Power Spectrum of Hard-Limited Gaussian
Processes

By HARRY M. HALL
(Manuseript received September 10, 1968)

The power spectral density at the oulpul of an ideal hard limiter (one-
bit quantizer) is examined when the input is driven by a narrowband gaus-
sian signal plus an additive gaussian noise that consists of a broadband back-
ground component plus narrowband interference. Assuming that the input
signal-to-noise power ratio is small by virtue of the large bandwidth of the
observed broadband noise, calculations are made of the average output signal
power, the average oulput noise power in the signal band, and the average
power of the strongest intermodulation product. The resulls support the
intuitive conclusion that spectrum analyzer performance is degraded by
the presence of the limiter and thal this degradation is more pronounced
when a strong narrowband inferfering signal is present. They also indicate
that the degradation can be minimized by making the bandwidth observed
by the limiter sufficiently wide that the broadband noise power dominates
both the signal and interference powers. In particular, for a typical example,
the signal-to-noise power ratio measured in the signal band s degraded by
less than about 1.8 dB by the presence of the limiter and the ratio of oulpul
signal power to power of the strongest intermodulation product is greater
than about 14.5 dB as long as the broadband noise power exceeds the inter-
fering-signal power.

I. INTRODUCTION

In this paper we examine the power spectral density at the output of
an ideal hard limiter when the input is driven by a collection of inde-
pendent gaussian processes. This work is motivated by the fact that in
spectrum analysis, it is often convenient from the point of view of signal
processing to precede the analyzer with a hard limiter. In order to deter-
mine the effect of the limiter on analyzer performance, it is of interest
to compare the power spectral density at the limiter output with that
at the limiter input. With this goal in mind, the ideal limiter to be ana-
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lyzed is shown in Fig. 1. Tt is assumed that the limiter input is driven
by the signal

x(t) x y(t)

Fig. 1 — Ideal hard limiter.

z(t) = s(t) + n(1), (1

where s(t) is a sample function of the gaussian “‘signal’”’ process S(f) and
n(t) is a sample function of the gaussian ‘“‘noise” process N (). More
precisely, it is assumed that S(f) and N (f) are statistically independent,
zero-mean, stationary, real, gaussian processes having continuous co-
variance functions Rs(r) and Ry(7) respectively. Further, motivated by
the spectrum analysis application, the covariance functions Rs(r) and
Ry(r) are specified: the signal process S(t) is assumed to be a narrow-
band process with covariance function

Rs(r) = Ro(r) cos wer (2)

where S,(f), the Fourier transform of E,(r), occupies a narrow band
centered at zero frequency. The noise process N (f) is assumed to consist
of a broadband background component plus narrowband interference
that is statistically independent of the background noise. The covariance
function of the broadband background noise is assumed to be a continous
covariance function that is given in the form'

Ri(r) = Bi(ry ;1)

. Co p(J—TJ') oS @, T, (3)
T ]
where p(z) satisfies the conditions
p(0) =1, 4)
[ 6@ 1dz < . (3)

This specification of R,(r) has the properties:

t For example, consider the exponential covariance

Rm(r) = ?—loexp (-—ﬂ %) COS w)T.
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() The total average broadband noise power E,(0) increases linearly
with 77! where 7, > 0 is defined to be the broadband noise “‘correlation
time.”

(%) The average broadband noise power observed in any fixed band
of finite extent approaches a finite constant as the correlation time 7,
approaches zero.

Finally, the covariance function of the narrowband interference is
assumed to be given by R.(r) cos w.r where Sy(f), the Fourier transform
of R,(r), occupies a narrow band centered at zero frequency. Therefore,
the covariance function of the noise process N (¢) is given by

Ry(r) = R.(r) 4+ Ra(7) cos war (6)

where R, (r) satisfies equation (3).

Tt was stated that the covariance functions just specified are suggested
by the spectrum analysis application, and this is true in the following
sense: it is often the case that one desires to analyze narrowband signals
that lie at @ priori unknown locations within a relatively wide band, and
in fact it may be that the total bandwidth to be searched is a significant
fraction of the band center frequency. Given such a spectrum analysis
problem, it is proposed that the situation of greatest interest is that in
which the average noise power in the narrow band actually occupied by
the signal may or may not be comparable to the average signal power,
but in which the total average noise power is much larger than the aver-
age signal power by virtue of the large noise bandwidth. Having such a
situation in mind, it is seen that the model for the broadband covariance
function R,(r) specified in equation (3) does in fact exhibit the desired
behavior when the correlation time 7, is appropriately small.

