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A coupled wave analysis is given of the Bragg diffraction of light by
thick hologram gratings, which is analogous to Phariseau’s treatment of
acoustic gratings and to the “‘dynamical”’ theory of X-ray diffraction. The
theory remains valid for large diffraction efficiencies where the incident
wave s strongly depleted. It is applied to transmission holograms and to
reflection holograms. Spatial modulations of both the refractive index and
the absorption constant are allowed for. The effects of loss in the grating and
of slanted fringes are also considered. Algebraic formulas and their nu-
merical evaluations are given for the diffraction efficiencies and the angular
and wavelength sensitivities of the various hologram types.

I. INTRODUCTION

Holographic recording in thick media (“volume recording”) is of
particular interest for high-capacity information storage,'® for color
holography* and for efficient white-light display of holograms.®™® The
high efficiency of light conversion which is attainable with thick di-
electric holograms is also important for microimaging, and it may make
it practical to use holographic optical components (for example, gratings
or fly’s eye lenses) in a variety of optical systems.

In thick holograms it is light diffraction at or near the Bragg angle
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which leads to efficient wavefront reconstruction. This is true for both
transmission and reflection holograms, and both types are considered
in this paper. The (volume) record of the holographic interference
pattern (fringe pattern) usually takes the form of a spatial modulation
of the absorption constant or the refractive index of the medium, or
both. Modulations of the absorption constant are produced in con-
ventional photographic emulsions and in photochromics, while newer
materials, like dichromated gelatin'®'" lithium niobate,”® or photo-
polymer materials™ yield modulations of the refractive index.

This paper considers the properties of all these types of thick (or
“deep’’) holograms. Of particular interest is their efficiency of convert-
ing light into the useful reconstructed wave (diffraction efficiency) and
the angular dependence of this diffraction efficiency as the incident
light deviates from the Bragg angle. We are also interested in the wave-
length dependence and in the way the diffraction properties are changed
in the presence of loss or a slant of the fringe pattern with respect to
the surface of the recording medium.

Leith and his associates, and Gabor and Stroke have already con-
sidered some of the properties of thick holograms, in particular the
angular and the wavelength dependence of the diffracted light."*"*® Their
theories are essentially linear or perturbational theories which use the
Kirchhoff integral or the first Born approximation with the basie
assumption that the incident light wave is not disturbed by the dif-
fraction process. Their results are valid as long as this assumption is
good. For high diffraction efficiencies (like 90 percent) the incident
wave is strongly depleted and another approach is called for. One such
approach is to use electronic computers to solve the relevant compli-
cated electromagnetic problem accurately. Results of such computations
are available for special cases. Klein, Tipnis, and Hiedemann have com-
puted data for light diffraction by ultrasonic waves,"""” and Burckhardt
has reported results for dielectric hologram gratings.”*'*" The method
of Bathia and Noble® is another approach in which they employed
integral equations to analyze acoustic diffraction of light.

Yet another approach is the use of a coupled wave theory, which is
the subject of this paper. Such a theory can predict the maximum
possible efficiencies of the various hologram types (results which one
cannot hope to obtain from linear theories), and the angular and wave-
length dependence at high diffraction efficiencies. Following Phariseau,”
coupled wave theories have been successfully used in the treatment of
light diffraction by acoustic waves® and by electrooptic gratings™
where very similar diffraction processes are at work as in holography.
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Closely related to the diffraction in thick holograms are also the dif-
fraction of electrons in lattices and the diffraction of X-rays in crystals.
The dynamical theory of X-ray diffraction™ is also a theory of coupled
waves and its application to holography has already been suggested.*

We have earlier reported some of the results and an outline of the
coupled wave theory for hologram gratings.”” Here we propose to
give further results and a more detailed account of the basic assumptions
and the analysis. We give analytic formulas for the various hologram
types as well as numerical evaluations which include results on the
angular sensitivities and the influence of loss and slant.

For simplicity the analysis is restricted to the holographic record
of sinusoidal fringe patterns which we call hologram gratings. To some
degree a more complicated hologram can be regarded as a multiplicity
of such hologram gratings.

II. COUPLED WAVE ANALYSIS

2.1 Dertvation of the Coupled Wave Equations

The coupled wave theory assumes monochromatic light incident on
the hologram grating at or near the Bragg angle and polarized per-
pendicular to the plane of incidence.* Only two significant light waves
are assumed to be present in the grating: the incoming ‘reference’”
wave R and the outgoing “signal” wave S. Only these two waves
obey the Bragg condition at least approximately, the other diffraction
orders violate the Bragg condition strongly and are neglected. They
should be of little influence on the energy interchange between S
and R. The last assumption limits the validity of the coupled wave
theory to thick hologram gratings. Section 6 gives a more detailed
discussion of this limitation.

Figure 1 shows the model of a hologram grating which is used for
our analysis. The z-axis is chosen perpendicular to the surfaces of the
medium, the z-axis in the plane of incidence and parallel to the medium
boundaries and the y-axis perpendicular to the paper. The fringe
planes are oriented perpendicular to the plane of incidence and slanted
with respect to the medium boundaries at an angle ¢. The fringes
are shown dotted. The grating vector K is oriented perpendicular to
the fringe planes and is of length K = 2#/A, where A is the period
of the grating. The same average dielectric constant is assumed for
the region inside and outside the grating boundaries. The angle of
incidence measured in the medium is 6.

* A generalization to parallel polarization is given in the appendix.
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K

Fig. 1—Model of a thick hologram grating with slanted fringes. The spatial
modulation of # or « is indicated by the dotted pattern. The grating parameters are:
g—angle of incidence in the medium, K—grating vector (perpendicular to the fringe
planes), A—grating period, ¢—slant angle, and d—grating thickness.

Wave propagation in the grating is described by the scalar wave
equation

V’E -+ F*E = 0, (1)

where E(z, 2z) is the complex amplitude of the y-component of the
electric field, which is assumed to be independent of ¥ and to oscillate
with an angular frequency w. The propagation constant k(z, 2) is
spatially modulated and related to the relative dielectric constant
e(z, 2) and the conductivity o(z, 2) of the medium by

k= % € — jupo @)

where ¢ is the light velocity in free space and p is the permeability
of the medium which we assume to be equal to that of free space.
In our model the constants of the medium are independent of y. The
fringes of the hologram grating are represented by a spatial modulation
of ¢ or o:
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e = ¢ + ¢ cos (K-x)
o= g, + o, cos (K-x)

(3)

where ¢, and ¢, are the amplitudes of the spatial modulation, e is
the average dielectric constant and ¢, the average conductivity. ¢ and
o are assumed to be modulated in phase. To simplify the notation
we have used the radius vector x and the grating vector K

X sin ¢
x=|y|; K=K| 0 |; K =2=n/A.
z cos ¢

Equations (2) and (3) can be combined in the form
k= B — 2jaf + 2B + ) @)

where we have introduced the average propagation constant g and
the average absorption constant a:

B8 = 21r(en)§/)\; a = pea/2(e)}, (5)

and the coupling constant « was defined as

o= (e — o/ @) ©

This coupling constant describes the coupling between the reference
wave K and the signal wave S. It is the central parameter in the coupled
wave theory. For « = 0 there is no coupling between R and S and,
therefore, there is no diffraction.

