Jump Criteria of Nonlinear Control Systems
and the Validity of
Statistical Linearization Approximation

By SANG H. KYONG
( Manuseript received March 26, 1969)

We study the conditions for the unique response in a class of nonlinear
conlrol systems subject to random inpuls using statistical linearization
approximation. As in the case of sinusoidal inputs, we show that jump
phenomena may occur if the inverse vector locus of the linear part passes
through certain regions on the complex plane, where the regions are defined
by the characteristics of nonlinear part. Such jump phenomena regions
for several typical nonlinearities are given; we also show that, among a
restricted class of nonlinearities, the saturation and dead zome produce
the largest jump phenomena regions.

A new resull concerning the validity of stalistical linearization approxi-
mation of nonlinear control systems is also presenied. We show that the
condition for the uniqueness of response to a given input in a nonlinear
feedback system obtained through statistical linearization approximation
is compatible with a related rigorous result, thus providing additional
confidence in the applicability of statistical linearization.

[. INTRODUCTION

It is well known that jump resonance can oceur in nonlinear con-
trol systems with attendant worsening of the control performance.
In the case of periodic input signals, the rigorous conditions for the
unique response,* or equivalently, for the absence of jump resonance,
are available.! In addition, various authors have studied the conditions
for the absence of jump resonance using the describing funection
method (see Refs. 2 and 3); the deseribing function method eriteria

* Although t.l\el present terminology is widely used, a more precise term will
be “unique solution to the equations arising from the steady state situation for
a given input realization.”
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for jump resonance have been found for many common nonlinearities.
For systems with random inputs, the exact condition for the unique
response is not known, although a rigorous condition for the converg-
ence of a successive approximation is available.*

A useful approximate technique for studying the performance of
nonlinear feedback systems subject to random inputs is Booton's
method of statistical linearization.® Although the method of statistical
linearization has been widely used, the conditions for its validity are
not fully known.

The first part of this paper concerns the determination of the eri-
teria for unique response, in a class of nonlinear control systems sub-
ject to random inputs, using statistical linearization approximation.
We present the statistical linearization criteria for unique response
for several common nonlinearities. We also show that an idealized
saturation and an idealized deadzone yield the limit jump phenomena
regions among a restricted class of nonlinearities.

In view of the uncertainty concerning the conditions for the validity
of statistical linearization approximation, it is of interest to compare
the results of statistical linearization analysis with those of a rigorous
analysis. The second part of this paper presents a result that provides
new evidence on the validity of statistical linearization approximation.
More specifically, the conditions for the unique response obtained in
the first part on the basis of statistical linearization are compared with
a related result of Holtzman,* which is a rigorous sufficient condition
for the convergence of a successive approximation starting with the
statistical linearization approximation. We show that the two condi-
tions are “compatible”; that is, the satisfaction of the rigorous condi-
tion for the convergence of the successive approximation guarantees
the satisfaction of the conditions for unique response based on sta-
tistical linearization. However, since Holtzman’s rigorous condition
guarantees only the convergence of a specific successive approximation
but not necessarily a unique reponse, while the conditions derived from
statistical linearization are for the globally unique response, the pre-
eise interpretation of the present comparison is largely open to debate.
The present, comparison lacks the finality of a similar comparison con-
cerning the method of describing function in the case of periodic
inputs.® Still, the comparison appears to provide some additional con-
fidence in the validity of statistical linearization approximation.

Section II defines the class of nonlinear control systems to be
studied and derives the conditions for the unique response based on
the statistical linearization analysis. Section III presents such condi-
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tions for the unique response for several typical nonlinearities. Sec-
tion IV shows that if the conditions for the unique response are met
by saturation and deadzone nonlinearities, then a large class of other
nonlinearities will also meet the conditions. Section V shows that the
statistical linearization conditions for the unique response are com-
patible with a related rigorous condition.

