Work-Scheduling Algorithms: A
Nonprobabilistic Queuing Study
(with Possible Application
to No. 1 ESS)

By JOSEPH B. KRUSKAL
(Manuseript received November 7, 1968)

In many large compuler systems with real-fime use (such as the No. 1
Electronic Switching System), the ceniral processing unit handles much
of ils work through queues. It may spend much of its time cycling through
the queues, performing the work requests it finds there. To accomodale
varying degrees of wurgency, the cycle may visit some hoppers more often
than others. (No. 1 ESS strongly relies on this procedure.) This paper
provides an approximate method for evaluating different cycles.

Using the evaluation method and some approvimations, we obtain a
formula for the optimum relative frequency with which different queues
should be visiled.

The model used is monprobabilistic, and ireats requests as conltnuous
rather than discrete. The model also ignores certain interdependencies
between queues. Despite these drastic simplifications, the results probably
provide useful guidance, if interpreted cautiously.

I. INTRODUCTION

In many large computer systems, especially those with real-time
use, the central processor handles much of its work through queues,
which contain work requests. (The queues may also be called hoppers,
buffers, waiting lines, files, and so forth. In this paper we call them
hoppers.) The processor examines each hopper in turn, and performs
some or all of the work requests if any, which it finds there.

Some work requests require processing more urgently than others.
One method of providing appropriate response times is to examine
more frequently hoppers which contain urgent work, and other hoppers
less frequently. For example, the No. 1 ESS (Electronic Switching

2963



2964 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1969

System) has many hoppers which it groups into five different urgency
classes."* The five classes are examined (or “visited”) in a fixed re-
curring cycle, of length 30, during which the classes are visited 15,
8, 4, 2, and 1 times, respectively. (During a single visit to a single class,
the individual hoppers are visited once each, in a fixed sequence.)

This paper contains a practical approximate model for evaluating
various alternative cycles. The conceptual basis for the evaluation
is the expected time each work request must wait in the hopper before
being serviced by the central processor. (Such times depend not only
on the eycle, but also on the times required to process requests, and
on the rates at which new requests are initiated. These are all assumed
given.) The expected waiting times for different hoppers are multi-
plied by frequencies and also by weights w; , the “average penalty
per second of delay,” and added. The resulting sum is called P, the
“expected total penalty per second.” The weights w; , which reflect
the relative importance of delaying different work requests, are assumed
given, and we seek to minimize P by choosing the cycle wisely. By
way of illustration, the calculations required to evaluate any given
cycle are given for two very simple cycles.

When applied to general cycles, our model yields the plausible
conclusion that visits to the same hopper should be spaced as evenly
as possible around the cycle (in terms of elapsed time between visits).
Furthermore, the model permits us to estimate how sensitive P is to
deviations from this ideal.

Our most important conclusion is an explicit formula for how fre-
quently each hopper should be visited. To obtain this formula, we
assume that visits to each hopper are evenly spaced around the cycle.
Then P becomes a function of the visit frequency (and not of detailed
visit pattern). We explicitly optimize this function, to obtain a formula
for visit frequencies.

The time required to examine a hopper, whether or not it contains
any work requests, is small but highly significant, and is an important
consideration in the problem. Our model explicitly reflects this fact.
(Indeed, it is known though sometimes overlooked that the No. 1 ESS
central processor finds most hoppers empty on a majority of its visits,
even when it is heavily loaded with work and operating near its ca-
pacity limits. This can occur because the number of hoppers is so large,
and because each work request requires a relatively long time to service
compared with the time to visit a single hopper.)

In this study, we assume that work enters the hoppers as a result
of some outside process, which is independent of how the hoppers



QUEUING STUDY 2965

are being served. In No. 1 ESS, as in many other situations, much
work does enter hoppers in this manner. However, it is also true that
servicing a request from one hopper may place work, directly or in-
directly, in another hopper. This interdependence may well be important
in choice of a cycle. Nevertheless, the present model, which ignores
such interdependence, is probably usable if we are suitably cautious
about interpreting our results.