Optical media are usually characterized by their refractive index
and their absorption constant. We also find it convenient to use these
parameters if the following conditions are met

2mn/\ > q; 2rn/\ > a, , n>n,, (7)

which is true in almost every practical case. Here n is the average
refractive index, and n, and «, are the amplitudes of the spatial modula-
tion of the refractive index and the absorption constant, respectively
[compare equation (3)]. A is the wavelength in free space. Under the
above conditions we can write with good aceuracy

B = 2mn/\ (8)
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and for the coupling constant
k= T /N — ja,/2. 9)

The spatial modulation indicated by n, or a, forms a grating which
couples the two waves B and S and leads to an exchange of energy
between them. We describe these waves by complex amplitudes E(z)
and S(z) which vary along z as a result of this energy interchange or
because of an energy loss from absorption. The total electric field in
the grating is the superposition of the two waves:

E = R@e ™ 4 S)e "™, (10)

The propagation vectors ¢ and é contain the information about the
propagation constants and the directions of propagation of B and 8.
e is assumed to be equal to the propagation vector of the free reference
wave in the absence of coupling. ¢ is forced by the grating and related
to p and the grating vector by

i =p—K (11)

which has the appearance of a conservation of momentum equation.
e and ¢ have been chosen to conform as closely as possible with our
picture of the physical process of the diffraction in the grating. If the
actual phase velocities differ somewhat from the assumed values, then
these differences will appear in the complex amplitudes R(2) and S(z)
as a result of the theory.

Figure 2 shows the vectors of interest and their orientation. The
components of p are p, and p. which are given by

b, sin @
o=1|0|=p8| 0 [ (12)
p: cos 0

From this and equation (11) follow the é-components ¢, and o,
sin § — K sin ¢
o: B
¢=10]|=8 0 . (13)

CO‘SBF—'I_\“COqu
' B

The vector relation (11) is shown in Fig. 3 together with a circle
of radius 8. The general case is shown in Fig. 3a, where the Bragg
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Fig. 2—p and ¢, the propagation vectors of the reference wave R and the signal
wave S, and their relation to the grating vector K. The obliquity factors ¢z and cg
are indicated.

condition is not met and the length of ¢ differs from 3. Figure 3b shows
the same diagram for incidence at the Bragg angle 6, . In this special
case the lengths of both, ¢ and ¢ are equal to the free propagation
constant 8, and the Bragg condition

cos (p — 0) = K/28 (14)

is obeyed.
For a fixed wavelength the Bragg condition is violated by angular

(o)

Fig. 3— Veetor diagram (conservation of momentum) for (a) near and (b) exact
Bragg incidence,
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deviations A8 from the Bragg angle 8, . For a fixed angle of incidence a
similar violation takes place for changes AX from the correct wave-
length \, . We write

8 = 6, + A, (15)
and
A= Ao + AN

and assume in the following that the deviations Af and A\ are small.

Angular changes A8 have very similar effects on the behavior of the
grating as wavelength changes A\, and there is a close relation between
the angular sensitivity and the wavelength sensitivity of thick hologram
gratings. We get an idea of this relationship by differentiating the
Bragg condition (14), from which results

de,

FV K/4mn sin (¢ — 6o). (16)

The 8 — A connection shows up in the dephasing measure ¢ which
appears in the coupled wave equations and which is defined by

9= (8 — o?)/28 = K cos (¢ — 6) — % A amn

and which has been expressed in this form using equation (13). A Taylor
series expansion of equation (17) yields the following expression for ¢
which is correct to the first order in the deviations Af and AM:

# = AB-K sin (o — 6,) — AN-K?/4mn. (18)

Note that the deviations A8 and AN which produce equal dephasing
# are related by equation (16).

We are now ready to derive the coupled wave equations. We combine
equations (1) and (4), and insert the expressions of (10) and (11).
Then we compare the terms with equal exponentials (¢”"*™ and e™'**)
and arrive at

R"” — 2jR'p, — 2jofR + 2«88 = 0 (19)
and
8" — 2j8'¢, — 2jaBS + (8® — ¢")S + 2BR = 0, (20)

where the primes indicate differentiation with respect to z. The waves
generated in the directions of p + K and ¢ — K are neglected, together
with all other higher diffraction orders, In addition we assume that the
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energy interchange between S and R is slow and that energy is absorbed
slowly, if at all. This allows us to neglect R’ and S”. We will check
the results of the theory later for a more detailed justification of this
last step. We can now introduce equation (18) and rewrite the above
equations in the form

el + aR = —jiS 21)
csS' + (e + 7S = —jkk. (22)

These are the coupled wave equations which are the basis for our
analysis. The abbreviations ¢, and ¢s stand for the expressions

Cr = P;/,S = COo8 6 (23)

¢s = o,/8 = cos 6 — % cos ¢.

QOur physical picture of the diffraction process is reflected in the coupled
wave equations. A wave changes in amplitude along z because of coupling
to the other wave (xR, «S) or absorption (aR, «S). For deviations from
the Bragg condition S is forced out of synchronism with E and the
interaction decreases (¢S).

The energy balance of the coupled-wave model is described by the
relation ‘

(ceRR* + ¢588%) + 2a(RR* + SS*) + j(x — «*)(RS* + R*S) = 0
(24)

where the asterisk denotes a complex conjugate. This is easily derived
from equations (21) and (22) by multiplying them with B* and S*,
respectively, and adding the results together with the complex con-
jugate results. The presence of the obliquity factors ¢; and c¢s in the
first part of equation (24) indicates that it is the power flow of the
two waves in the z direction that enters the energy balance. In the
absence of ohmic loss this power flow is conserved. The second and the
third part in the equation describe the energy loss resulting from ab-
sorption in the grating. They correspond to the relevant terms of o /Zf*.