I1. CONDITIONS FOR THE UNIQUENESS OF RESPONSE

Consider the nonlinear feedback system of Fig. 1. The nonlinear
characteristic f(+) is assumed to be single-valued, odd, and piecewise
continuously differentiable, and to satisfy

0<as<{f(m)=sb 1

for all real m, where a and b are real. Concerning the linear element, it

is assumed that:
(i) G(jw) is the Fourier transform of a real funetion g satisfying

[ law1at< =, @

(1) 1 + Ya + b)G(w) # 0 3)
for all w € (— =, »), and

(i73) 1 + K, ,G(jw) #0 (4)

for all w e (— e, =), where K,, is the equivalent gain of the nonlinear
characteristic f(-) obtained by statistical linearization; that is,

E[mf(m)]

“« = "ElmY (5)
In equation (5), E[-] denotes expectation taken over the probability
distribution of m. The input r to the feedback system is assumed to be
a zero-mean, stationary gaussian random function with the power
spectral density given by a7¢.(w).

We further assume that m can be represented by a zero-mean
gaussian probability distribution. That m can be zero-mean follows

K

LA Tt b Gliw) = .

Fig. 1 — Basic feedback system.
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from f(-) being odd. This assumption is consistent with the usual one
made in connection with a statistical linearization analysis of non-
linear feedback systems.®
If the nonlinearity f(-) is replaced by the equivalent gain K,,, then
the variance of m can easily be determined from
2 1 ” U'Ed’r(w)

™ = or |11 + K..G0u) | % ()

From equation (6), it is seen that

d 2 3 2
do. (om |1+ K. GGo) [) >0 (7)

for all w e (— 0, =) is sufficient to guarantee*

da,

de.,

Condition (8) implies that ¢, is a monotonically increasing funetion
of ¢, , which in turn implies that there is a unique value of o, given by
equation (6) for a given ¢, . This is the context in which the term
“‘uniqueness’ is used in this paper. Suppose that (de,/ds,) < 0 in a
certain interval of the values of ¢, . Then, the curve of &, versus o,
will have the shape given by either Fig. 2a or b. Figure 2a indicates
nonunique o, , and hence nonunique responses, or the presence of
jump phenomena in the nonlinear feedback system of Fig. 1. Thus, the
condition given by equation (7) is sufficient for the absence of jump
phenomena in the system of Fig. 1.

Rewriting equation (7) with H(jw) = G '(jw), Re H(jw) = £, , and
Im H(jw) = 7., one obtains

(Ew + K., + %2 d’—K'“) + 72 > ("7 Q) . )

do., da,

>0 for all @, . (8)

. Thus, inequality (7) is equivalent to the condition that the locus of
H(jw) = G '(jw), when plotted on the complex plane for w e (— 0, ),
remains outside of the circle centered at

(—[K,q 4 In ﬂ] , 0) (10)

2 do,,

and with radius

* Inequality (7) may be considered to be necessary as well as sufficient for con-
dition (8), in the sense that if the inequality is reversed in inequality (7), then there
is at least one ¢,(w); for example, ¢,(w) = 8(w — '), such that condition (8)is violated
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Ty Om

(a) (b)

ar Op
Fig, 2 — Curves of om versus or.

on dK,,

2 do, (11)

P=

The union of all such circles for all nonnegative real values of ¢, gives
a region on the H(jw)-plane such that the sufficient condition (on the
basis of statistical linearization) for unique response or for the absence
of jump phenomena is that the locus of H(jw) = G"'(jw) remains outside
of that region as w is varied on (— o, ®).

As in Ref. 3, the circles defined by equations (10) and (11) will
be called the iso-a,, circles, and the union of all iso-oy, circles for posi-
tive o, will be referred to as the jump phenomena region. Both the
iso-o,, circles and the jump phenomena region are determined by the
characteristics of nonlinearity only.

