0.01 of the time, the input signal to noise ratio must now be 23 dB
or more.

4.3 snr Distributions, 28 P’ and 2P" Noises

The SNR ecalculation showed that 28P’ and 2P8’ components are
apt to be the strongest noises when N is small. The distribution functions
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for their snr may also be derived. Again rayleigh fading is assumed and
B’ = B = 1. The latter assumption makes the 2PS’ and 28P’ com-
ponents have the same snr distribution [compare expressions (23) and
(24)].

It is convenient to rewrite the 2PS’ component (23) in terms of
cosine and sine amplitudes

X' = A" cos (¥ — ¢), Y = —A"sin (¥ — o). (34)

Then expression (23) becomes AX' cos 2rft + AY’ sin 2xft. Now X’ and
Y’ are independent gaussian random variables with mean zero and
variance 3P’ . When there are N antennas, equations (34) give ampli-
tudes X/ and Y/ for the kth antenna. The kind of argument that pro-
duced equations (28) and (29) now leads to

_ (X Ay’ |
(X AXD)" + (X AT
It is possible to transform equation (35) into a form to which an

F-distribution again applies. As a first step, introduce two new
random variables

o = 3 AXYGP Y AN,y = X AYYGPL X ADN

snr (35)

For any A4,, --- , Ay, 2’ and ¥’ are independent gaussian variables
of mean zero and variance 1. Now equation (35) becomes
snr = 2 37 Ai/[Pi” + ™). (36)

Next one can express the pilot P(t) in terms of cosine and sine ampli-
tudes. In this way one obtains A} = 3P,(2} + v;), where z; and ¥, are
independent gaussian random variables of mean zero and variance 1.
Finally equation (36) becomes

sur = (P,/P5)/G, (37)
where G = (2 + ¥/ 2 @ + 9.

Again the snr involves a ratio ¢ of sums of squares of gaussian varia-
bles and formulas for a suitable F-distribution are applicable. This time
the numerator and denominator of the ratio contain unequal numbers
of terms; the appropriate definition of F is F = NG. In the notation
of Abramowitz and Stegun*, the cumulative probability funection for
Fis1 — Q(F | 2, 2N). From their table, I obtain Table IV which gives
values of 10 log G which may be used with equation (37). Thus if
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TaBrLe IV—VaLues of 10 Log ¢ SucH THAT PROBABILITY
oF IFAILURE = @ (2S8SP’ axp 2PS’ NoisEs)

Number of ¢

Antennas 0.001 | 0.005 0.01 0.025 0.05 0.1 0.25 0.50
1 30.0 [23.0 20.0 15.9 12.8 9.54 4.77 0
2 14.9 |11.2 9.54 7.26 5.40 3.34 0 —3.83
3 9.54| 6.86( b5.61 3.84| 2.33 61| —2.32| —5.85
4 6.64| 4.41 3.34 1.79 451 —1.09| —3.82| —7.24
5 4.74| 2.76 1.79 37| —.86| —2.34| —4.95| —RB.28
6 3.34| 1.52 0.61| —.70| —1.88|—-3.31| —5.85| —9.12
7 225 0.53| —.32| —1.59|—2.72| —4.00| —6.64| —9.83
8 1.37| —.27| —1.08| —2.32| —3.43 | —4.76 | —7.24| —10.5

a given output snr must be maintained for all but a fraction @ of the
time, Table IV determines G. Then equation (37) determines th einput
signal to noise ratio P,/P! = ( sur.

Continuing the earlier example with snr = 3 dB, and @ = 1 percent,
Table IV gives G values of 20.0, 3.34, and —1.08 dB for 1, 4, and 8
antennas. The required input signal to noise ratios are

20.0 + 3.0 = 23.0dB for one antenna,
3.34 4+ 3.00 = 6.34 dB for four antennas,
—1.08 4+ 3.00 = 1.92 dB for eight antennas.

4.4 Transmission Path Lengths

Suppose that a vehicle receives a station D miles away while a second
station D’ miles away interferes. If the two stations radiate equal powers,
the ratio P,/P’ is determined by the path losses to the two stations.
For example, with isotropic antennas and inverse square law propagation
P,/P! = D"*/D*

The numbers in Tables III and IV can be used to set limits on D’.
For example, suppose snr must be above 3 dB with probability 0.99;
then 2P’S’ noise is the most serious one. P, and P! must differ by at
least 9.3 dB for a four-antenna diversity receiver or by 23 dB for a
conventional receiver. If the inverse square law held, D’ would have to
be at least 2.9 D for four-antenna diversity reception and 14.1 D for
conventional reception. While the inverse square law holds in free space,
waves near the earth’s surface attenuate more rapidly. Measurements
by W. C. Jakes followed roughly an inverse fourth power law for ranges
between 2 and 15 miles. Then, allowed values of D' can be as small as
1.7 for four-antenna diversity receivers and 3.8 for conventional re-
ceivers.
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