However, in addition to this “weak-signal” situation in which the
narrowband signal power Rs(0) is much smaller than the broadband
noise power R,(0), it is also of interest to allow the presence of ‘“‘strong”
narrowband signals whose average power is comparable to that of the
broadband background noise. The presence of such strong narrowband
signals is expected to be obvious at the limiter output, and in fact these
signals are of interest since we expect that their presence will lead to the
generation of intermodulation products that may interfere with the
analysis of any weak signals that are present. In order to examine this
situation, a narrowband interference has been included, and it is con-
venient to consider this interfering signal to be part of the additive
noise N (1).

Before proceeding with the analysis of the problem stated above, it
is noted that the ideal limiter described in Fig. 1 has received a great
deal of attention in the literature. The noiseless case has been considered
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and output amplitudes examined when the input consists of a collection
of sinusoids.'® The noise-alone case has been examined and results ob-
tained for the autocorrelation function and power spectral density at the
limiter output both for the case of broadband gaussian noise alone
[R,(r)] and for the case of narrowband gaussian noise alone [F,(7)
08 wyr].>** The ratio of output signal-to-noise ratio (SNR) to input SNR
has been evaluated for the case in which the input consists of one or two
sinusoids plus narrowband gaussian noise.””” These same workers have
examined the strengths of intermodulation products, and the analysis
of output signal and intermodulation product power has been extended
to the case of an arbitrary number of sinusoids plus gaussian noise.®’
In addition, analysis of the limiter has played an important part in
studies of the performance of angle-modulation systems, and these
analyses have generally assumed that the limiter is driven by a narrow-
band process.

On the other hand, it does not appear that much has been reported
for the situation in which the limiter is driven by a narrowband signal
plus noise that includes a broadband component. Known results that
have application to this situation include those of Manasse, and others,
which apply when the limiter is driven by a “weak’ narrowband signal
plus narrowband gaussian noise whose bandwidth is much larger than
that of the signal,'® plus approximate results that apply when the input
includes a narrowband component that is “much stronger” than the sum
of the other inputs present.'* We address this problem by examining the
the output power spectral density when the limiter input is given by
equation (1); namely, the input is made up of a narrowband gaussian
signal plus a gaussian noise consisting of a broadband background com-
ponent plus narrowband interference. In particular, this examination
is carried out by calculating the output power spectral density in Sec-
tion II, as the broadband noise correlation time 7, approaches zero.
This calculated result is then used in Section IIT to evaluate three
performance measures. An example of a system to which these per-
formance measures apply is a spectrum analyzer preceded by the ideal
limiter.

(7) The degradation in the ratio (SNR) of average signal power to
average noise power in the spectral band occupied by the signal is
calculated. This degradation is important because the signal-to-noise
power ratio measured in the signal band is often one of the important
parameters in determining system performance.

(#1) The ratio (SIR) of average output signal power to average image
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power is caleulated where, if the narrowband signal is centered at a
frequency f, and the narrowband interference is centered at a frequency
fa , then the signal image is defined to be that intermodulation product
centered at the frequency | 2f, — f, |. This is the strongest of the inter-
modulation products of the signal with the additive noise, and thus it is
reasonable to use the SIR as an indication of whether or not these inter-
modulation products will have a significant effect on system perform-
ance.

(#7i) The ratio S,NR, of average output interference power to aver-
age output broadband noise power in the spectral band occupied by the
interference is calculated. As discussed previously, the distinction in
this work between signal and interference is made based upon average
power at the limiter input. That is, it has been assumed that the presence
of any narrowband signal having an average power comparable to that
of the broadband background noise will be obvious at the limiter out-
put, and that such an input may in fact interfere with the analysis of
other narrowband inputs. S,NR, is calculated to check the assumption
that in fact the presence and location of such an interfering signal will
be obvious upon analyzing the power spectrum at the limiter output.

Since the performance measures listed above are calculated as the
broadband noise correlation time r, approaches zero, it follows that they
will all apply in practice to situations in which the broadband component
of the input noise has been shaped by a low-pass filter whose bandwidth
is large compared with the center frequencies of the narrowband inputs
that may be present. An example of a situation in which such a model is
viable occurs in the spectrum analysis of underwater acoustical signals.

On the other hand, the SNR and S,NR, results obtained will not apply
directly to communication situations in which the bandwidth of the
additive broadband noise is much larger than that of the narrowband
signal but much smaller than the system center frequency. This situa-
tion is discussed in Section IV, and it is pointed out there that the results
can be modified to encompass this situation by letting the center fre-
quencies of both the narrowband signal and additive noise increase
linearly with +;".