11II. JUMP PHENOMENA REGIONS FOR TYPICAL NONLINEARITIES

Centers and radii of iso-e,, circles for several typical nonlinearities
are tabulated in Table T along with their normalized characteristics.
Figure 3 shows the jump phenomena regions of these nonlinearities.

IV. LIMIT JUMP PHENOMENA REGION

Fukuma and Matsubara have shown that, using the describing
function method for the system of Fig. 1 subject to sinusoidal inputs,
the jump resonance regions for idealized saturation and idealized
deadzone include the jump resonance regions for all other nonlineari-
ties satisfying

0=/mm =1, (12)

in addition to being single-valued and odd.® The idealized saturation
is given by
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TABLE I—CHARACTERISTICS OF NONLINEARITES

(@) rReLAY (b) RELAY WITH DEADZONE (c) saTurATION
) 2 k-
NONLINEAR - [ -a L
CHARAC- 5 ao = - it
RISTIC 1/
TERISTI ) I___ﬂ Ay
Y2 g Y, _a2 Vo g /oM e
2\"2 2\"2 a 2Ye t
“ (F) o )% (20) (?r‘) 3fa e ()t
(2m)/2 O (2mV2 o ? 20,2 )| (2mV2 o 202
t
wmac | e b=1, a1 =1,
(d) sATURATION WITH DEADZONE (e) peapzonE
o | %
gy 241 /1 L 2
TERISTIC /o pa v o at
h=TANY
/. a/0m 2 b/, \/ a/om /42
K (%) aﬁ[f ExP(’E )dbf En;cp('i; d‘Ei hl: ~(§) zf EXF'(%)EH;‘
2] [o] [¢]
1 2 -a? -b? 1 ah -a?
e ——— aExP(—=]- - et
P (2m)2 (a-blapy ]: x (Etrmz) bEXP(Ea'mE)] (2m)Ve om xP (2 Umz)
NORMAL-! - - - = -7
1ZATION L=1, a=2, b=1 a=1, Y=
(f) f(m) =Nm?2 sgn (m) (g) f(m) = Nm?
NONLINEAR l/
CHARAC-
TERISTIC /|° 0
2\ 2
K 2 (4] Nom 3N onf
1
p - (%)/2 Nam -3N oy
NORMAL-" =
1ZATION N=t N=1

*IN ALL CASES CENTER IS GIVEN BY —A+ ]O, RADIUS IS GIVEN BY |p|, WHERE A= K-p.
t NORMALIZATION OF THE PARAMETER VALUES OF NONLINEAR CHARACTERISTIC USED IN

FIGURE 3.
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ImH((Jw) ImH(jw)
T =0.56 0.463
ReH(Jw) Re H(Jw)
o -0.78 (o]
-0.463
(a) (b) |
Im H(Jw) ImH(Jw)
[P
o=t Re H (jw) ReH(jw)
=1 i3 0 - 0.66 0
-1#]
(c) (d)
ImH(jw) ImH(Jw)
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e
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\
(9)

Fig. 3— Jump phenomena regions: (a) relay, (b) relay with deadzone, (c)
saturation, (d) saturation with deadzone, (e) deadzone, (f) f(m) = m?2 sgn(m),

and (g) f(m) = m3,
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—a; m < —a,
flm) =3 m;  —a=ms +a, (13)
Li—a; +a < m,
and the idealized deadzone is given by
m + B; m < —8,
fm) =9 0 ;5 =B =m= +8, (14)
Ln —B8;  +B < m,

where « and 8 are positive real constants. Such limit jump resonance
regions are determined by finding the nonlinearity satisfying in-
equality (12) which maximizes the radius of the ecircle given the co-
ordinates of the center of the circle.

In this section we show that the idealized saturation and idealized
deadzone give a limit jump phenomena region also in the case of
random inputs, if f(-) is restricted to those satisfying inequality (12).

