Design of Dither Waveforms for
Quantized Visual Signals

By J. 0. LIMB
(Manuscript received January 22, 1969)

Dither signals may be added to coarsely quantized picture signals to
mask undesirable contours. We show that a class of differential quantizers
is equivalent to ordinary quantizers with respect to the design of dither
signals. We give a design method for @ number of deterministic and random
dither waveforms and evaluate their visibility using a simple model of
threshold vision.

I. INTRODUCTION

Television signals are invariably generated in an analog form. To
obtain the advantages of digital transmission, it is necessary to quan-
tize the signal in some way. In ordinary quantization the output
levels of the quantizer are uniformly spaced throughout the range of
the input signal; in the absence of any coding it would require six
bits to send a signal quantized to 64 levels. In practice, at least 64
levels are required to produce a high quality picture.

A strong incentive to reduce the number of levels is that it would
reduce the number of bits transmitted. For example, if the quantizer
step size is doubled, the number of levels can be halved and the bit
rate of the source can be reduced from six to five bits per sample. If
this is done, the picture quality is degraded, but primarily for only
one type of picture material, those areas in which the luminance
changes slowly. These areas will be referred to as low-detail areas.
The degradation takes the form of curved lines which look very much
like contour lines on a map; thus this type of degradation is referred
to as contouring.* The problem, then, is to eliminate the objectionable
effect of contouring, which occurs only in the low-detail part of the
picture, without using a larger number of levels.

. *For example, see Fig. 3b of Ref. 1 for a differentially quantized picture show-
ing contouring.
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An effect similar to increasing the number of levels can be achieved
by adding a dither signal to the true input signal. The dither signal
produces rapid switching between the quantizer levels on either side
of the true input signal. This switching is arranged so that the time
one spends at a level depends on how close the true input signal is to
that level. Thus in Fig. 1a when the signal lies midway between two
levels, it oscillates between the two levels, spending equal time at
each. In Fig. 1b the input lies a quarter of the distance up from the
lower level; consequently, the required switched waveform should be
down for three samples and up for one. The output waveform ob-
tained when a dither signal is added to the input will be referred to
as the chopped waveform or chopping pattern.

One could ask why such a strategy should be any good. While it
is true that on the average the output signal will have the same ampli-
tude as the input, it now has an additional error component which
could degrade the signal further. Thus it is necessary to compare the
visibility of the chopped waveform with the visibility of the contours
that would otherwise be seen. Visibility is used here in the subjective
sense of how easy is it to see an object. An objective visibility scale
can be constructed using a fairly well defined subjective point on the
visibility scale, that is, threshold, the point at which an object just
becomes (or just ceases to become) visible. If the objective measure
of the amplitude of a stimulus at threshold level is large, the stimulus
has low visibility; conversely, the smaller the amplitude of the stimu-
lus, the greater the visibility.

For signals near threshold, the visual system acts like a low-pass
filter so that the chopped waveforms with the highest frequency com-
ponents will be attenuated most and hence will be the least visible.
Thus the pattern of Fig. 1a will be less visible since its repetition fre-
quency is twice that of the pattern of Fig. 1b. In choosing suitable
chopped waveforms we attempt to select those signals which have the
least visibility.

The chopping patterns can be random or deterministic. Figure le
shows a typical sample of a random pattern for an input halfway be-
tween the two quantizer levels (the same input amplitude as in Fig.
1a). The probability of each sample being high or low is one-half and
is independent of previous samples. Since there is a finite chance that
a given segment of the random sequence contains frequency compo-
nents lower than those of the waveform of Fig. la, the random se-
quence of Fig. lc is more visible than the deterministic pattern of