II. THE OUTPUT POWER SPECTRAL DENSITY

The output power spectral density can be caleulated by using the
expression for the output autocorrelation function Ry(r) given by
Davenport and Root (Ref. 12, p. 308)
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_ 3y 2"k + m)/2] K\ pm
RY(T) = ,(Z_:n ,;‘JTQIC! m! [Rs(o) + RN(O)]A--o-m RE(T)RN(T), k + m odd

=0, otherwise, )

where I'(z) denotes the gamma function; in conjunction with the ex-
pression for Ry(r) given by Van Vleck (Ref. 3, p. 23)

Ry(7) = %amsin [%SH%] (8)

Defining « to be the fraction of the average noise power due to the
broadband background noise,

L R0 _ RO )
Ry(0)  E.\(0) + R.(0)

it is seen that the ratio 55 of average signal power to average noise power
at the limiter input is given by

2 Bs(0) _  Rs(0)
TR0 T

Now, it was pointed out in Section I that we are interested in the situa-
tion in which the signal-to-noise power ratio ns is small, and in fact
the case of interest is that in which 5 is small because =, is small, that is,
ns is small due to the large bandwidth of the observed broadband back-
ground noise. Motivated by this, it is shown in Appendix A, using
the expressions for Ry(r) given by equations (7) and (8), that when
a > 0 the output power spectral density Sy(f) is given by

(23

(10)

Sy(f) = % {fm aresin py(7) cos wr dr
+a B0 [T hpu() = (1 = @pule) coswur)

1 =01 - a)’ps(r) cos’ w,‘r]_l coS wT d'r} + o(7y) (11)
as r; — 0, uniformly in f, where

A R T(T) _ 9
p')‘(T) - R,}.(O) 1 Y = S: Nv 0| lv =y (12)

are assumed to be absolutely integrable.
Equation (11) exhibits the components that dominate the output
power spectral density when the broadband noise correlation time 7,
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approaches zero. In particular, inspection of equation (11) shows that
these dominant contributions include a component that is just the out-
put power spectral density observed when the noise N (f) alone is present
at the limiter input, a component that has the spectral characteristics
of the signal S(t), and a component that is due to interaction of the
signal with the interference component [p.(r) cos w,r] of the noise. In
order to quantitatively analyze these components where, in particular,
we desire to use Sy(f) to calculate the performance measures discussed
in Section I it is convenient to make use of the fact that both the signal
S(t) and the interference component of the noise have been assumed to
be narrowband processes, plus the fact that the broadband component
of the noise becomes white across any fixed band of finite extent when
1 — 0. These properties can be exploited by expanding both [1 —
(1 — @)*(r) cos wir]™* and arcsin py(r) followed by an appropriate
collection of terms. This is earried out in Appendix B and the result is

Si) = S0.0) + S0.) + o807 3o DA 0 — o

-fw Jim 43, m 4 3 2m 4+ 1; (1 — )®pi(n)]
0

<ps(D)pa"(7) cos 2mw,T cos wr dr

_8_ Rs(0) S Tim + HT(m + 3) 2m+1
=2 T‘",Zo T(2m + 2) 1 —a)

TR b 2w 20— @)%)]

0
-pa" (1) cos (2m + Dw.r cos wr dr + o(71) (13)
as 7, — 0, uniformly in f, where .F,(a, b; ¢; =) is Gauss’s hypergeometric
function (Ref. 13, p. 556), ¢, is the Neumann factor ¢, = 1, ¢, =
2(m = 1, 2, ---), and where Sy,(f) and Sy,(f) are given:
Sr) = 2. [ laresin lap@ + 1~ af
— arcsin (1 — )} dz + o(7) (14)
ast, — 0, for all f < fue < o for arbitrary fixed fn..' and
t Recall from equation (3) that

pi(r) = p(l—g) CO8 w7

where p(z) satisfies equations (4) and (5).
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S =521 (”“”)(1 0!

f Film + %, m 4 35 2m + 25 (1 — )’ pi(n)]
pa"(7) cos 2m + 1wt cos wr dr. (15)

The expression given by equations (13), (14), and (15) exhibits in a
useful fashion the components that dominate the output power spectral
density when the broadband noise correlation time approaches zero. To
see this more clearly, it is econvenient to assume that the narrowband
interference in fact has a line spectrum, that is,

pao(7) = 1. (16)