2.2 Solution of the Coupled Wave Equations

It is straight forward to obtain the general solution of the coupled
wave equations, which is

R(z) = r, exp (v12) + 12 exp (y22) (25)
S(z) = s, exp (viz) 4 s exp (v:2) (26)
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where the r; and s; are constants which depend on the boundary condi-
tions. To determine the constants ¥; we insert equations (25) and (26)
into the coupled wave equations and obtain

(CR'Y" + a)r; = —jks; 27
t=1,2
(esy: + a + s = —jur: . (28)

After multiplying the equations with each other we get a quadratic
equation for v;

(ervi + &)(esvi + o + j8) = —K2, (29)

with the solution

Y2 = _%(g'l'g'i‘]ll)

Cr Cg Cs

1| (e a A% |
spl(e-s-it) -]t @

At this point we divert briefly from the main derivation, because
now we have the means to check the validity of neglecting K" and
S8 in Section 2.1. This step is justified if the conditions RB" « {.R’,
and 8" « ¢,8 are obeyed. In view of equations (25) and (26) this
will happen if v; < 8. According to equation (30) the above requirement
is met if A® « 1 and if the inequalities of equation (7) are satisfied
(which is usually the case).

Continuing the coupled wave analysis, we have to determine the
constants r; and s; . To do this we have to introduce boundary eondi-
tions into our model. These are different for transmission holograms
and for reflection holograms. Figure 4 gives an indication of this, For
both hologram types the reference wave R is assumed to start with
unit amplitude at z = 0. It decays as it propagates to the right and
couples energy into S. In transmission holograms the signal S starts
out with zero amplitude at z = 0 and propagates to the right (cs > 0).
In reflection holograms the signal travels to the left (cs < 0) and it
starts with zero amplitude at z = d.

Let us first analyze transmission holograms where ¢g > 0. Here,
the boundary conditions are

R(0) = 1, S0) =0 (31)

as discussed before. If we insert these boundary conditions into equa-
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Fig. 4—Wave propagation in (a) transmission and (b) reflection holograms.
The reference wave R decays while it propagates to the right. In (a) the signal S
travels to the right and gains with z, while in (b) S travels to the left and gains with
decreasing 2. The shading indicates the orientation of the fringes.

tions (25) and (26),it follows immediately that

=1,
and _ (32)
8 + 8y = 0.

Combining these relations with equation (28) we obtain
8 = —8& = _j"/cs('}’l — 7¥a). (33)
Introducing these constants in equation (26) we arrive at an expres-
sion for the amplitude of the signal wave at the output of the grating

S(d) = j—"_—%) (exp (v2d) — exp (v,d)). (34)

Cs (')"1
This is a general expression, which is valid for all types of thick trans-
mission holograms including the cases of off-Bragg incidence, of lossy
gratings and of slanted fringe planes.

The analysis of reflection holograms follows a pattern similar to the
above. We have ¢; < 0 and boundary conditions given by

RE(0) =1, S({d) = 0. (35)
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The output plane for the signal wave is, now, at z = 0, and S(0) is
the output amplitude of interest. Inserting the boundary conditions in
equations (25) and (26) yields
=1
and (36)
§; exXp (7v:d) + sz exp (y.d) = 0.

To proceed with our derivation we rewrite the above relation for s,
and s, in the form

si(exp (v.d) — exp (v:d)) = (51 + ) exp (v.d)
sx(exp (v2d) — exp (1:d)) = —(s + 82) exp (v,d).
Then we sum equation (28) for 7 = 1 and 7 = 2 and obtain the relation
—jk(r + 1) = —jk = (51 + 8a)(a + j9) + cs(yisi + v2s).  (38)

Using the relations (37) to substitute the sum (s, + s.) for the terms
s, and s, in this equation we finally arrive at the result for the amplitude
S(0) of the output signal of a reflection hologram

@37

_ — o . v1 exp (v2d) — 72 exp (’Yld)}_
S0) =s, + s I / { + 70+ es exp (v.d) — exp (v,d)
(39)

This is, again, a formula of quite general validity, including off-Bragg
incidence, loss, and slant.

In the following sections we discuss the behavior of transmission and
reflection holograms in greater detail, using the general formulas de-
rived above. In these discussions a parameter of prime interest is the
diffraction efficiency », which is defined as

n = "”C—R' S8+ (40)

where S is the (complex) amplitude of the output signal for a reference
wave R incident with unit amplitude. » is the fraction of the incident
light power which is diffracted into the signal wave. S is equal to S(d)
for transmission holograms and equal to S(0) for reflection holograms
in the notation of this section. But for reasons of simplicity we omit
the arguments in the following sections. The obliquity factors ¢, and
¢s appear in the above definition for the same reason they have ap-
peared in the energy balance of equation (24): in the absence of loss
it is the power flow in the z direction which is conserved.
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For slanted gratings another important parameter is the slant factor ¢
which is defined as the ratio between the obliquity factors

¢ = cpfcs = —cos 0/cos (8, — 2¢)

which we have expressed here, for Bragg incidence, in terms of the
angle of incidence 6, and the slant angle ¢. Figure 5 indicates lines of
constant ¢ as a function of 6, and ¢. For transmission holograms ¢ is
positive (¢ > 0), and for reflection holograms ¢ is negative (¢ < 0).
In the diagram transmission and reflection holograms are separated by
the line for ¢ = .

III. TRANSMISSION HOLOGRAMS

In this section we discuss transmission holograms in greater detail.
We give algebraic formulas and their numerical evaluations for the
diffraction efficiencies and the angular and wavelength sensitivities of
dielectric and of absorption gratings. This includes results on the
influence of loss and slant.

C=1 C=1
w2 1
|
|
) |
T 7
e | )
ﬁ! o/ ¢, e c“)
_ P
CZ |
-2
1
|
T | C=-1
o
s |
. |
9 4 l
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I LT
o I [ | O‘O ()
I o] C],CP I I
| Py
.2 @)
() ‘
|
|
-T/2
—a/2 0 m/2
Og—>

Fig. 5— The slant factor ¢ as a function of the angle of incidence 6, and the slant
angle ¢. c is positive for transmission holograms and negative for reflection holograms.
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It is convenient to write the various diffraction formulas in terms
of parameters » and #, which are redefined for each grating type. In
these parameters are lumped together the constants of the medium
(n, «, n, , @, , «), the obliquity factors (cz , ¢s), the wavelength, the
grating thickness d, and the dephasing measure ¢. By using » and §,
various trade-offs become immediately apparent.

We recall that, for transmission holograms, c¢s is positive and the
output signal appears at z = d. Combining equations (30) and (34)
we obtain a general formula for the signal amplitude S of a transmis-
sion grating

8 = —(%2)"-exp (—ad/eq) ot sin b — EP/11 — €47,
s

v = xd/(cxcs)?, (41)
—1q& _« "_)
E - 2d(CR Cs Jcs ]

where « is the coupling constant given in equation (9), # the dephasing
measure of equation (18), cz and cs are the obliquity factors of equa-
tion (23), a is the absorption constant and d the grating thickness.
In the above form the parameters » and ¢ are, in general, of complex
value.