Fig. 1a.
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Let us now consider the problem of designing a dither signal which
will produce an optimum chopping pattern at various levels. Goodall
first observed that by adding a small amount of noise to the input,
contouring was almost eliminated at the expense of a small increase
in the granularity (or noisiness) in the picture.? Roberts examined the
problem quantitatively and showed that in order to produce a random
chopping pattern, which always averaged out to the same amplitude
as the input, the probability density function (PDF) of the noise
should be rectangular with a maximum amplitude of plus and minus
half a quantizing interval.® He further showed that if one subtracted
at the quantizer output the same noise that was added at the input,
the root mean square error in the output signal is halved (if one for-
gets the correction term for the quantizing intervals at the end of the
range). Limb considered the visibility of the granulation in the
quantizer output.* Using a simple model of the visual process, it was
shown that the visibility of granulation resulting from independent
random samples with a rectangular probability density function of
the correct amplitude is zero when the input equals a quantizer out-
put level, and reaches a maximum when the input is midway between
levels. Further, by introducing negative correlation between samples,
the visibility can be reduced by about 50 percent.
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Fig. 1— Chopping patierns for (a) input half way between levels, (b) input
lqualitrer way between levels, and (¢) random pattern with input half way between
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In this paper we look at the problem of applying dither to differen-
tial quantization as opposed to ordinary quantization. The approach
is the same as with ordinary quantization; design a dither waveform
which, when added to the input, produces the required chopping pat-
tern at the output (see Fig. 2a). All the components of the differential
quantizer are assumed to be ideal. The chopped waveforms produced
by the differential quantizer will depend on how the levels of the
quantizer within the loop are positioned close to the zero level. Two
commonly used configurations are (z) a decision, or input, level placed
at zero (Fig. 2b), and (i) a representative, or output, level placed at
zero (Fig. 2¢). We consider only the second configuration (however,
see Section VII). We show that under fairly general conditions a dif-
ferential quantizer, containing a quantizer stage with a representative
level at zero, behaves the same as an ordinary quantizer (with equal
level spacing) with respect to dither. We design a set of dither signals,
both random and deterministic, which produces chopping patterns
with a low visibility. The visibility of the chopping patterns is caleu-
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Fig. 2— (a) Dither applied to differential quantization. (b) Transfer charac-
teristic of quantizer with decision level at zero. (¢) Transfer characteristic of
quantizer with representative level at zero, .
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lated, enabling a comparison to be made between random and deter-
ministie dither. Tt is anticipated that two-dimensional dither signals
will reduce the visibility of contours by a factor of six.

If one decides to subtract the dither signal from the averaging pat-
tern as Roberts did, the rules for generating the best dither waveforms
have to be rederived. When this is done, it is found that subtracting
dither signals is barely superior to not subtracting them.

II. DIFFERENTIAL QUANTIZER—QUANTIZER CHARACTERISTIC

A quantizer may be divided into two sections, the classifier which
divides the signal into a number of ranges according to the position of
its decision levels, D;, and the weighter which assigns a value to each
range according to the settings of the representative levels B;. Figure
3a shows the quantizer characteristic as it is gemerally drawn. An
alternative representation is given in Fig. 3b, where the vertical dashes
represent the decision levels, and the erosses represent the representa-
tive levels. This representation is more convenient since we are con-
cerned with the positions of the representative levels relative to the
positions of the decision levels.

The input level to the classifier, in the absence of the dither signal,
is denoted by A and expressed as a fraction of r, the distance from R,
to R, (Fig. 4). Since we are considering slowly changing input signals,
A will always lie in the range R_; to R;.

We assume that the quantizer has a representative level at zero as
Tig. 4 shows. The only levels that affect the design of the dither signal
are the two decision levels, D_; and D, lying closest to zero and the
adjacent representative levels R, and R;. Furthermore, we assume
that Ry, D_1, Ro, D1, and R, are equally spaced. This is probably
the most useful configuration sinece it satisfies Max’s first condition
for minimizing error, that is, the decision levels should lie midway
between the corresponding representative levels.® In addition, By =
2D, which is on the stability boundary and hence corresponds to the
maximum setting of R, if limit cycles are not to occur.®

III. DESIGN OF DITHER SIGNAL

When rectangular random noise is used as a dither signal, the
chopped waveform has a granular appearance and the visibility of
this granulation depends on the amount of correlation in the wave-
form. For example, when the correlation is positive, the waveform is
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Fig. 3 — Quantizer characteristic (a) usual representation and (b) alternative
representation,

more likely to contain large runs of (0’s and 1’s (if we use 0 and 1 to
denote the two quantizer levels between which the output is chop-
ping) ; if the waveform is negatively correlated, a 1 is more likely to
follow a 0 and the waveform will switch back and forth more rapidly.
Notice that the visibility of a perturbation is approximately propor-
tional to the area when the area is small. Consequently, long runs of
1’s or 0’s are much more visible than the negatively correlated wave-
form containing a higher probability of short runs.

If we restrict the chopped waveform to be described completely by
a second order probability density funection, there are limits on the
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Fig. 4 — Quantizer characteristic—configuration with representative level at zero,
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amount of negative correlation that can be achieved.* This restricted
chopped waveform with maximum negative correlation can be gen-
erated with a dither signal having the second order probability density
function shown in Fig. 5. Here x; and x. represent adjacent samples of
the dither signal. The negative correlation produces a sharp minimum
in the visibility of granulation in the waveform when the input to the
classifier is close to D; (or D_;), that is, when A = 0.5. The dashed
curve is for uncorrelated noise and is shown for comparison.

The dither noise ean also be represented as shown in Fig. 6a, which
better illustrates the time series nature of the process. For example,
a sample occurring at random in the top half of the amplitude range
will, for the next sample, occur in the lower half. The nature of the
second order probability density function ensures that the random
sample oscillates between the upper and lower half of the range. This
type of dither will be referred to as two-step random dither.