Notice that

o dK.,
2 do,,

- %E[m]‘(m)] - K.,

where v = o2 . From a theorem given in Ref. 7, (d/dv)E[mf(m)] =
E[f'(m)] + 3E[mf"(m)], where prime denotes differentiation with re-
spect to the argument. Integrating the first term on the right by parts,

E[f'(m)] = K,, . (15)
These relations reduce to
o dK., _ ”
2 dD"m - ZE[m:{ (m)]'

If f(+) is such that f”(m) is piecewise continuous, then the right
side of the above equation may be integrated by parts to give

ol _ 2 [ 1m)lptm) + mp/ )] dm. (16)

For the gaussian probability density function for p(m),

2
m
mp!m) = =5 p(m).

Therefore, equation (16) may be rewritten as
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"’24' % = % f_: (?'2”—2 — 1)f’(m)p(m) dm. (17)

If f(m) is only piecewise continuous (as in the case of saturation
and deadzone given by equations (13) and (14), respectively) then
#(m) is not piecewise continuous, and the integration by parts used
above to obtain equation (16) may not be valid in the ordinary sense.
However, if the meaning of the integration

Blmf"(m) = [ mp(mf“(m) dm

is extended, and is considered as an operation of a distribution f”(m)
on an infinitely smooth function mp(m), then a generalized integra-
tion by parts can be used.® The use of integration by parts, in the
generalized sense, does not change the result in the present case, and
equation (17) remains valid.

Now, combining equation (17) with equation (15),

—(K,q + “—’"dKﬂ) - :‘T(ﬂ + l)f'(m)p(m) dm.  (18)

2 do',,. T
Suppose that the coordinate of the center of the eirele is fixed, that is,
. o, dK, .\
—(I\,q -+ TE';) = —A, (19)

where X is a constant. Clearly from equation (18), 0 = X\ = 1 for f'(m)
satisfying inequality (12). From equations (18) and (19),

f ) (m* + ai)f(m)p(m) dm = 2o, . (20)

The nonlinearity that gives the limit jump phenomena region is
found by determining f’(m) such that it maximizes

1

Tm (HLE —
T 22

2 do,

[t = a2 mpom) dm @1)

subject to the constraints given by equations (12) and (20).

By using Pontryagin’s maximum prineiple the appendix shows that
the solution of above optimization problem is given by an idealized
saturation and an idealized deadzone, or the nonlinearities of the form
of equations (13) and (14), respectively. In other words, the idealized
saturation and idealized deadzone yield the limit jump phenomena
regions among all nonlinearities which are single-valued and odd, and
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satisfy 0 < f(m) = 1, in the case of gaussian random input, as well
as in the case of sinusoidal input.

Suppose that the unit of the signals 7, m, and so on, is normalized
such that o, is taken as the unit. Then the appendix also shows that the
jump phenomena circles giving the maximum radius are centered at
(—2X,, 0) for the idealized saturation with @« = 1 in equation (13) and
at (—RX,, 0) for the idealized deadzone with 8 = 1 in equation (14),
where

A= @ l:j;l e dy + '/: e V32 d-y] , (22)
X = 2—(217}4 [j;m e dy + j:w e "y dy]- (23)
In both cases, the magnitude of the maximum radius is given by
_ 1 Y —e Lo
p=m[foe v d"r—fne v d‘r]- (24)

The values of the integrals in equations (22) through (24) are tabu-
lated in Ref. 9; it is found that

X o= 0.44072, X = 0.55928, p = 0.24197.
V. COMPATIBILITY OF CONDITIONS

In this section, we compare inequality (7), which is an approximate
condition for the uniqueness of response or the absence of jump phe-
nomenon based on statistical linearization, with a related rigorous
condition to obtain further evidence concerning the validity of sta-
tistical linearization approximation. Section II showed that inequality
(7) implies the condition that the locus of H(jw) = G~'(jw) must remain
outside of the circle defined by equation (10) and (11) on the complex
plane as w is varied on (— =, ).