3.1 Lossless Dielectric Gratings

For completeness we give the formulas for the lossless dielectric
grating. For the unslanted case of this grating these formulas have
been previously obtained by several workers whose prime interest
was light diffraction by acoustic waves.””*""* For this grating type it
is easy to include the effect of slanted fringes.* For the lossless dielectrie
grating we have a coupling constant x = mn,/A and @ = «, = 0. Equa-
tion (41) can be rewritten in the form

¥
S = —:(}) ¢ 'sin 0° + £))/0 + £/,
v = mn,d/Neres)?, (42)

£ = ‘!}d/ZC,s

where » and ¢ have been redefined and are real-valued. The associated
formula for the diffraction efficiency is

* Slant was also included in the treatment of dielectric gratings in Ref. 20.
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7 = sin® (* + YA + £/ (43)

For significant deviations from the Bragg condition the parameters
v and £ are of equal order of magnitude, and we can take » as independent
of A@ or A\ without causing an appreciable change in the predictions
of equation (43). In this equation the angular and wavelength deviations
are represented by the parameter ¢ which can be written in the form

£t = A9-Kdsin (¢ — 6,)/2cs
= —AN-K*d/8mncs (44)

by using equation (18).

The angular and wavelength sensitivities of lossless dielectric gratings
are shown in Fig. 6, where the efficiencies as given by equation (43)
are plotted (normalized) as a function of £ for three values of ». The
figure shows the sensitivity of gratings with » = =/4 and a peak diffrac-
tion efficiency of 5, = 0.5, with v = 7/2 and a peak efficiency of #, = 1,
and with » = 3r/4 and 5, = 0.5. We notice that the half-power points
are reached for values near ¢ = 1.5. There is some narrowing in the
sensitivity curves for increasing values of », and a marked increase in
the side lobe intensity.

1.0

0.8}~
0.6 v=m/a v =3m/s
& / y
~
=
0.4
0.2 v=m/2
1
0 | |
0 [ 2 3 4 5

Fig. 6—Transmission holograms—the angular and wavelength sensitivity of
lossless dielectric gratings with the normalized efficiencies 5 /70 as a function of £.
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Fig. 7— Transmission holograms—the angular sensitivity of a lossy dielectric
grating with » = =/2 and Dy, = 2 compared with that of a lossless dielectric grating
(Dy = 0), for 8, = 30° and 8d = 50.

The above formulas include the influence of slant through the obliquity
factors ¢ and cg . If there is no slant (¢ = 7/2) and if the Bragg condi-
tion is obeyed then ¢; = c¢g = cos 6, and equation (43) becomes the

well known®®"*'+%
n = sin® (wnd/\ cos 8). (45)

By inserting the above half-power values for £ into equation (44) we
obtain simple rules of thumb for the angular and spectral half-power
bandwidths of unslanted gratings: 2A6, /&~ A/d, 2AN\/\ & cot - A/d.

3.2 Lossy Dielectric Gratings

Let us first study the influence of loss on the angular sensitivity
of a dielectric grating. We assume that there is no slant (¢ = #/2)
and therefore ¢z = ¢s = cos 6. With this and a coupling constant of
x = 7n;/\ we obtain from equation (41) for the signal amplitude

S = —jexp (—ad/cos 8)-¢'*-sin (° + 2/a + 2t
v = mn,d/\ cos @ (46)
&t =0d/2 cos 8§ = Af-Bd sin 6,

where » and £ have been redefined, and £ has been expressed in the needed
form with the use of equations (14) and (18).
Equation (46) has a form similar to that of equation (42) except
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for an additional exponential term containing the absorption con-
stant a. This term decreases the peak efficiency and it changes the
angular sensitivity of the grating. But this change is very small, even
for high loss values, as illustrated in Fig. 7. This figure compares the
angular sensitivitities of a lossless grating (D, = 0) with that of a
grating of high loss (D, = 2) for a parameter value of v = 7/2, a Bragg
angle of 8, = 30°, and an optical grating thickness of 8d = 2wnd/» = 50.

The loss parameter D, was defined as
D, = ad/cos 6, (47)

which is closely related to the conventional photographic density D
(except that D, is measured in the direction of the reference wave
given by 6,). A value of D, = 2, which is the parameter used for the
dashed curve, represents very high loss, with a decrease of the peak
efficiency by a factor of about 50. Still, the differences of the two sen-
sitivity curves are very small and consist mostly of an angular shift.
The differences are even smaller for larger values of 8d (we checked
up to fd = 200), and, of course, for smaller values of D, . The main
conclusion is that the presence of loss has very little influence on the
angular sensitivity of a dielectric transmission grating. This is probably
because absorption influences the phase relations between the waves
R and 8§ very little. It agrees with observations by Belvaux.®

Next let us consider the influence of loss on the efficiency of a slanted
dielectric grating. For simplicity we assume Bragg incidence, that is,
# = 0. The obliquity factors are positive and given by cz = cos 6,
and es = —cos (6, — 2¢). For this case we can write equation (41)
for the signal amplitude S in the form

]
S = —.'f(z_:) cexp [—3Dy(1 + ¢)] sin (F — £)}/(1 — £/}
v = wn,d/Ncges) (48)
£ = 3Dl —¢)

where we have used the loss parameter D, as above in equation (47),
and the slant factor ¢

Dy = ad/cy = ad/cos 6,
¢ = cpfcs = —cos 8,/cos (6, — 2¢).

Figure 8 shows the diffraction efficiency of slanted grantings as
calculated from equation (48). The efficiencies are plotted as a function
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Fig. 8 — Transmission holograms—the efficiency of lossy dielectric gratings as a
function of slant for v = x/2. ¢ = cp/cg is the slant factor.

of the slant factor ¢ for various values of Dy , and for a value of v = 7/2
which corresponds to the maximum attainable efficiencies. Similar
curves for » = 7/4 and v = 37/4 and the same D, values are almost
identical to the curves of Fig. 8, except that the efficiency scale is
reduced to a maximum efficiency of 0.5. This implies that for the
range of chosen parameter values the exponential factor in equation
(48) dominates in prediecting the slant-dependence of the diffraction
efficiency.

The results show that, for higher efficiencies, the grating prefers
small ¢-values, assuming constant 8, and D, . This is a preference of
small exist angles for § which means that we get the best efficiency
if the signal wave leaves the grating on the shortest possible path
after it has been generated.

3.3 Unslanted Absorption Gratings

When one records holograms in conventional photographic emul-
sions one produces absorption gratings (bleaching can convert this
into a dielectric grating). In an absorption grating there is no spatial
modulation of the refractive index (n, = 0) and the coupling is provided
by a modulation (a,) of the absorption constant. We have, then, an
imaginary coupling constant ¥k = —jea;/2. In this section we study the
efficiencies and the angular and wavelength sensitivities of unslanted
absorption gratings where ¢ = =/2 and ¢; = ¢s = cos 8. From equa-
tion (41) we obtain for the signal amplitude
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§ = —exp (—ad/e) - sh (7 — /(1 — £/
v = a,d/2 cos 6 (49)
£ = 8d/2 cos 0 &~ Af-Bd-sin 6, = —1(AN/N)Kd tan 6,

where » and ¢ are real-valued, and equation (18) was used to express
the parameter ¢ again in various forms, showing explicitly the angular
deviations Af and the wavelength deviation A\ from the Bragg
condition.