Dither waveforms can be generated for any number of steps, al-
though with an inerease in the number of steps, the visibility of
granulation will reach a minimum and then start to increase. Figure
6b shows an example of four-step dither. Notice that when the input
level lies on the boundary between two steps, deterministic echopping
patterns are produced. Furthermore, these patterns should have the
least visibility of any chopping pattern with the same average level.
In general, a low visibility pattern (LVP) has the minimum allowable
cycle length (for example, cycle length of 3 at A = 14) and has the
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Fig. 5 — Two-step random dither signal: (a) probahility density function of
correlated noise and (b) visibility of noise.
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Fig. 6 — Dither signal represented in time series form: (a) two-step dither,
(b) fgu;—step dither, (¢) attempt to construct six-step dither, and (d) seven-
step dither.

shortest maximum run of either value (for example, 1010100 is a low
visibility pattern for A = 3/7 but 1100100 is not).

Can an n-step low-visibility chopping pattern be generated with
second order noise for any value of n? The answer is no, as the fol-
lowing attempt to reconstruct patterns for six-step and seven-step
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dither shows. In Fig. 6¢ the first step has been assigned arbitrarily to
t1, while the second step must then be assigned to ., so that when the
input gives A = 14, every third sample exceeds threshold (LVP =
1, 0, 0). There is no sample to which the third step can be assigned to
give a low visibility pattern of (1, 0) as required for A = 15,

For the seven-step case (Fig. 6d), the first step is assigned to iy,
the second step may be assigned to either 4 or f5, both giving low
visibility patterns (assume t;). The third step, if assigned to &, will
again give a low visibility pattern (1, 0, 0, 1, 0, 1, 0). Similarly, all the
other steps can be assigned to give low visibility patterns.

In the general case of n-step dither, tests for low visibility patterns
can be made as follows:

Assign first step  — ¢,

second step — .2 n even

and  third step — t.u n divisible by 4.

To have the least visibility, the resulting pattern after assigning the
third step must not have runs of 0’s differing in length by more than
one, otherwise the position of a 1 could be moved to shorten the long-
est run. However, this would affect steps 1 and 2 which have given
low visibility patterns. Thus any multiple of 4 equal to or greater
than 8 will not give low visibility patterns. Again:

Assign third step —fms2/4 n even, not divisible by four.

By the same argument as above for n = 6 and even, low visibility
patterns are not obtained. Similarly, the odd numbers can be tested.
In all, low visibility patterns ean be obtained for n = 2, 3, 4, 5, and 7.

In the scheme considered so far, each step in the quantizing inter-
val has been filled with rectangular noise of amplitude equal to the
step height. Random patterns are produced whenever A lies within a
step, while a deterministic pattern is generated when A lies exactly
on the boundary between two steps. Consider changing the rectangular
noise to a fixed level at the midpoint of the step. The chopping pattern
will now switeh from one deterministic pattern to another as A changes.
We examine the visibility of granulation associated with both random
and deterministic dither in Section I'V.

Implementation of either random or deterministic dither schemes
would be a simple matter requiring little additional hardware. Fig.
7 shows the output from a computer simulation of a differential quan-
tizer with four-step deterministic dither in Fig. 7a and seven-step de-
terministie dither in Fig. 7b. The visibility of granularity in these two
dither schemes will differ; in Section IV, calculations of visibility are
made to enable the most promising schemes to be selected.
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Tig. 7— Chopping patterns resulting from deterministic dither signal for
(a) four-step dither and (b) seven-step dither. The straight lines denote the

inputs.

Iv. VISIBILITY OF THE CHOPPED WAVEFORM

The measure of the visibility of the discrete waveform is based
upon a simple model of threshold vision that has proved reasonably
accurate.*” Briefly, threshold vision is assumed to act like a spatial
low-pass filter, and the difference in visibility between two displays
(in this case the display resulting from the analog signal and the dis-
play resulting from the quantized signal) is measured by the differ-
ence between the filtered version of the two signals.* Two different
measures of the difference are considered: one is the mean square, and
the other is the mean modulus. The measure of visibility is denoted by
U(A), which depends on A since the value of A determines the shape
of the chopped waveform.

4.1 Deterministic Patierns

The solid-line curves in Figs. 8 and 9 show the calculated visibility
of granulation for three- and four-step patterns at a viewing distance
of 36 inches. The visibility is shown for only half the range of A,

* Appendix B gives more detail.
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since U(A) is symmetrical about A = 0.5. The arrows on the abscissa
indicate the amplitude levels of the dither pattern. Thus until the
value of A exceeds 0.167 in Fig. 8, no switching occurs in the out-
put. There are minima at A = 14 and 24 as expected for three-step
dither. The curves of U(A) for the two criterion functions are similar
in shape, the rms curve lying slightly above the mean modulus curve.
In Fig. 9 the minimum at A = 0.25 is not very large, and one would
expect granulation to be more visible for patterns having a greater
number of steps. Figure 10 clearly shows this for a five-step pattern
which has a higher minimum than Figs. 8 and 9. By comparing the
average value of U for three-, four-, and five-step patterns, four-step
is just better than three-step, and both are superior to five-step pat-
terns.