Service requests are discrete items and enter the hoppers according
to an exceedingly complieated random process. Our model, however,
assumes that each kind of request comes in at a constant rate, with
no statistical fluctuation whatsoever. Furthermore, we treat the number
of requests as a continuous quantity (so that requests keep trickling
in like water) rather than a discrete quantity.

Despite the drastic nature of all these simplifications, we believe
that this analysis is better than no analysis at all. Furthermore, we
feel that our conclusions are probably valid approximations. It also
seems plausible that our model could provide the jumping-off place
for a more realistic study. Both interdependence and statistical fluc-
tuation could be introduced in a limited way. (Since this was first
written, R. W. Landgraff has done a study which extends this model
to include interdependence.®) This might well permit their main effects
to enter the model, without opening the Pandora’s box of an ex-
tremely general stochastic process with one server and many inter-
dependent queues.

II. SOME ASSUMPTIONS AND NOTATION

We suppose that there are I hoppers. I'or each hopper 7 we assume
that we have three parameters:

s; = service time = average time to service one request in this
hopper,

r; = request time = average time between occurrence of requests
> s;, and

w; = weight = average penalty per second of delay for a single

request, of type 7.

We also use

>\,.=f,—‘:<<1, A= .

(To permit a steady-state solution, we assume A < 1.) Note that the
definition of w; implies that on the average the penalty for delaying



2966 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1969

one kind of task is proportional to the delay time. The w; are the pro-
portionality constants. This simple assumption could be refined some-
what without too much trouble if desired.

In No. 1 ESS, one major penaliy caused by hopper delays is the
extra waiting time they cause to the telephone user at various stages
of his call. For some hoppers, such as those involved during the process
of dialing, undue delays can cause mishandling of the call. (Also, the
delays tie up memory capacity and indirectly cause a need for extra
memory equipment. However, this effect is probably minor.) By
considering the loss incurred by the user due to various waiting periods,
and the loss due to the probability of mishandled call, it would be
possible to assign sensible values to the w; . Although a truly realistic
appraisal of the losses would require a quite elaborate study, some
fairly reasonable simplifying assumptions which would make this
study much simpler are available. Furthermore, assignment of the
w; on a direct intuitive basis would probably be adequate for many
purposes.

To measure the total delay penalty paid by any work-scheduling
algorithm, we combine the various penalties into a single number P:

d; = expected delay for a request of type 7,
p: = expected penalty per request of type ¢ = w; d; , and
P = expected total penalty per second

(Of course, 1/r; is the expected number of requests of type ¢ in one
second.) We seek to minimize P by proper choice of a work-scheduling
algorithm. Only the delays d; may be influenced in this way, so we
concentrate on evaluating the d; .

A model which, like ours, treats requests as continuous has the
danger of ‘““discovering” that the hoppers are serviced infinitely fast,
accumulating only an infinitesimal amount of work between visits.
The following assumption, which in any case reflects an important
reality, avoids this collapse.

To examine the 7th hopper, whether or not it contains any work,
requires a certain amount of time. We assume this amount of time
is H; . For simplicity we shall assume all the H, are equal, and shall call
their common value H, although it would be easy to work with unequal
values if desired. Thus if z requests are serviced during one visit to
hopper 7, this visit requires H; + zs; seconds.



QUEUING STUDY 2967

It will turn out later that the value chosen for H is not very important
in the context of this model. The comparison between different work-
scheduling algorithms is unaffected by the (nonzero) value used.