On the other hand, the rigorous sufficient condition for the conver-
gence of a successive approximation is given in Ref. 4 as

oG |, r
LB T TG + BaGe | e @ <L (25)

Inequality (25) implies that the locus of H (jw) = G7'(jw) on the H(jw)-
plane, as w is varied on (— e, «), must not enter the circle centered at

(—%[a + ], 0) (26)
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with radius
p =3 — a). (27)

The cirele defined by equations (10) and (11) intersects the real axis
of the complex plane at —K,, and —[K,, + o.(dK,./ds,)] with its
center lying on the real axis. Similarly, the circle defined by equations
(26) and (27) intersects the real axis at —a and —b with its center
also lying on the real axis. Thus it suffices to show

oK, + (28)

and
a<K,<b (20)

for all positive a,, .
But inequality (29) follows immediately from equations (15) and
(1). Combining equations (17) and (18),

K., + on Koy _ —1- f m*f'(m)p(m) dm. (30)
do,, an J_w
From equations (1) and (30), « = K., + 0,.(dK.,/do,) = B, which is
the inequality (28).

Thus, inequalities (28) and (29) are satisfied for all o, > 0, which
implies the two conditions are compatible; that is the satisfaction of
condition (25) implies the satisfaction of condition (7) for all ¢ > 0,
and conversely, the violation of condition (7) for some ¢, > 0 im-
plies the violation of condition (25).

VI. CONCLUDING REMARKS

The conditions for the unique response in a randomly excited non-
linear control system were studied using a statistical linearization ap-
proximation. The jump phenomena regions of several common non-
linearities were given. It was shown that, among nonlinearities satis-
fying 0 < f'(m) £ 1, the idealized saturation and idealized deadzone
yield the limit jump phenomena regions.

It was also shown that, concerning the uniqueness of the response
in nonlinear feedback systems subject to random input, the eriterion
obtained by the statistical linearization approximation is not con-
tradicted by a related, although not equivalent, rigorous result. How-
ever, as mentioned in the introduction, the interpretation of this
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result is largely open to debate since () the comparison made is be-
tween an approximate and a rigorous sufficient condition, and (i)
the two sufficient conditions are not concerned with exactly the same
requirement. More specifically, the approximate criterion obtained in
Section II is for a globally unique response, while the rigorous result
of Holtzman, with which the comparison is made, is for the conver-
gence of a specific successive approximation.

It is shown in Ref. 10 that, in a system closely related to that with
which the present paper is concerned, there is a unique response up
to an equivalence to an input r satisfying

. 1 77
IH,_,I}_E’OuPﬁ f_T [ r(8) Pdt < o,

if the condition identical to condition (25) is satisfied. This result
strongly suggests that condition (25) may be sufficient not only for
the convergence of a specific successive approximation as shown in
Ref. 4, but also for a globally unique response (up to an equivalence).
If this is true, then the meaning of the result of comparison made in
the present paper is correspondingly strengthened.

It is interesting to eompare the limit jump phenomensa regions of
the present approximate analysis (Fig. 3¢ and e) with the circle of
rigorous analysis, and to notice that the limit jump phenomena re-
gions occupy substantial portions of the interior of the cirele of ex-
act analysis. Also notice that in view of inequalities (25) and (29),
the statistical linearization analysis of the system of Fig. 1 always
has a solution under the conditions dicussed in Section IL
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APPENDIX

Optimization Problem

The following optimization problem is stated in Seetion IV: Maxi-
mize | p |, where

b =593 | (" = oL mp(om) dm, @y

by choosing f'(m), —e» < m < oo, satisfying the condition
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0=/(m =1, (32)

subject to the constraint
f (m* + &) (m)p(m) dm = 2\a%, | (33)

where X is a given constant such that 0 = X = 1. This problem may be
solved by making use of Pontryagin’s maximum principle.