Figure 10 also gives U for a five-step dither at a viewing distance
of 72 inches. The spread of the visual impulse response is now much
greater in relation to the size of a picture element. In fact, U(A) is
not, very different from what would be expected with infinite smooth-
ing by the eye. With infinite smoothing all minima would be zero and
joined to the maxima at 0.1 by straight lines; that is, five equal
triangles of amplitude 0.1. The similarity of U to the result expected
for infinite smoothing would suggest that a pattern with a larger num-
ber of steps would be superior. Going to the maximum of seven steps
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Fig. 10 — Visibility of granularity produced by a five-step dither at 36 and 72
inches viewing distance ; mean square error criterion.
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(Fig. 11) significantly reduces the mean value of U, and the curve is
no longer similar to the curve for infinite smoothing. By comparing
Fig. 11 with Fig. 9, one can see that increasing the viewing distance
by a factor of two has reduced the calculated visibility of granula-
tion by about one-half for the best pattern in each case—a not alto-
gether surprising result.

4.2 Random Patterns

Random noise was added to the deterministic patterns in the man-
ner shown in Figs. 6 and 7. Notice that the pattern generated after
quantization is deterministic when the decision level lies at the june-
tion of two steps and is the same as the pattern produced in the
absence of noise. Figs. 8, 9, and 11 give the calculated visibility of
random patterns for mean square and mean modulus error criteria.
As required, the random curves touch the deterministic curves be-
tween steps, and in most other places the curves lie above them. Four-
step dither still gives the smallest average U, (U),y; three-step dither
is the next best.

4.3 Deterministic versus Random Patterns

With deterministic patterns, n-step dither results effectively in in-
serting n-1 levels in the original quantization interval. The brightness
at these new levels is not constant, however, and has a variance about
the true analog input value given by the minima, U(Amm). As A
changes from A, the variance remains unchanged but a constant
error is introduced sinee the average value of the output no longer
equals the average value of the true analog input.

With random patterns, the average value of the output always
equals the average value of the input. Thus at the maxima of U(4),
the variance of the perceived image with deterministic patterns is less
than with random patterns, but there is an additional error resulting
from differences in the perceived average values of the true analog in-
put and the chopped waveform. By using a decision theory model of
threshold vision, the visibility in the two situations could be com-
pared. However, such models have not proved accurate enough to
apply to this type of second order effect.

On the basis of the mean square and mean modulus criteria it ap-
pears that deterministic dither is slightly superior; but because each
case has different distributions for the perceived brightness, such com-
parisons are risky and best wait experimental confirmation.
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Fig. 11 — Visibility of granularity produced by seven-step dither at 72 inches
viewing distance; random and deterministic, mean square error criterion.

V. DITHER APPLIED IN TWO AND THREE DIMENSIONS

Devising low visibility patterns in two dimensions is more difficult
than in one dimension. In fact it appears that there are omly two
equivalent, trivial low visibility patterns. These patterns occur for
two by two step interpolation; they are,

— I — b A 4
?j 13 g z‘/l 4
4 2 3 2

! l

For larger patterns it appears that we must settle for something less
ideal. A four by four step pattern was generated by considering it to
consist of four two by two patterns, which were themselves generated
in the manner of a two by two pattern, as the partly completed pat-
tern in Fig. 12a shows.

The computer program used previously for the one-dimensional
case was extended to calculate the visibility of the four by four pat-
tern. U(A) is shown in Fig. 13 for a viewing distance of 36 inches and
a mean square error eriterion. (U),, has been reduced to about one-
third in going from one dimension to two in this example. This pattern
does not have minimum visibility. This can be seen for A = 14 where
a lower visibility pattern could be obtained by the chopping pattern
of Fig. 12b. This would make little difference to (U).y, however, since
U(A) for A = 1 is already very small. Undoubtedly patterns ap-
proximating the ideal could be found for a larger number of steps.

In applying dither in the time dimension, care must be taken not
to introduce “temporal granularity,” that is, flicker. To study the
visibility of flicker would require an entirely new model, accounting
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for the variation in sensitivity over the retina to temporal changes in
luminance. Flicker oceurs when large picture areas differ in luminance
periodically from frame to frame. By arranging for the average
luminance of an area to change as little as possible from frame to
frame, flicker can be minimized. Thus the two-dimensional pattern

— Distance —
| 1 15 7 10 Framel
12 5 14 4 TFrame?2
8 9 2 16 Frame3
. 13 3 11 6 Frame4

Time

which was built up with the help of the two by two low visibility pat-
tern, will have an average luminance which varies at most by 144 of
a quantizing interval from frame to frame. This is not true of the
sequence,