For Bragg incidence we have § = 0, and obtain from the above a
formula for the diffraction efficiency » of absorption gratings

7 = exp (—2ad/cos 6,)-sh® (a,d/2 cos 8,). (50)

As we exclude the presence of negative absorption (gain) in the medium,
there is an upper limit for the amplitude @, of the assumed sinusoidal
modulation, which is &, £ «. The highest diffraction efficiency possible
for an absorption grating is reached in the limiting case a; = a for a
value of ad/cos 8, = In 3. According to equation (50) this maximum
efficiency has a value of n... = 1/27, or 3.7 percent.

Figure 9 shows values for the diffracted amplitude S of absorption
gratings as computed from equation (50) as a function of the modula-
tion amplitude @, and for various values of the depth of modulation.
For convenience we have again used loss parameters, which are Dy =
ad/cos 6§, and D, = a,d/cos 6, . D, is a measure for the amplitude
of the spatial modulation and D,/D, = a/a, indicates the modulation
depth. The dashed curves for constant D, show the grating behavior
for constant background absorption. We have plotted S on a linear
scale in order to identify the regions of linear grating response. Note
that a good linear response and relatively good efficiency is obtained
if the absorption background is held constant to a value of about D, = 1.

Equation (49) predicts also the angular sensitivity and the frequency
sensitivity of absorption gratings. Such sensitivity curves are plotted
in Fig. 10 for the special case of a; = o, and values of » = D,/2 = 1
(dashed) and » = % In 3 = 0.55. For the latter parameter value the
peak efficiency of 3.7 percent is reached, and for » = 1 we have a peak
efficiency of 2.5 percent. In the figure the relative efficiencies are plotted
as functions of the parameter £. We note that there is very little dif-
ference between the sensitivity curves for the two »-values chosen.
We have also computed the sensitivity for smaller values of v (0.2, 0.4),
but the resulting curves differ so little from the ones shown that we
have omitted them from the figure. The sensitivity curves are very
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Fig. 9.— Transmission holograms—the diffracted amplitude of an abscrption
ating as a function of the modulation D1 = end/cos 8 = 2» for various modulation
ggpths D,/D, (solid curve) and various bias levels Dy = ad/cos @ (dashed curve).

similar to those of the dielectric gratings with smaller »-values which
are shown in Fig. 6. Again, the half-power points are reached for about
£ = 1.5. But for absorption gratings there is no narrowing with in-
creasing values of », and the side lobe intensity remains low.

3.4 Slanted Absorption Gratings

In this section we consider the influence of slant on the efficiency
of an absorption grating. For simplicity we assume Bragg incidence
(# = 0), and describe the slant by the obliquity factors ¢, = cos 6,
and ¢g = cos (6, — 2¢), as before. Using equation (41) we obtain,
for this case, the following expression for the signal amplitude S

8= () ep [ ~Loa(L + 1) ]sh ¢ + e/ + £

R Cs
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v = a,d/2(cacs)? (51)

y of1 1
£= imd(c:,a cs) ’

where » and £ are redefined as real parameters. We have plotted the
slant-dependence of absorption gratings in Fig. 11 for the special case
of @, = a, that is, maximum depth of modulation. The diffraction
efficiency 7 is shown as a function of the slant factor ¢ for various
values of the loss parameter D, . These quantities are defined, as
before, by

D, = ad/cr = ad/cos 6,
and (52)
¢ = cg/Cs.

The efficiency is seen to reach its absolute maximum of 3.7 percent
for the unslanted grating (¢ = 1) and for a loss parameter of D, = In 3.
Tor larger values of D, the efficiencies reach relative maxima for exit
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Fig. 10— Transmission holograms—the angular and wavelength sensitivity of
an absorption grating for @y = a (D\ = Do) and values of » = D\/2 = 0.55 (9o =
0.037)and » = D\/2 =1 (50 = 0.025).
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Fig. 11— Transmission holograms—the efficiency of an absorption grating as a
function of slant for @1 = a (D1 = Dy). ¢ = ¢p/cg is the slant factor.

angles of the signal wave which are smaller than that of the reference
wave (¢ < 1), while for smaller D,-values the situation is reversed.

3.6 Mized Gratings

Mixed gratings are those in which both the refractive index and
the absorption constant are spatially modulated. This may occur in
some recording materials (for example, as a result of incomplete bleach-
ing, or in cases where strong absorption peaks are developed which
cause refractive index changes according to the Kramers-Kronig rela-
tions).* Mixed gratings are described by a complex coupling constant,
which is given in equation (9). For the special case of unslanted gratings
(¢ = 7/2) and Bragg incidence (# = 0) equation (41) simplifies to

S = —jexp (—ad/cos 8,) sin (kd/cos 0,) (53)

where « is complex. FFrom this we obtain, after some algebra, an expres-
sion for the efficiency of mixed gratings

n = 88* = [sin® (wn.d/\ cos 6,) + sh® (a1/2 cos 6,)] exp (—2ad/cos 6,),
(54)

where 7, and «, are the amplitudes of the modulation of the refractive
index and the absorption constant, and « is the average absorption

* Such effects have recently been observed by Nassenstein (see Ref. 32).
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constant. We note that, at least for the special case considered here,
there is a simple addition of the intensities diffracted by the dielectric
grating and the absorption grating respectively [eompare equations (46)
and (50)!]. The exponential factor including « insures that the formula
does not predict efficiencies larger than 1.

IV. REFLECTION HOLOGRAMS

In reflection holograms the recorded fringe-planes are of an orienta-
tion which is more or less parallel to the surfaces of the recording
medium, and the signal appears as a “reflection” of the reference wave.
We have illustrated this situation in Fig. 4b. It is expressed in the
coupled wave analysis by negative values of the obliquity factor
cs(cs < 0). In addition, the signal amplitude S of interest is obtained
by evaluating the signal wave in the plane z = 0, which is also the
entrance plane for the reference wave R. For reflection holograms a
slant angle ¢ = 0 desecribes the case of unslanted gratings. Apart from
these differences the following discussion of the detailed behavior of
reflection holograms proceeds in a pattern similar to that of Section III,
where we have discussed transmission holograms,

From equations (30) and (39) we obtain a general formula for the
signal amplitude of reflection holograms which ean be written in the
form

8 = (-cﬁ)!-sh (v ch a)/ch (a + v ch a)

Cs

v = j’(d/h({:}ac.g)i

Cr Cs Cs
sha = g/v

where we have again defined (complex) parameters », £ and a, which
lump together the constants of the medium (n, , n, , @, , «), the obliquity
factors ¢ and cs , the wavelength, the grating thickness d and the
dephasing measure #.