1II. WORK-SCHEDULING AND SERVICE POLICY

We suppose that the hoppers are visited in a fixed cycle of length
N, namely,

(7'.11"':21 "'11.4\')-

This means that hopper 7, is visited first, then hopper 7, , and so on.
After iy is visited, the cycle starts over again with hopper 7, . One simple
cycle with 7 = 4and N = 61is (1, 4, 2, 4, 3, 4). No. 1 ESS uses I =
hoppers (classes of hoppers, actually), and a cycle of length N =

—— e, i, S, ——, e, —— —

121312141213121512131214121312

If 7 is any given hopper, we shall let V(i) indicate the set of all visits
to hopper 7. Thus for the eyele (1, 4, 2, 4, 3, 4), we have

V(1) =1[1], V(2) =1[3], V(3) =[5, and V(4) = [2, 4, 6].
In the No. 1 ESS eycle,
Vi1 =1[1,3,5, ---,29], V(2) = [2, 6, 10, 14, 18, 22, 26, 30],
V(3) = [4, 12, 20, 28], V(4) = [8,24], V(5) = [16].

For any visit n, the last previous visit to the same hopper is called
b(n) (“b” for before). Thus in the eycle (1, 4, 2, 4, 3, 4), visit 6 is to
hopper 4, and the last previous visit to the same hopper is on visit 4.
Thus b(6) = 4. Because ‘last previous” is understood in a cyclic sense,
b(2) = 6. We have

b(1)

b(4)

1, b2 =6, b3 =3,
2, b)) =5 b6) = 4.

Whenever a hopper is visited, we suppose that all work requests
there are serviced. However, during the period when the hopper is
being serviced new requests can enter it. What about these requests
which enter the hopper while it is being serviced? These can either be
handled when they are reached during the same visit, which we call
the “come-right-in” policy, or they can be left for the next visit to the
hopper, which we call the ‘“‘please-wait”’ policy. We shall treat both of
these hopper service policies, because their solutions are very similar.



2968 THE RELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1969

IV. HOW TO EVALUATE P

As there is no statistical variation left in our model, it is easy to
analyze. Let

t, = time spent emptying the hopper %, during visit n.

Let C be the time spent during an entire cycle, so that C consists of N
hopper visits. Hopper visit n consists of time H to examine the hopper,
and time ¢, to service it. Thus

C— S (H+1)=NH+ S,

n=1 n=1

Now consider the requests which are serviced during ¢, . Let
T, = the interval during which they enter hopper ¢, .

Recalling that b(n) is the last prior visit to hopper 7, , we see from
Fig. 1 that

> HA1) =~ b+ 3 b,
‘“come-right-in;"”
T, = (1)
Z) (tp + H) = [n - b(n)]H + b; Ly,
p=b(n n

“please-wait.”

Note that b(n) and the summation indices must be understood in a
suitable “cyclic” sense, so that (for example) if b(n) = n, then n — b(n)
means once around the cycle and hence equals N, not 0. Now it is easy
to see that

(the number of requests served during ¢,) = t./s:,

= (the number of requests initiated during 7,) = T.,/r,, ,

Tn FOR COME-RIGHT-IN
|

(H, tm
I

m=b (I’\) Tn FOR PLEASE -WAIT

Fig. 1 —Time flow diagram illustrating “‘please-wait’’ and “come-right-in”’ policies.



QUEUING STUDY 2969

S0
L, = ... (2)

By using equation (2), we can eliminate either all T', or all {, from equa-
tions (1). This will leave us with N linear equafions in N unknowns,
which in fact turn out to be linearly independent. By solving these
equations and using equation (2), we can find the T, and the {, , and
from them all else will follow, as we show below. For convenient ref-
erence, we state the equations after eliminating the ¢, :
m— b@)JH+ Y, A,T,, ‘“come-right-in;”
T, = p=b(n)+1 (3)

n—1
m — bm))H + >, A\,T,, ‘‘please-wait.”
p=>b(n)
Recall the special cyclic interpretation of n — b(n) and the summations.
It is worth digressing briefly to derive an explicit formula for C,
and to show how the N equations (3) can be reduced to N — I equations
in N — I unknowns by using it. It is easy to see that if we sum T, over
all visits to some particular hopper 7, the result must equal C:
Z T, = C forevery j. (4)
nin V(7)
Now sum equation (3) over all #» in V(5), and use equation (4) several
times:

{[n —IH + Y xf,T,} ,

p=b(n) +1

T,= 2

nin V(i) nin V(i)

N

C =NH+ > AT,

p=1

NH + IER,-[ 2, T,

i=1 pin V(i)

— NH + (i: x,.)c

= NH + AC.
This yields

“1-1 (5)



2970 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1969

Since C is now given directly in terms of known quantities, we can use
equation (4) to solve for one T, in terms of others. We can do this
separately for each j = 1 to I, and thereby reduce the number of un-
knowns and equations to N-I.