-— Distance —
1 13 4 16 Iramel
Tixlne 9 5 12 8 F rame 2
3 15 2 14 Frame3
d 11 7 10 6 Frame4

which is simply derived from the two by two pattern and nearly
identical to the pattern of Fig. 12a. Notice that if the input signal has
a uniform distribution over the quantizing interval, the average
luminance of each frame will be the same. For example, for 0 < A <
0.25, frames 1 and 3 have greater average luminance, while for 0.5
< A < 0.5, frames 2 and 4 have greater average luminance. Since
the probability of obtaining signals that do not vary (lie within one
step) over “large” areas is small for high quality pictures (which

1] 3 | 3 % X
) 2 5 7
PATTERN 4 2 X X
8 6
(a) (b)

Fig. 12 — Generation of four by four step pattern: (a) partially completed
pattern (b) two dimensional chopping pattern having lower visibility than the
corresponding pattern resulting from (a).
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consequently have a small step size), the probability of obtaining
flicker should be small. There is advantage in using the second pat-
tern since it provides better smoothing.

Dither applied in the time domain should be more successful than
in one spatial dimension at a 36-inch viewing distance since the tem-
poral impulse response, even at high ambient illumination, probably
has a greater spread; the problem of flicker, however, should be kept
in mind. Another advantage of the temporal dimension is that the
amount of smoothing should be independent of the viewing distance.

In comparing deterministic patterns with random patterns, temporal
smoothing has often been neglected; this leads to incorrect conclusions.
For example, if deterministic two-dimensional spatial dither is com-
pared with random dither, the random pattern would provide smooth-
ing in three dimensions since added noise components in adjacent
frames are uncorrelated, and, as just shown, the improvement in
smoothing provided by an additional dimension is large. A valid
comparison could be made by using “frozen” noise, that is, noise that
repeats from frame to frame.

Section 3.43 of Ref. 1 describes results that were obtained when
two types of dither waveform were added at the input of a differential
quantizer. The first pattern was a one dimensional four step waveform
added vertically. The second pattern was a four by four step pat-
tern added horizontally and vertically. Figure 3d of Ref. 1 shows the
effect of adding the two dimensional dither to a picture while Figs. 6¢
and 6d of Ref. 1 show the effect of adding one and two dimensional
dither respectively, to a low amplitude ramp waveform.

VI. RECEIVER SUBTRACTION

Roberts added pseudorandom noise having a rectangular probability
density function to the signal prior to quantization, and subtracted
the same noise from the signal at the receiver.® Neglecting end effects
from the smallest and largest quantization levels, a reduction of one-
half in the variance of the output signal is obtained. Roberts states
that adding noise to the input and subtracting it from the output is
equivalent to adding a level of noise to the signal, but that this is not
the same noise as was added to the input. Since we are concerned with
the exact sequence in the output signal (this will critically affect the
visibility of the added noise), the relation between the added input
noise and the equivalent output noise will be derived.

In Fig. 14, rectangular noise is added to the input signal of value
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Fig. 13 — Visibility of granularity produced by two dimensional four by four
step pattern. Viewing distance is 36 inches with mean square error eriterion.

R, + A. All noise components which cause the input signal to exceed
D, are represented by R, .., and all components producing a com-
bined signal less than D, are represented by R,. Thus, in subtracting
the input noise from the quantized signal, components lying between
r/2 — A and r/2 are subtracted from R, .., while the other compo-
nents are subtracted from R,. When the noise is subtracted one sees
that the whole process is equivalent to adding noise of the same am-
plitude to the unquantized signal. The noise to be added can be ob-
tained from the input noise by inverting separately amplitudes
greater and less than /2 — A as Fig. 14 shows. For example, ampli-
tudes above D,, [such as (r/2 — A) + T'] go to /2 — T where T is any
increment between 0 and A. This relationship is very useful since now
we can forget the quantization and consider just the distortion of the
added noise component.

If an n-step dither sequence is quantized and the original sequence
subtracted, inversion occurs at every step except where A is less than
r/2n. Consequently, n — 1 new sequences will be produced and only
in special cases will the new sequences be the same as the original. A
technique will be developed for rapidly estimating the new output
sequences from the input sequence.

A sequence can be written as a function of time,

Time 1, 2, 3,4, ---,n

Amp]itllde A| 3 Az y Y A"
where A; is an integer between 1 and n denoting the step. A sequence
can also be written

Amplitude 1, 2, 3, ---,n

Time T]: TI) TSJ Tty Tn
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Fig. 14 — Derivation of the properties of add-subtract noise patterns.

where T is an integer between 1 and n denoting the time slot in which
the ith amplitude oceurs. Conversion from the time representation to
the amplitude representation can be simply accomplished. For ex-
ample, at amplitude 4; the corresponding time slot is 1; that is, T
corresponding to A, is 1.