4.1 Lossless Dielectric Gratings

The lossless dielectric grating is characterized by a real-valued
coupling constant x = wn,/A, and by zero absorption &« = «, = 0.
As in the transmission-hologram counterpart, it is easy to include the
case of slant in the analysis. For the present case we can rewrite equa-
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tion (55) in the form

8= ((é_i):/[js/v + @ = £/ coth (* — &)}
v = jamad/Neacs)* (56)
£ = —9d/2c;

where » and ¢ have been redefined as real-valued parameters (cs is

negative!).
The associated formula for the diffraction efficiency of lossless di-
electric gratings is

n = 1/{1+ 1 — £/%/sh* (* — )}, (57)

which also provides a description of the angular and wavelength sen-
sensitivities of the grating. For unslanted acoustic gratings this formula
has been previously given by Quate and his associates.”” Sensitivity
curves calculated from equation (57) are shown in Fig. 12, where the
normalized efficiencies are plotted as a function of £ for various values
of v = const. The figure shows the sensitivity of a grating with » = /4
and a peak efficiency of 43 percent, a grating with » = #/2 and 9, = 0.84,

1.0

0.8

0.6

n/Mo

0.4

0.2

Fig. 12— Reflection holograms—the angular and wavelength sensitivity of a
lossless dielectric grating with the normalized efficiency n/70 as a funetion of &.
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and the corresponding values for » = 3x/4 and 5, = 0.96. For » = T/4
the half-power points of the grating response are reached for values of
approximately £ = 1.7. But there is considerable broadening of the
sensitivity curves for increasing values of », and an increase in the
side-lobe level.

As in equation (44) for transmission holograms, we can express the
parameter ¢ directly in the angular deviation Af or the wavelength
deviation A\ by using equation (18) to obtain

£ = A@-Kd-sin (8, — ¢)/2cs
AN-K*d/8mncs . (58)

Il

These expressions can again be used to formulate rules for the angular
bandwidth and the spectral bandwidth of the grating.

For an unslanted grating (¢ = 0) and Bragg incidence we have
¢cg = —cs = cos B, , and equation (57) simplifies to

7 = th® (wn.d/\ cos 6,). (59)
This is a formula which has been obtained previously for light diffraction

by acoustic waves.****

4.2 Lossy Dieleciric Gratings

Let us first discuss the influence of loss on the angular and wave-
length sensitivity of unslanted dielectric gratings. Here we have ¢ = 0
and, to a good approximation

cg = cos 0,(1 — Aftan 6,) = cos @
—cos 8,(1 + Aftan 6;), (60)
—cos 8(1 + 2AN/N)

at least as long tan 6, < 1. One can show that the formula for the signal
amplitude S, which we have given in equation (56), is still applicable
for the present case of an unslanted lossy grating if we modify the
parameters » and £ to

I

Cs

v = mn.d/\ cos B,

E = ED - jDD ] (61)
£, = —Af-Bdsin 6,
D, = ad/cos 6,

where £ is now a complex parameter with & deseribing the angular
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deviations and D, representing the loss. An evaluation of this formula
is shown in Fig. 13, which shows the angular sensitivity of dielectric
gratings for various values of the loss parameter D, and a grating
parameter of v = /2. In constrast to what we have observed in the
case of dieleetric transmission holograms (Fig. 7), we see here a quite
noticeable effect of the grating loss on the sensitivity curves. With
increasing loss values the curves broaden in the wings, sharpen some-
what in the center and the side-lobe level decreases.

To study the influence of loss on the diffraction efficiencies of dielec-
tric gratings we rewrite equation (55) in the form

ez} 2
S = (f) g/ + (L + £/ coth ¢* + £}

s

jwnld/)\(ckcs)% (62)

v
£=3D(1 —0)

where we have written » and £ as real-valued parameters in a form
which is valid for Bragg incidence and for slanted or unslanted gratings.
Just as in the case of transmission holograms we have used the loss

n/ Mo

Fig. 13— Reflection holograms—the influence of loss on the angular and wave-
length sensitivity of a dielectric grating for » = /2. The normalized efficiencies
n/ne are shown. The peak efficiencies are 5, = 0.84 for Do = 0, 7o = 0.64 for
Du = 0.5, N = 0.28 for Dg = 1, and Mo = 0,12 for Dq = 2,
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parameter D, and the slant factor ¢ (which is now negative)
Dy, = ad/cos 8, 63)
¢ = cgp/Cs .

In the case of unslanted gratings the parameters » and £ simplify to

v = mn,d/\ cos b, (64)
£ = Dy = ad/cos 6, .

The results of a numerical evaluation for unslated gratings are shown
in Fig. 14, where the signal amplitude is plotted as a function of » for
various values of the loss parameter D, . The curve D, = 0 gives the
values for lossless gratings, while the others indicate the influence
of loss.

The behavior of slanted dielectric gratings in the presence of loss
is shown in Fig. 15. The curves of this figure are also computed from
equation (62) and show the diffraction efficiency as a function of the
slant factor for » = m/2 and various values of the loss parameter D, .
For constant D, we notice an increase of the efficiency for decreasing
values of the slant factor, as in the case of transmission holograms.

sl

0 0.2 0.4 0.6 0.8 1.0
v/ar =n,d/Acosf,

Fig. 14— Reflection holograms—the influence of loss on the diffracted amplitude
S of an unslanted dielectric grating. | S | is shown as a function of »/m = md/A cos 6
for various loss parameters D.
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Fig. 15— Reflection holograms—the efficiency of a lossy dielectric grating as a
function of slant for » = #/2. ¢ = ¢g/es is the slant factor.

Again, for given loss and a given angle of incidence short signal paths
through the grating (that is, small exit angles) are preferred for higher
efficiencies.

4.3 Unslanted Absorption Gratings

Following the pattern set in the discussion of transmission holograms
(Section III), we again deseribe an absorption grating by an imaginary
coupling constant k = —ja,/2, and proceed to study the diffraction
efficiencies and the angular and wavelength sensitivities of unslanted
(¢ = 0) gratings. In this case equation (55) simplifies to

]
s = (%) /e + 16 — ot @ — )

v = 1-43115'!/2(‘3130.5)i (65)
£ = D, — jfo
where the real-valued parameters D, and &, can be expressed to first

order in the angular deviations A6 and the wave-length deviations
AX by

D,
&

ad/cos 6,
Af-Bdsin 8, = F(AN/NKd.

(66)
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D, is a loss parameter as before, and £, is a normalized measure for
the angular or the wavelength deviations from the Bragg condition.