Once we have the values of T, (and hence of {,), we may easily
evaluate e,, the average delay for requests serviced during visit n.
(Each delay is reckoned from occurrence of request to when its proc-
essing starts.) By elementary reasoning, we see that

wr, —t), ‘‘come-right-in,” ©)
3T, + (), ‘‘please-wait.”

€n

I

€n

Of course T./r;, requests are serviced in visit #. Thus the average
delay per request of type j is

T,
"
d' — nin V(i) 1§ . (7)
’ r,
ninv(i) T

Using equations (6), (2), and (4), we get

d; = 1— M >, T2, ‘“come-right-in,”
20 nin V(i)
(8)
d; = 1+ M\ >, T:, “please-wait.” {
20 nin V(i)
Now let
F, = T,/C = fraction of a eycle used by T, ,
80 that
F,=1, all 7. ()]
nin V(i)
Then

11 —\)C Y, F:, “come-right-in,”
d,’ — nin V(i) (10)
same, but with 1 + A; for 1 — A;, “please-wait.”

Using equation (5) and the definition of P, we now easily find a
formula for the penalty P, which is the key quantity we use to evaluate
work-scheduling algorithms:



QUEUING STUDY 2971

NH [ . 1
O_U-—_Blz%(l_'\i) E F:J,

P — & i i nin V(i) (11)
same, but with 1 4+ X, for 1 — X\;,

“come-right-in,”

1 — A is unaffected “please-wait.”

(However, note that the values of the F, may differ for the two policies.)
We note that the work-scheduling algorithm influences equation (11)
in only two ways: through N, and through the fractions F,. From
this formula we can evaluate and compare different work-scheduling
algorithms. Also we can compare “come-right-in”’ with ‘“please-wait.”

V. SOME EXAMPLES

If there are I = 3 different hoppers, the simplest possible eycle is
(1, 2, 3), for which N = 3. In this case we see trivially that F, = F, =
Fy = 1, for either “come-right-in "or “please-wait.” Thus equation
(10) for eyecle (1, 2, 3) is:

[ 3H  Iw, ) o
Jm 12 (1 =), “come-right-in,

ksame, but with 1 4+ X, for 1 — A,

P=

1 — A is unaffected “please-wait.”

Given the three input parameters s;, r,, and w, for each hopper,
this can be evaluated numerically.

Now suppose we use the cyele (1, 2, 1, 3), for which N = 4, with
the ‘“‘come-right-in” policy. Then equations (3) for eycle (1, 2, 1, 3)
become the following four equations:

T, = \T, + NT, + 2H,
Ty = M(T, + T3) + NTs + NTs + 4H,
Ty = \Ts + NT, + 2H,

Ty = MT, + T5) + \Ts + T, + 4H.

I

However, taking € as known, and using equation (4) for cyele (1, 2, 1, 3)
namely,

T1+T3=C,, T2=C: TA:CJ

we eliminate the unknowns T, T, and 7, , leaving one equation in



2972 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1969

one unknown, 7', :
T, = MT) + 2C + 2H.
We find

T, = [2H + AC.