This assumption is convenient since it simplifies the calculations with-
out obscuring the most important effects that result from the presence
of narrowband interference. This assumption is applied in Appendix B
to equations (13), (14), and (15), and it is shown that, when ps(r) = 1
we can write

lim $:) = S00) + S0 + o m 3w peomd B (1 —

-2F1{m+%,m+f;2m+ L; (1 — a)’]
(Ss(f — 2mfs) + Ss(f + 2mf.)] (17)

where Sy, (f) is given by equation (14),

Sy(f) = m[% %g’%‘ﬁ% 1 — o)™
Fim + %, m + ;2m + 2; (1 — a)’]
olf — @m + Df] + olf + (2m + Dfl} (18)

where §(z) denotes the Dirac-delta function, and where
Ss(f) = 2[ Rs(7) cos wr dr (19)
(1]

is the power spectral density of the signal S(t). Equations (17), (14),
and (18) give the representation we desire, and they demonstrate that
there are three contributions that dominate the output power spectral
density when the broadband noise correlation time r, approaches zero.

() There is a component Sy, (f) that becomes white across any fre-
quency band of finite extent as r, — 0. When « = 1, this component is
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just the output power spectral density that would be observed if the
broadband component of the noise was present alone at the limiter
input. Moreover it is necessary to specify the broadband covariance
function R,(r) in order to calculate Sy, (f). For example, if R,(r) is the
“triangular’”’ covariance funetion

R:A(T)é&(l—m), [rl=n

T1
20, IE I (20)
then equation (14) gives the result

Svia(f) = é’:: l::?_ — aresin (1 — @) — (2a — of)"] + o(my) (21)

ast, — 0, forall f £ fu.. < = forarbitrary fixed fua -

(#) There is a component Sy, (f) consisting of line spectra located at
|f| = kf.,k =1,3, -+ . When a = 0, this component is just the power
spectral density that would be observed if the narrowband interference
was present alone at the limiter input.

(#it) There is a component consisting of a term that has the spectral
characteristics of the signal plus terms that are intermodulation products
of the signal with the narrowband interference component of the noise.

2.1 Noise Consisting of Broadband Component Alone

It is clear from inspection of equations (17), (14), and (18) that
the output power spectral density is greatly simplified when the additive
noise consists only of the broadband component (@ = 1), and in fact
it is seen that in this ease equation (13) reduces to the simple result

Sy(f) = Sv.(f) + 2 o - S5() + o(n) (22)

as 7, — 0, uniformly in f. Moreover, the calculation of Sy, (f) is simpli-
fied when a = 1. For example, if R,(7) is given by the triangular function
in equation (20), then it is seen that, when o = 1,

Svia(f) = % ./,, aresin (1 — T—) cos wr dr. (23)

T

This integral can be evaluated using Erdelyi [Ref. 14, item 4.8(1)],
and we find

Svia(f) = 27, [Jn(‘-"fl) sine (2]‘7'1) - {%’ Ho(wﬁ) Cos w“'l] (24)
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where J,(z) denotes the Bessel function of the first kind of order » and
H,(z) is a Struve function of order » (Ref. 14, p. 372)." Note that equa-
tion (24) holds for all f and for all r, . Sy,4(f) is plotted in Fig. 2 along
with

Sa(f) = G, sine’ (fry), (25)

the power spectral density at the limiter input corresponding to B4 (7).
The plotted data are normalized so that both processes have the same
average power. Thus the data plotted in Fig. 2 show explicitly how the
ideal limiter redistributes the average broadband noise power across the
band and demonstrate in particular the power-spreading effect that
takes place due to the limiter nonlinearity.

III. EVALUATION OF PERFORMANCE MEASURES

It is now desired to use the output power spectral density results
derived above to evaluate the performance measures discussed in Sec-
tion I. These calculations use directly the results derived above except
that the assumption that the narrowband interference has a line spec-
trum can be relaxed. That is, the results derived below continue to be
useful as long as the interference is a narrowband gaussian process with
the covariance funetion R,(r) cos w,r specified in Section I.

3.1 Degradation in Signal-to-Noise Power Ratio

The degradation in signal-to-noise power ratio in the spectral band
occupied by the signal is obtained by calculating the ratio SNR,/SNR,
of output signal-to-noise power ratio to input signal-to-noise power
ratio, where these SNR’s are calculated in the spectral band B occupied
by the signal. Moreover, we assume that:

(?) The band B contains significant contributions from only the
narrowband signal and the broadband component of the noise, that is,
the narrowband interference and intermodulation products of the
narrowband signal with the narrowband interference have negligible
power in the band B.