If the Bragg condition is obeyed equation (65) can be written in
the form

S = —D,/2[D, + (Di — Di/4)}-coth (D} — Di/4)}| (67)
where
D, = 2v; = a,d/cos 8,

measures the spatial modulation of the absorption constant (a,).

For the deepest allowable modulation where we have D, = Do(a; = ap),
this equation predicts the maximum diffraction efficiency nm.. which
is possible for reflection holograms with a (sinusoidal) absorption
modulation. We obtain nm. = 1/(2 + v3)% or a maximum efficiency
of 7.2 percent for D, = D, — . The formula reflects the experimental
fact that, for reflection holograms of the absorptive kind, one obtains
the largest efficiencies for high photographie densities. Figure 16 shows
a numerical evaluation of the above formula. Here the signal amplitude
S is plotted as a function of the modulation amplitude D, for various
levels of loss “bias” D, (dashed curves) and for various modulation
depths D,/D, .

An evaluation of the grating sensitivity as predicted by equation (65)
is shown in Fig. 17 for the special case of a maximum depth of modula-
tion where D, = D, . In this figure the (normalized) efficiency is plotted
as a function of the parameter &, for various values of D, = D, . As in
the corresponding grating for the case of transmission holograms (Fig.
10) the sensitivity curves are seen to reach their half-power points for
values of about £, = 1.5. But in the present case of reflection holograms
there is a noticeable broadening of the curves with increasing loss
values D, = D, .

4.4 Slanted Absorption Gratings

In this section we consider the influence of slant on the diffraction
efficiency of an absorption grating for reflection holograms. We assume
Bragg incidence (¢ = 0) and again use the obliquity factors ¢z = cos 6,
and ¢z = —cos (f, — 2¢) to describe the slant (for reflection holograms
we have ¢; < 0!). We find that equation (65) can be used as a formula
for the signal amplitude for the present case if we modify the parameters
to

v = joud/20ncs) = § D,
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Fig. 16—Reflection holograms—the diffracted amplitude of an absorption
ating a8 a function of the modulation Dy = ayd/cos § = 2v for modulation depths
,/Dy (solid curve) and bias levels Dy = ad/cos 8 (dashed curve).

-1 _
3 3Do(1 c) (68)
Dy, = ad/cos 6, , D, = a,d/cos 6,

¢ = cg/Cs

where the slant factor ¢ is negative. All these parameters are real-valued
in the present case. For a maximum depth of modulation, that is, @, = «,
there are further simplifications, and we obtain a simple expression for
the slant-dependence of the diffraction efficiency

n= —c/ll —c+ (1 —c+ c)t-coth $Do(1 — ¢ + ¢)'}". (69)

Figure 18 shows a numerical evaluation of this formula for various
values of D, = D, . The slant factor value of | ¢ | = 1 refers to unslanted
gratings. In this case the maximum efficiency value g, = 0.072 is
approached for large D, . We note that for values of D, below unity
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the efficiencies increase for | ¢ |-values larger than 1 and up to about 3,

that is, for relatively large exit angles of the signal wave.

4.5 Mixed Gratings
Mixed gratings are described by a complex coupling constant
k = mn, /A — ja,;/2 (see Section 3.5). For Bragg incidence (¢ = 0)

and unslanted fringe-planes (¢ = 0) we can obtain from equation (55)
a formula for the signal amplitude of mixed gratings, which is
4+ a’)*} (70)

—jx/{a + (& + &)} coth Py

S =
where « is of complex value, « is the average absorption constant, d the

grating thickness and 6, the angle of incidence.
V. AMPLITUDES OF THE DIRECT WAVES
TFor diagnostic purposes it is often of interest to monitor the change
in amplitude of the direct reference wave R, which is depleted because of

diffraction into S and absorption. The quantities of interest are the
amplitudes R(d) which can be obtained from the analysis of Section 2.2
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Fig. 17— Reflection holograms—the angular and wavelength sensitivity of an
absorption grating for « = a (D) = Do) and values of Dy = 2v =
= 2 (no = 0.068).

(mo = 0.007), Dy = 1 (no = 0.05), and D,
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Fig. 18— Reflection holograms—the efficiency of an absorption grating as a
function of slant for ey = a (D1 = Dg). ¢ = ¢p/cs 18 the slant factor.

We will give here the general results for transmission and reflection
holograms. The notation is that of Section 2.
5.1 Transmission Holograms

From equations (27) and (33) we get for the constants »; of equation
(25) the expressions

r = _KZ/CS(‘h — ¥y2)(Cxv1 + @) (71)
T, = Kz/cs("h — ¥2)(ery: + ).

Using this we can write the output amplitude R(d) of the reference
wave in the form

R(d)

= K’ (EXP (v-d) __ exp (’Yld)). 72)
cstvi— 72) \ezve + @ v
5.2 Reflection Holograms

For reflection holograms we use equations (27), (37), and (39) to
express the constants r; in the form

r = (csv: + a + ) exp (v2d)/{exp (vod)(@ + 7 + cs11)

— exp (vid)(e + & + cs72)} (73)
r, = — (covs + @ + ) exp (v,d)/{exp (vad)(@ + 7 + ¢571)

— exp (vid)(@ + & + cs72)}-
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The output amplitude R(d) of the reference wave becomes
R(d) = cs(yy — v2)/{(a + 7 + csv1) exp (—v.4)
— (@ + 7 + cs72) exp (—v.d)}. (74)

More detailed evaluations of the above formulas should follow the
pattern prescribed in Sections IIT and IV. They can be undertaken
for the specific case when the need arises.

VI. VALIDITY OF THE THEORY

We have tried to make our results as generally applicable as possible.
We have allowed for the presence of absorption in the various hologram
gratings and for a slant of the fringe planes. But a whole range of assump-
tions had to be made to make the simple coupled wave analysis possible.
It seems appropriate to recount these assumptions to make clear the
region of validity of the coupled wave theory. We have assumed that:

(7) The electric field of the light is polarized perpendicular to the
plane of incidence. However, the appendix gives an extension of the
theory to allow also for light of parallel polarization.

(72) A slant of the fringe planes with respect to the z-axis is allowed,
except that these planes are perpendicular to the plane of incidence.
(This is reflected in the assumption e(z, 2), o(z, 2).) But this assumption
is not made in the generalization which we have given in the appendix.

(772) The spatial modulation of the refractive index and the absorption
constant is sinusoidal.

() There is a small absorption loss per wavelength and a slow
energy interchange (per wavelength) between the two coupled waves.
This condition is stated mathematically in equation (7) and justifies
neglecting the second derivatives K’ and S in the analysis.

(v) There is the same average refractive index n for the regions
inside and outside the grating boundaries. If the grating has interfaces
with air, then Snell’s law has to be used to correct for the angular
changes resulting from refraction.