1
1— N
Dividing by C, and using C = 4H/(1 — A) from equation (5), we see

%(I_A)‘F)\s 11_}\14‘)3_)\2
1—N 2 1—N

1 A2
- [1+1_A1]

As F, = 1 — F,, we find
2 2 __ l[ (Aa - )\2)2]
F+r=51+{{7=) |

Fi=1  Fi=1

Thus equation (11) for eycle (1, 2, 1, 3) with the ‘‘come-right-in”
policy is

P=§z%—){%(1 - 7\1)%[1+(%3‘—;>:_2)2]

W Wy o )
+ ?'_z. (1 - )\2) + 75 (1 ?\a)}

Il

F, =

and also

Through special circumstances which would not hold in general, the
values for F, using this cycle are all the same for “please-wait’” as
for “come-right-in,” so P for “please-wait” is the same as the above
but with 1 + \; substituted for 1 + A; in three places. Given the
parameters s;, r;, and w; for each hopper, this can be evaluated

numerically.

VI. CONCLUSIONS

If we compare cycles of the same length and with the same number
of visits to each hopper, then equation (11) yields the following con-
clusion: The visits to a given hopper should be spaced as evenly around
the cycle as possible.



QUEUING STUDY 2973

By this we mean that the values of T, (and hence of F,) pertaining
to this hopper should be as equal as possible. This follows because
the minimum of

> F? subjectto ), F,=1
nin V(i) nin V(i)
oceurs when the F, with n in V(2) are all equal. Furthermore, equation
(11) can be used to estimate how serious any given deviation from
equality is.

Suppose a cycle has N, visits to hopper 7, so that N = ZN;, and
suppose that the N, visits are spaced approximately evenly around
the cycle for every 7. Then for each visit n to hopper 7,

L
F"NN‘-.

Thus

I{N w; 1 . LT
P~ TR, .Z - (1 =) N “ecome-right-in.

Either using a Lagrange multiplier to handle the constraint that
ZN; = N, or by direct argument (see the appendix), it is easy to deduce
that the values of N; which minimize this satisfy

1/2
N, proportional to [% (1 — ?\.-)]

)

IR

S0

This yields our most important conclusion: The above approximale
formula gives the optimum relative frequency of visits to each hopper in
the cycle.

By obtaining values for 7., s;, and less easily for w,, it is possible
to compare different work-scheduling algorithms with each other and
with the ‘“ideal” schedule with perfect spacing implied above. Notice
that the actual value of H does not enter into this comparison. (If we
had used unequal values for the H,, only the ratios H./H; would
enter into the comparison, not the actual values of the H,; themselves.)



2974 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1969

It would probably be worthwhile to analyze the actual work-sched-
uling algorithm used for ESS No. 1 in these terms. It would be in-
teresting to compare this actual algorithm with the “ideal” algorithm.

Our model, with its highly simplified assumptions, cannot possibly
provide the last word on work-scheduling evaluations, even with regard
to delay times. However, this kind of approach is probably desirable.
If greater realism is desired, the most important aspects are statistical
variability and interdependence of hoppers.

APPENDIX

Direct Argument to Replace the LaGrange Multiplier Argument

Henry Pollak has pointed out a simple direct argument which shows
that Z(a;/N;) is minimized, subject to the constraint =N, = N, if
N, is proportional to (a;)}. Using a; = w,(1 — \,)/r:, this yields the
formula given above for N, .

First, let ¢ = N/[Z(a;)}]. Now, we multiply the quantity to be min-
imized by ¢°, and express it:

2 1/2 2
z Qﬁ% = E(q(%—) _ (N‘_)I/Z) + 2(12({1,-)1/2 — 3N, .

The middle term is constant by definition, and the last term is con-
stant by constraint. The first term eannot be less than 0. The first
term is 0 if

% _ N, or N, = qa)"”.
Since these values satisfy the constraint, we obtain the desired result.

REFERENCES

1. Keister, W., Ketchledge, R. W., and Vaughn, H. E.,, “No. 1 ESS: System
Ogganization and Objectives,”” B.S.T.J.,, 43, No. 5 (September 1964), pp.
1831-1844.

2. Harr, J. A., Hoover, Mrs. E. 8., and Smith, R. B., “Organization of the No. 1
ESS Stored Program,” B.S.T.J., 43, No. 5 (September 1964), pp. 1923-1959.

3. Landgraff, R. W., unpublished work.