(1) R,(7) is the triangular function in equation (20) since it is neces-
sary to specify the covariance function of the broadband component of
the noise.

Making these assumptions, the ratio SNR,/SNR; measured in the

sin =z

f Note that sine z £
-
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Fig. 2 — Normalized power spectral density.
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R14(0)

Sylg(f) = R ]’,A(O) S)rla(f); S;A(f) = Co sine? (f‘r] )

band B of finite extent can be calculated using Sy(f) given by equation
(17), and it is seen that

lim SNRy _ ]B Sv() df j; Si(f) df
oo SN Ry _’
f Sy.(f) dj[? Sy(f) df

b
where Sy, (f) is given by equation (21), Ss(f) is the power spectral
density of the narrowband signal S(¢), and Sy (f) and S,(f) are given:
Sys(f) is defined to be the contribution to Sy(f) that has the spectral
characteristics of the signal S(#) and thus is determined by setting
m = 0 in the sum in equation (17). This gives

(26)

Sral) = 25 P 3 15 (1 = @180 (27)

which (using p. 387 of Ref. 14) can be written as
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Sral) = 5 & KU = @)nSs(h) (29)

where K (k) denotes the complete elliptic integral of the first kind. S,(f)
is defined to be the power spectral density at the limiter input due to
the broadband component of the noise and thus, using equation (25),
is given by

8,(f) = Co + O(r7) (29)

as . — 0, for all f £ foue < o for arbitrary fixed fu. . Thus, making
the appropriate substitutions into equation (26) yields

lim §§§: - oK1 — o) )
ne w['g — aresin (1 — @) — (2a — aQ)*]

This relative signal-to-noise power ratio result is plotted in Fig. 3 and
demonstrates the expected result that the degradation in the signal
band increases when there is a strong narrowband interfering signal
present at the limiter input. However, it is important to note that the

0 - 0

SNR, / SNRy(dB)
A o "
T T T
I I
] ]
A ™
NOISE POWER RATIO SaNRg /S;NR7 (dB)

]
& w
RELATIVE INTERFERENCE — TO— BROADBAND

-5

RELATIVE SIGNAL-TO-NOISE POWER RATIO

-6 | -6
0.005 0.01 0.02 0.05 o1 0.2 05 1.0

Fig. 3 — Relative signal-to-noise power ratios.

4 RO
Ri(0) + Ro(0)
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narrowband interference must be very strong to cause a significant in-
crease in the degradation. In particular, it is seen that the degradation
is less than about 1.3 dB as long as « is greater than 0.5, that is, as long
as the broadband noise power is greater than the narrowband inter-
ference power.

3.2 Signal-to-I'mage Power Ratio

The signal-to-image power ratio (SIR) is obtained by caleulating the
ratio of average output signal power to average image power where the
image has been defined to be that narrowband component of Sy(f)
centered at the frequency | 2f, — fo |- The SIR can be calculated using
Sy(f) given by equation (17), but it should be noted that, when =, — 0,
the SIR does not depend on the particular choice of R,(7) within the
class specified by equation (3). Using equation (17), it is seen that

JIEOY
lim SIR = ———— (31)

o 3 [ s a

P -

where Sy, (f) is given by equation (28) and Sy, (f) is found by setting
m = 1 in the sum in equation (17). That is,

Sl = 3= B 83,0 — @,
[Ss(f — 2f) + Ss(f + 2f2)], (32)

which, using Abramowitz and Stegun [Ref. 13, item 15.2.1] together
with Price [Ref. 15, p. 10] and Dwight [Ref. 16, items 788.1, 788.2],
can be written as

Sull) = 3 T [k T ey

'[Ss(f - zfz) + Ss(f + zfz)] (33)

where F(k) denotes the complete elliptic integral of the second kind.
Making the appropriate substitutions, there results

(1 — a&)’K(l — a) .
(14 2a — o )K(l —a) — 2B — a)

lim SIR = (34)

T1—0
This SIR result is plotted in Fig. 4 and demonstrates that the signal-
to-image power ratio decreases when there is a strong narrowband
interfering signal present at the limiter input. In fact, equation (34)
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Fig. 4 — Signal-to-image power ratio.