(vi) Light incidence is at or near the Bragg angle and only the diffrac-
tion orders which obey the Bragg condition at least approximately are
retained in the analysis. The other diffraction orders are neglected.

A detailed mathematical justification of assumption v¢ is outside the
scope of our simple analysis. One can advance physical arguments to
show that this step limits the validity of the theory to “thick” gratings,
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where the phase synchronism between the two coupled waves has
enough time to develop a strong and dominating effect. Better definitions
of a “thick grating’’ must come from more accurate theories which are
available for special cases. A large amount of work has been done on
acoustic diffraction gratings which correspond to the case of our

unslanted, lossless, dielectric transmission-hologram gratings.”® In
acoustic diffraction one defines the parameter
Q = 2xAd/nA’ (75)

as an appropriate measure of grating thickness. We can regard a grating
as thick when the condition @ >> 1 holds.?'" It appears that the coupled
wave theory begins to give good results for values of @ = 10. This is
particularly well demonstrated by Klein and his associates in theoretical
and experimental work on acoustic gratings for the predictions of both
the peak efficiencies and the angular sensitivities."®""'** We hasten to
add that for the majority of practical holograms the parameter @ is
larger, and sometimes much larger, than 10.

Further checks of the validity of the coupled wave theory are provided
by comparisons with accurate computer caleulations and with experi-
ments on special examples of gratings. Burckhardt has made computer
calculations on unslanted, lossless, dielectric transmission holograms
for selected values of grating parameters which are commonly encoun-
tered in holography.®"'* Comparison with the results of the coupled
wave theory shows very satisfactory agreement.’’ Measurements by
Shankoff and Lin on dielectric transmission holograms prepared with
dichromated gelatin yielded diffraction efficiencies approaching 100
percent, which agrees with the theory (even though there may be some
uncertainty as to the exact nature of the refractive index variations).'*""’

Efficieney measurements on thick absorption gratings for the ease of
transmission holograms were made by George, Mathews, and Latta.*®*"
Efficiencies approaching our predicted maximum value of 3.7 percent
were observed.

Kiemle has studied unslanted (¢ = 0) reflection holograms for the
special case of normal incidence (§, = 0) by analyzing equivalent
four-terminal networks.® His treatment of absorption gratings cor-
responds to the material we discussed in Section 4.3 specialized to the
case of §, = 0. But Kiemle’s value of 2.8 percent for the maximum
diffraction efficiency of absorptive reflection holograms does not agree
with our predietion of 7.2 percent. This disagreement appears to derive
from a set of restrictive assumptions made in Kiemle's work. Experi-
mental observations on absorptive reflection holograms were made by
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Lin and Lo Bianco.” Efficiency values as high as 3.8 percent were
measured, which seems to support the predictions of the coupled wave
theory. But further experiments are needed for a good confirmation.

VII. CONCLUSIONS

We have discussed a coupled-wave analysis of the Bragg diffraction
of light by thick hologram gratings. This approach made it possible to
derive simple algebraic formulas for the behavior of various types of
holograms, even for the case of high diffraction efficiencies where the
incident wave is strongly depleted. The treatment covers transmission
holograms and reflection holograms, and it includes the spatial modula-
tions of both the refractive index and the absorption constant. The
influence of loss in the grating and of slanted fringes is also discussed.
Formulas and their numerical evaluations are given for the diffraction
efficiencies and the angular and wavelength sensitivities of various
grating types.

For special cases we can compare the results of this theory with more
accurate computations and with experimental observations. These
comparisons give us the confidence to assume that the coupled wave
predictions are good for a broad range of practical hologram types.
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APPENDIX

Reduced Coupling for Light Polarized in the Plane of Incidence

In the body of this paper it was assumed that the incident light is
polarized perpendicular to the plane of incidence. The purpose of this
appendix is to show that we can use the results of the main paper also
when the light is polarized in the plane of incidence, provided that we
modify the coupling constant . Such a modification is suggested already
by the dynamical theory of X-ray diffraction.

As in Section I we start with the wave equation

VE — V(V-E) + k'E =0 (76)

for the electric field in the grating. Here, in contrast to equation (1),
we have described the field by the vector quantity E and have included
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the term V(V-E), which is not necessarily zero. The constant k* is
defined in equation (4). As in the main paper, we assume that only two
waves are present in the grating, and put

E = R@)e *™ + S(z)e*™ (77)

using the vectors R and S to describe the amplitudes of the reference
and signal waves. ¢ and ¢ are the propagation vectors (as in Section II)
which point in the direction of the wavenormals. They are related by
equation (11). In addition we assume that, both, E and S are transverse
waves, that is, that the following conditions hold

(Q'R) =0, (78)
(é-S) = 0.

Combining equations (76), (77), and (78) we get, after separating
terms with equal exponentials and neglecting second derivatives 8°/3z"

—2jp.R’ + joR: — 2jafR + 26S = 0 (79)
—2js,8" + joS, + (8" — o — 2jaB)S + 2«6R = 0 (80)

where R, and S, are the z-components of R and S, and the notation of

Section IT is used.
We now make the additional assumption that the polarizations of

R and S do not change in the grating and write
R(i) = R(r, (81)
S(z) = S8()s,

where R(z) and S(z) are the scalar amplitudes of the two waves, and
r and s are polarization vectors independent of z. These vectors are

normalized so that

(rr)=1, (ss) = L (82)
Because of (78) we have
(re) =0, (s:9) =0. (83)

After forming the dot products of r with eq. (79) and of s with (80)
we use equations (81), (82), and (83) to arrive at

—2jp.R" — 2jaBR + 2¢3S(r-s) = 0 (84)
—2ja, 8" + (8° — " — 2jaf)S + 2«BR(-s) = 0. (85)
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As in Section II, we introduce the abbreviations

cr = p./B,  cs = a./B, (86)
and
d = (8 —_02)/213, (87)
which allow us to write the above equations in the form
cpR' + o = —jk(r-s)S (88)
esS" + (@ + S = —jk(r-s)K. (89)

These are coupled wave equations which govern the Bragg diffraction
of light polarized parallel to the plane of incidence, and indeed, of light
of arbitrary polarization. They are similar in form to the coupled wave
equations (21) and (22) which were derived for perpendicular polariza-
tion. The only difference is a reduction of the effective coupling constant
by the dot product (r-s) of the two polarization vectors.

Referring to the grating geometry of Fig. 1 we have (r-s) = 1 for
light polarized perpendicular to the plane of incidence. For parallel
polarization the value of this dot-product depends on the inclination
angles, and we have a reduced effective coupling constant given by

K = k(r-s) = —«cos 2(6 — ). (90)

We can apply the results of the main paper for parallel polarization if
we replace k by , . For this polarization there is the trivial case of a
Bragg angle of 45° (that is, diffraction angles of 90°) where (r-s) =0
and the intensity of the diffracted light goes to zero.
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