Consider the sequence Ty ... T,, T; ... T,. For A lying between the
ith and jth steps, the new sequence is 7; . .. Ty, T, . . . T;. Notice that
the cyelic order is reversed but otherwise unchanged. Thus if A changes
by 1 steps, the amplitude sequence shifts by ¢ steps but the order is un-
changed unless A is less than r/2n, in which case the order reverses.
However, since the visibility of a sequence does not change if the
order is reversed, this may be neglected. A cyclic shift in the amplitude
sequence must now be converted to the time sequence, since we use
the time sequence to calculate visibility. A shift by one step in the
amplitude representation corresponds to an addition or subtraction
by one, modulo n (depending on the direction of the shift), in the
time representation. Thus if the time sequence was 1,2, ..., n (a bad
sequence from the point of view of visibility), the sequence at the ith
level would ben — 1+ 1,...1,2,...,n — ¢, which is in fact the
same sequence. This particular case is one of a set of sequences that
remain unchanged as A changes from step to step.

6.1 Visibility of Sequences
There are at most (n — 1) !/2 different sequences that can be gen-
erated for a particular value of n where sequences are regarded as
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in time or reversed versions of another sequence. There is only one
unique sequence for n = 3 and three unique sequences for n = 4. For
n = 4 the three possible sequences are: (z) 1, 2, 3, 4; (%) 1, 3, 2, 4,
(#1) 1, 2, 4, 3. Sequence ¢ produces three output sequences which are
the same as itself. Sequence % produces the output sequences

Input 1,3,2,4=1,3,2,4 Output 0
4,2,1,3=1,3,4,2} 1
3,1,4,2=1,3,2,4]1 2
2,4,3,1=1,3,4,2 | 3
1,3,2,4

and 1t produces the output sequences

Input 1,2,4,3 =1, 3, 4, QW Output 0
4,1,3,2=1,3,2,4 1
3,4,2,1=1,3,4, 2@ 2’
2,3,1,4=1,3,2,4 3
1,2,4,3

H y

These outputs are just shifted versions of one another and they
should yield the same overall value of U. The output sequence 1, 3,
2, 4 provides better smoothing than 1, 3, 4, 2 which contains lower
and hence more visible frequency components. This can be seen in
the curves of U for the two sequences which were caleculated inde-
pendently of the arguments of this section (Fig. 15).

For comparison, U(A) is shown for the case previously considered
in which the dither waveform is not subtracted from the output. The
subtraction method gives a slightly lower average value of U( < 2
percent lower). The value of U for uncorrelated rectangular noise
with subtraction is also shown. U is now independent of A. However,
the problems associated with comparing random and deterministic
dither schemes should be borne in mind (see Section 4.3).

6.2 Constant Sequences

Here is a technique for finding sequences which do not change as A
changes from step to step (constant sequences). A step change in
A results in an increment, modulo 7, of each number in the sequence;
thus, the numbers must be arranged so that the order remains un-
changed after a shift. Constant sequences can be constructed simply
by using a geometric method. In Fig. 16, five points are spaced equally
around a cirele, each point corresponding to a number in the sequence.
Starting from any point, a line is drawn to another point to cor-
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Fig. 15— Visibility of granularity produced by four-step add-subtract dither
pattern. Viewing distance is 36 inches ( input sequence 1, 3, 2, 4;
input sequence 1, 2, 4, 3; - --- addition only 1, 3, 2, 4).

respond to & shift of the number of points cut off by the line: 1 in
Fig. 16a and 2 in Fig. 16b. This second point is then shifted the same
distance in the same direction. The shifting process is repeated until
all points are covered, and we arrive back at the starting point if the
number of points shifted is not a divisor of n (excluding 1). The
number of unique constant sequences for an n-step pattern is equal
to the number of nondivisor integers less than n/2 plus 1. Thus Figs.
16a and b represent the two constant sequences for n = 5. Unfortu-
nately, for larger n, constant sequences do not have low visibility, as
the five constant sequences,

1, 2,3, 4,5 6 7, 8 9 10,11
1, 7,2, 8,3 9, 4,10, 5 11, 6
1, 59 26 10, 3, 7,11, 4, 8
1, 4,7,10,2 5 8 11, 3, 6, 9
1, 10,8, 6 4, 2,11, 9, 7, 5 3

show for n = 11. Probably the best sequence is the third, but this is
significantly inferior to a sequence such as

1, 11, 2, 10, 3, 9, 4, 8, 5, 6, 7.