R ()
* 7 R0) + Ru(0)

has the limiting behavior
lim lim SIR = 1, (35)

a—0 710
which agrees with the approximate result obtained when one assumes
that the input to the limiter ineludes a narrowband component that is
much stronger than the sum of the other input components present.''
However, the most interesting result demonstrated by Fig. 4 is that
the narrowband interference must be very strong for the image power
to be comparable to the signal power at the limiter output. In particular,
it is seen that the SIR is greater than about 14.5 dB as long as the broad-
band noise power is greater than the narrowband interference power.

3.3 Output Interference-to-Broadband Noise Power Ratio

The output interference-to-broadband noise power ratio S,NR, is
obtained by calculating the ratio of average output interference power
to average output broadband noise power, measured in the spectral
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band B.' occupied by the interference. In order to perform this calcu-
lation it is necessary to specify the broadband covariance function, and
is is assumed that RE,(r) is the triangular function in equation (20).
Having specified B,(7) in this manner, S;NR, can be calculated using
Sy(f) given by equation (17), and it is seen that

[ sv0 df
lim 8,NR, = “»——

" [ svar

B

(36)

where Sy,(f) is given by equation (21) and Sy,(f) is given by equation
(18). Proceeding with these substitutions and making the assumption
that the components of Sy,(f) concentrated at (odd) harmonics of the
fundamental frequency f. contribute negligible power in the band B, ,
there results

a(l — a).F (3, 32, (1 — )]

lim S,NR, = . (38D
e 21-1[% — aresin (1 — @) — (2a — ag)*](f d)‘)
Z Ba
which, making use of Price [Ref. 15, p. 10], can be written as
—a) — 20 — & —
lim S,NR, — 2a[E(l — o) (2a — a)K( — )] (39)
e (1l — a) [g — aresin (1 — @) — (20 — o)t | Wr,
where
woa f df. (39)
B2

The normalized power ratio lim,,_, Wr;(8,NR,) is plotted in Iig. 5, and
the plotted data are seen to support the intuitive assumption made in
Section I that the presence and location of a narrowband input having
an average power comparable to that of the broadband background
noise will be obvious at the limiter output.

A result of perhaps more interest than S,NR, is the ratio S;NR,/
S.NR; of output interference-to-broadband noise power ratio to input
interference-to-broadband noise power ratio. This calculation can be
carried out in the same way that SNR,/SNR; was calculated earlier,
and we find

t This caleulation is not of interest if the interference truly has a line spectrum
(that we can resolve). However, it is of interest here since these results are useful as
long as the interference is a narrowband gaussian process.



3046 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1969

15

NOISE POWER RATIO WTy (SaNRg) (dB)
I
(4]

QUTPUT INTERFERENCE - TO - BROADBAND

-10 | | l | | |
0.005 0.01 Q.02 0.05 0.1 0.2 0.5 1.0
[+
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sk, | s0a [ soa
I SNR, T ’
[ s.ouf soaq

where 8,, (f) is given by equation (21}, S,, (f) by equation (18), 8, (f)
by equation (29), and

(40)

L&mﬂzm@. (a1)

Making these substitutions and using the definition of « in equation (9)
yields

lim S:NRo _ 20 [E(1 — a) — Qe — & )K(1 — a)] . (42)
im0 SaNRy o T . 2
w(l — a) [ﬁ —aresin (1 —a) — (20 — « )‘:|

This relative (interfering) signal-to-noise power ratio result is plotted
in Fig. 3 and is particularly interesting since the plotted data can be
viewed as a plot of S,NR,/S,NR; versus the input interfering signal-
to-total broadband noise power ratio S.N;R; . That is, it is seen that
the ratio of average input interfering-signal power to total average input
broadband noise power is given by
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RQ(O) _ 1 — ﬂf.
R,(0) «a

With this interpretation in mind, the plotted data show that there is a
degradation in signal-to-noise power ratio in the signal band at all levels
of input signal-to-noise power ratio as r, — 0, and that this degradation
increases monotonically with increasing input signal-to-total noise power
ratio. We note the contrast of this result to that found by Davenport
for the case in which the limiter is driven by an unmodulated sinusoid
plus narrowband Gaussian noise where he shows that there is an en-
hancement in signal-to-noise ratio (measured in the narrow noise band)
at high input signal-to-noise ratios.® It is also noted that the data plotted
in Fig. 5 together with that in Fig. 3 show, that although the degradation
increases monotonically with S,N:R, , it does not increase as rapidly as
W, (S;NR;) itself is increasing.