Since both (m® — ¢2)p(m) and (m* + ¢°)p(m) are even functions of
m, it suffices to find f'(m) for m = 0, and to let {'(—m) = §’(m). Thus,
the problem may be reformulated in the following way. Let

&y (m) = (m* — an)p(m)f'(m), (34)
dx(m) = (m* + a)p(m)f'(m), (35)
where 2,(0) = 2,(0) = 0. We want to minimize or maximize x, (e ) sub-
ject to x.() = Xo?. Pontryagin’s maximum principle may be used

to the above reformulation. The Hamiltonian function is

H = g,(m)(m* — o2)p(m)f'(m) + g:(m)(m* + or)p(m)f'(m),  (36)
where g,(m) and g,(m) are the adjoint variables. Clearly, ¢,(m) =
ga(m) = 0.

Suppose first that x,(«) is to be minimized. Then g, may be set as
g. = —1; and maximizing the resulting H with respect to f'(m) satis-
fying inequality (32), one obtains,

fm) =% + §sgn [—(m* — o7) + @a(m" + o). (37)
It is easy to determine that
-1 =g = +1 (38)

to satisfy the constraint z,(«) = Ao . For the values of g, satisfying
inequality (38), equation (37) and f'(m) = f'(—m) give

E
1; |m|§(%i_—gz)am,
f'(m) = % (39)
0; |m|>(}—f—?)am,

as the one that minimizes x,(«). The actual value of g. is determined
from equation (33), or

fnﬂ (m* + an)p(m) dm = \on , (40)

where @ = (1 + g2/1 — g2)¥0,. .
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Proceeding similarly, the function f'(m) which maximizes z,(«) is

h ml s ().,

ll; | m | > G_T_—gz)%am ,

where —1 = g, = 1. The actual value of g, is found from equation (33),
or

['(m) = - (41)

Lw (m* + ob)p(m) dm = \a% | (42)

where 8 = (1 — go/1 + g2)to.. .

The functions f(m) of equations (39) and (41) correspond to
idealized saturation and idealized deadzone, respectively. Thus, among
nonlinearities giving p < 0, f'(m) of equation (39) yields the limit
jump phenomena region, and among the ones giving p > 0, f(m) of
equation (41) yields the same.

Having determined the functions f'(m) that maximize |p|, it is
also of interest to determine the actual values of maximum |, | and
the location of the center of the corresponding circles on complex
plane. In case of idealized saturation, the maximum of |p| cor-
responds to the minimum of p, and

~=§LWW—ﬁmmwu (43)

where « is given following equation (40). We want to find the value of
A, 0 < \ = 1, such that 5 above is further minimized, and to find that
minimum value of 5. Differentiating equation (43) with respect to A,

dp _ 1 (2 2y da
i@ am)P(e) o (44)
But, from equation (40),
do O
P@ N Tt (45)

Thus, equation (44) becomes

@_az—ai_
d\ o + ol

For minimum 5, « = o, or g, = 0. Thus,

- _L . 2 _ 2
usw = 73 [ (n* = sLp(m) dm, (47)

(46)
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and the corresponding value of A is given by
- 1 7
K= [ (m' + ap(m) dm. (48)
m Y0
In order to obtain the results which are independent of the particu-

lar signals used, suppose that the idealized saturation being consid-
ered is further normalized such that

—1; m < —1,
flm) =7 m; —1=m=1, (49)
1 1; 1 < m.

The units of the signals are also normalized such that o, is taken as
the unit. With these normalizations, the integrals of equations (47)
and (48) may be evaluated using the tables in Ref. 9 to obtain L=
0.44072, pmin = 0.24197.

In a similar manner, for the normalized idealized deadzone given by

m + 1; m < —1,
fm) =9 0 5 —l=m=1, (50)
m — 1; 1 <m,

it is found that X, = 0.55928, fuee = 0.24197.
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