Figure 17 is a graph of U(A) for n = 5 for the constant sequence
1, 4, 2, 5, 3 and sequence 1, 2, 5, 4, 3. The constant sequence has an
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SEQUENCE 1,2,3, 4,5 SEQUENCE 1,4,2,5,3

(a) (b)

Fig. 16 — Generation of constant sequences.

average value (U),, of 0.095, which is lower than the other sequence
and the low visibility pattern derived in Section 4.1 (which is also
shown for comparison). The subtracted sequences for n = 4 (Fig.
15) give a slightly greater value of (Udyy (0.099) compared with
n = 5. Notice the very low minimum at A = 0.2 for the nonconstant
sequence. The sequence producing this minimum may be caleulated
by subtracting one from each digit of the input sequence and is thus
1,4,3,25.

VII. DISCUSSION

The quantizer configuration with a decision level at zero was re-
ferred to briefly in the introduction. This configuration results in an

0.20

UNCORRELATED
\

el N A 1 N v A
L EEAYA

\ / CONSTANT ~
SEQUENCE
0.05 \ /
\/ ADD ONLY - -~
INTERPOLATION
0 1 | | |
0 0.2 0.4 0.6 0.8 1.0

Fig. 17 — Visibility of granularity produced by five-step add-subtract dither
pattern. Viewing distance is 36 inches.
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even number of representative levels and has received more attention
in the literature. In the absence of a dither signal the output will
oscillate between R, and R_;, but otherwise has no inherent dithering
ability of its own. It will produce contours in low detail areas with
much the same visibility as the quantizer configuration we have in-
vestigated. For an uncorrelated random dither signal, the switching
waveform is not constrained to lie between the two adjacent quantizer
levels as it is with a representative level at zero. For illustrative pur-
poses, two switching waveforms have been generated for two differ-
ent input levels assuming a random, uncorrelated dither signal (Fig.
18). Although it would be more complex to do so, one could calculate
the visibility of these types of waveforms as done previously and
compare the results with those just obtained. One problem is to
decide upon the relative amplitudes of R, and R_, for the two con-

figurations.

VIII. SUMMARY AND CONCLUSIONS

The design of dither signals for ordinary quantizers is the same as
the design for differential quantizers for quantizer characteristics of
specific types. The requirements for equivalence are that the char-

___..i r |.‘___

Doy R_i Do Ry Dy

(al

INPUT LEVEL

{b)

Fig. 18 — (a) Quantizer characteristic with decision level at zero. (b) Chopping
pattern for input at A = 0. {(¢) Chopping pattern for input at A = 1/2 Ri.
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acteristic have a representative level at zero and uniform spacing of
the adjacent pair of representative and decision levels.

Dither patterns may be three dimensional in design, varying hori-
zontally, vertically, and from frame-to-frame. A pattern that varies
in only one dimension can be generated having two, three, four, five, or
seven amplitude levels (and no others), such that the visibility of the
added pattern is a minimum for each level of the pattern.

We predict that a deterministic four-level pattern will give mini-
mum visibility or granularity for Picturephone® visual telephone
viewed at 36 inches. The use of this one dimensional dither signal
should reduce the visibility of contours by a factor of about two when
compared with a picture with no dither.

At 72 inches viewing distance (or say 36 inches with twice the
sampling frequency) seven level dither should be used.

Four-level dither applied in two dimensions should reduce the
visibility of contours by a factor of six compared with a picture hav-
ing no dither. A further significant reduction should occur when dither
is applied to the temporal dimension as well.

The dither signal may be subtracted from the received signal to
further reduce the visibility of the added waveform. But the rules
for determining the best patterns are different. For four-level dither
the best addition-subtraction patterns give results that are only
marginally better than the best patterns when they are not subtracted
from the receiver.

APPENDIX A

Equvalence of Dither for Quantization

The method of proof is to show that for a Markov dither pattern
(having an arbitrary conditional probability density function) the
conditional probability of the switching pattern being at either level,
given the previous value of the dither signal, is the same for both
ordinary and differential quantizers.

Assume a Markov dither pattern described by the transition prob-
ability density function P(z./x;_,) where |z,| < r/2. The pattern
could be either deterministic or random. For ordinary quantization, the
probability of obtaining level R, and level R,,, for an input analog
amplitude of R, + A (see Fig. 19b) is

(r/2)—-4A

Pr (R, /2, = f P(r./x.-) de, = I, (1)

(—r/2)
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Fig. 19— Equivalence of dither for ordinary and differential quantization—
definition of terms—(a) conditional probability density function, (b) ordinary
quantization, and (e) differential quantization.

and

r/2

Pr (Rusi/zied) = [ Pla/zis) dae = I, @)
(r/2)—A

where Pr{a/b} is the probability of event a occurring given that event

b has occurred. Thus the probability of obtaining levels R, and R, .,

is conditional only on z; _;.