S:N;R; £

(43)

IV. CONCLUSIONS

This paper has concentrated on analyzing the power spectral density
at the output of an ideal limiter when the input is driven by a narrow-
band gaussian signal plus an additive gaussian noise that consists of a
broadband background component plus a narrowband interference.
Conclusions that can be drawn from this work depend upon the system
in which the limiter is used, and one is led to the following conclusions
when this system consists of a spectrum analyzer preceded by the ideal
limiter: Spectrum analyzer performance will be degraded by the presence
of the limiter, and this degradation can be substantial when there is a
strong narrowband interfering signal present at the limiter input. This
intuitive conclusion follows from the fact that the signal-to-noise power
ratio SNR measured in the signal band may be significantly degraded by
the presence of the limiter when there is a strong narrowband interfering
signal present at the limiter input, plus the fact that intermodulation
products of the narrowband signal with the narrowband interference
may be troublesome as indicated by a decreased signal-to-image power
ratio SIR.

However, it is important to note that the results also indicate that the
degradation in performance can be minimized by making the band-
width observed by the limiter sufficiently wide that the average broad-
band noise power dominates both the signal and interference powers.
This conclusion follows from the fact that such a procedure minimizes
both the degradation in SNR and the decrease in STR mentioned above
since it ultimately requires that « approach unity. In particular, the
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data plotted in Fig. 3 show that the signal-to-noise power ratio SNR is
degraded by less than about 1.3 dB as long as the total average broad-
band noise power is greater than the average narrowband interference
power. In addition, the data plotted in Fig. 4 show that the signal-to-
image power ratio SIR is greater than about 14.5 dB as long as the
total average broadband noise power is greater than the average narrow-
band interference power. This SIR result is interesting since it is indic-
ative of the fact that intermodulation products do not grow as rapidly
with inereasing interfering-signal power in the situation analyzed here
as they do when the ideal limiter is driven by two sinusoids plus narrow-
band Gaussian noise. This conclusion follows from comparison of Tig.
4 with the results of Jones as presented in his Fig. 4." The difference
in behavior appears to be due primarily to the fact that the strong
narrowband signal in this analysis is a gaussian process and not a
sinusoid.

It is of course true that the eonclusions reached above based on the
data plotted in Fig. 3 are conclusions based on the assumption that
the broadband covariance function R,(r) is the triangular function
specified in equation (20). This example was chosen as a typical ex-
ample that is computationally convenient for studying the degradation
in signal-to-noise power ratio SNR as a funection of interfering-signal
strength. It is also of interest to study the dependence of the degrada-
tion in SNR on the choice of B,(r), and it is noted that this can be ac-
complished by using Sy, (f) given by equation (14) instead of Syia(f)
given by equation (21) in the ealculation of SNR,/SNR; .

Finally, it is emphasized that the results leading to the above con-
clusions are asymptotic results that apply when the broadband noise
correlation time 7, approaches zero. As discussed in Section I, our
interest in small 7, stems from a desire to model the situation in which
the average noise power in the spectral band occupied by the narrow-
band signal may be comparable to the average signal power but in
which the total average noise power is much larger than the average
signal power by virtue of the large noise bandwidth observed by the
limiter. Thus we have a practical interest in the situation of small 7, ,
although it is of course true that the situation of engineering importance
is that in which 7, although small is greater than zero; for example,
a < 1 makes physical sense only if 7, > 0. With this in mind, it is of
interest to determine the conditions that must be satisfied for the
results of this work to be useful when 7, > 0, and inspection of the
analysis performed leads to the following conclusions (when the broad-
band noise covariance function R,(r) is written such that the band-
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width of the broadband noise is approximately 7;'): In order for the
power spectral density result given by equation (11) and the signal-
to-image power ratio result plotted in Iig. 4 to remain useful, it is
necessary that certain conditions be satisfied:

(7) The broadband noise correlation time must itself satisfy the
condition 7, << 1.
(77) The input signal-to-noise power ratio
s Bal0) _ RO
"7 Ry(0) Co ™
must satisfy the condition s < 1.
In addition to these conditions, in order for the power spectral density

results given by (13) and (17) and the signal-to-noise power ratio results
plotted in Fig. 3 and 5 to remain useful, it is necessary that the condition

wir K 1, 1=0,1,2, (44)

(10)

be satisfied. This last condition requires that the bandwidth of the broad-
band background noise be much larger than the largest of the center
frequencies wy , w, , and w, . The necessity of this condition was noted in
Section I, and it was pointed out that this condition is not satisfied in
communications situations in which the bandwidth of the broadband
noise is much larger than that of the narrowband signals that may be
present but much smaller than their center frequencies. However, in-
spection of the derivation of equations (13) and (17) shows that, if we set

wy = w; = &/, and wy, = do/T1 + @a, (45)

then we have constructed a model for these “narrowband” communi-
cations situations for which equation (13) and (17) hold except for the
term Sy, (f) which is now given by