For differential quantization, feedback occurs from the previous
sample value, and it becomes necessary to distinguish between the
output of the quantizer (primed) and the output of the complete
differential quantizer (unprimed). Again, for an analog input of B, + A,
assuming equal spacing of B_;, D_;, Ry, D,, and B, we have
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Pr an/-’f'-'fl yai < (r/2) — Al

= [“mﬂ Plx;/xioy ;200 < (r/2) — A) dx; (3)
(r/2)—A

= Pr {z,_, < (r/2) — A} f P(z;/x;_,) dx,
—(r/2)

=Pr .., < (/2) — A}{LL}. (4)

Now
Pr{R./xiey s 2icy > (r/2) — A}
= Pr{R.L /2,y — ;200 > (r/2) — A
Priz,_y > (r/2) — A} Pr (R, /2,y — 1], (5)

Il

But since
Pr{RL,/x;-y — r} = Pr {Ry/x.-,} = Pr {R,/z..,},
PriR, /e, ;0.0 > (r/2) — A} = Pr {a,, > (r/2) — A}{I,}.

Thus from equations (3) and (6) one can see that Pr{R,/x;} is in-
dependent of the previous state of the differential quantizer and equal
to the value obtained for the ordinary quantizer, By a similar argu-
ment, Pr{R, ; 1/xi—1} can be equated for the two quantizers.

(6)

APPENDIX B
Calculation of Visibility of Dither Signals

B.1 Model of Vision

Figure 20 shows a simple model used to deseribe the visibility of
small amplitude signals.” I'(z, v, t) represents the spatial and tem-
poral luminance pattern incident at the eye. The filter A(z, vy, t) ac-
counts for spread of the signal in space and time caused by the
opties, the receptors, and subsequent neural processing. The amplitude
of the hypothetical signal E (z, y, ¢) is proportional to the observed
visibility of the display. Thus the difference in visibility between two

I{x,y,t) E(x,y,t) | EVALUATION
2 TER &y (CRITERION
A(z,y5t) FUNCTION)

TFig. 20 — Model of threshold vision.
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displays can be measured by evaluating the average of some function
of the difference between the value E resulting from one display, and
the value of E resulting from the other.

We wish to know how well the discrete waveform with added dither
approximates the analog signal in flat areas where contours are most
bothersome. Thus it is reasonably accurate to represent the analog
signal by a constant amplitude E,, and the measure of the visibility
of the discrete waveform is

U(4a) = E{flE. — Ex@)]},

where E{-} denotes the expected value and, as before, A denotes the
position of the input within the quantizing interval. E (z) varies with
A since the chopping pattern I(x) changes as A is varied. In a number
of cases, U(A) has been evaluated for two different f functions, the
square and the modulus.

B.2 Visibility of Waveform

The method of evaluating the visibility differs from that used pre-
viously.* Earlier, E (x) was calculated for every possible input com-
bination oceurring in a signal segment of the length of the significant
part of the impulse response. The probability density function of
E (z) was then calculated by weighting each output by the probability
that the corresponding input occurred. From the probability density
funetion the error can be ealeulated for the required criterion fune-
tion.

The method now used is to first calculate a combined impulse re-
sponse for the reconstruction filter and visual filter: this is then con-
volved with the input signal to obtain an output from which a measure
of the granularity is derived. This technique is fast and accurate for
deterministic signals which repeat after a short length, but slower if
accurate results are required for random inputs. Fortunately, most of
the signals investigated were deterministic.

Denoting the impulse response of the low-pass filter by hy(z) and
the visual spatial filter (for example, in the horizontal dimension) by
h.(z), then the combined impulse response is given by*

Mo) = [ @ — 1) dy.
This integral was evaluated for

1 /(. == X
h.(x) =;,(sm%) %
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and

2
ho(z) = = ' exp [—0.0833(%733) ] ,
where 27 is the spatial Nyquist interval and A, which depends upon
the viewing distance, is the width of a picture element in minutes of
arc; ho(z) is the same impulse response as used previously.*
Figure 21 shows the combined impulse response of the normalizing
low-pass filter and the visual system for Mod. IT Picturephone® visual

_--TEMPORAL
f RESPONSE

72 INCHES

| |
-4 -3 -2 =1 0 1 2 3 4
DISTANCE IN PICTURE ELEMENTS, FRAMES

Tig. 21 — Combined spatial impulse response in one direction at viewing dis-
tances of 36 and 72 inches.

telephone viewed at 36 inches. The corresponding impulse response
for a viewing distance of 72 inches (or alternatively, for 36 inches at
twice the sampling frequency) is also shown and agrees to three
decimal places with the impulse response of the visual system itself.
In other words, the visibility of threshold detail is almost completely
unaffected by the horizontal resolution of the display at 72-inch view-
ing distance (resolution limited by eye).

For a given input I(x) the output is (using the convolution
theorem),

E(@@) = f_ ) I(y)Ny — 2)dy.



2582 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1969

The limits of the integral can be reduced so as to integrate over only
those values of (y — z) for which A is significantly greater than zero
(in practice, greater than 0.1 percent). For random inputs, simula-
tions were run for between 300 and 900 samples.
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