Sy.(f) = 1% fw faresin [ap,(r) + (1 — a)p.(r) cos w.r]

— aresin [(1 — «)pa(7) cos w,7]} cos wr dr. (46)

Signal-to-noise power ratio results corresponding to those plotted in
Figs. 3 and 5 can be caleulated (numerically) using equation (17) with
Sy.(f) given by equation (46) after making the simplifications that fol-
low from the definitions of w, , @, , and w, given in equation (45). When
a = 1 and &, is large, the signal-to-noise ratio result corresponding to
Fig. 3 will reduce to the result derived by Manasse, and others."
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APPENDIX A

Calculation of Output Power Spectral Density

Using the characteristic function method discussed by Rice [Ref. 17]
it can be shown [Ref. 12, p. 308] that, if the input to the ideal limiter of
Tig. 1 is given by equation (1), then the autocorrelation function at
the limiter output

Ry(r) & (YOY*(t — 1)) (47)

is given by equation (7). Defining the input signal-to-noise power ratio
ns according to equation (10), it follows that

3 i2 "Ik + m)/2] .

RY(T) = = 11'2]6! m' ns
. PS(T) :lk[ PN(T) ]m
[1+ns 1+ 9s) H*Hm od
= 0, otherwise. (48)

It was pointed out in the text that we are interested in the situation
where 75 is small due to the large bandwidth of the broadband back-
ground noise. Motivated by this, it is noted that, upon summing on
m, equation (48) can be written as

] 2k+1 2k 1
mo - > Lot

k=0(even) T

_F{k+1 k+1_§,[pﬁ(r) ]} px(7) [Ps(’i’) ]L
N T2 2 T el [T s LT+ 0™

Ol 4 [Tl
r(2 #2232 [Tpmed JLi+ns] ™ @9
Noting that ,F,(a, b; ¢; z) is finite for all | 2 | < 1 aslong as ¢ = m
«(m =0, —1, —2, ---)T [Ref. 13, p. 556], it follows that

0 2k
+ Z 2’6!

k=1(odd) T

t Gause’s hypergeometric function is also absolutely convergent at |z | =1 as
long as Re (¢ — a — b) > 0. Thus in fact

14 i 81 = 3
which implies that the series
: 1 1.3
aresinz = o +ﬁmi+mxn + .-

converges_for all |z | S 1.
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2 1 1.3 ( pn(7) )2 pn(7)
Ry(f):;{ZFll:a'é,é’(l‘l‘ﬂs 1+7IS

A1 L1 ov(m) V| _ps(r)
+2PI[2'2’2’(1+7,8):I1+ns’”}
+ Onsps(r)pn(r)] + Olnsps(r)] (50)

as 75 — 0, for all 7 such that | py(r) | < 1. Moreover, by expressing the
hypergeometric function in the first term of equation (50) in its series
form and then appropriately collecting terms, it can be shown that

PN(T) 1 l § . PN(T) *
1+ns“F‘[§'2’2'(1+ns)]
= aresin py(r) — px(7)[l — P.vzv(’f)]_iﬂ.s + Olnspn(7)] (51)

as ng — 0, for all = such that | py(r) | < 1. Also, it is immediately recog-
nized that, in the second term in equation (50),

ps(7) 1 1.1 ( pu(®) }
1 = ﬂngl[2’2,2’(l+ﬂ,g)
= ps(M1 — pE ™ + Olnsps(m]  (52)

as ns — 0, for all 7 such that | py(7) | < 1. Therefore, recalling that the
noise N () contains a broadband component so that in fact

| en(r) | <1 (53)

for all | = | > 0,' it is concluded upon substitution of equations (51)
and (52) into equation (50) that

Ry(r) = 2 faresin py() + [ps(r) — pn(IL — A4()] ™ ns)

+ Olnsps(n)] + Olnson(r)]  (54)

as g — 0, forall |+ | > 0.
In order to calculate the power spectral density Sy(f) at the limiter
output it is necessary to evaluate

Sy(f) 22 ‘/;‘“ Ry(7) coswr dr, w2 2xf. (55)

t Note that this follows from the integrability condition placed on the broad-
band covariance function Ri(r) by (5). This integrability condition implies that
| p(x) | < p(0) for all | z | > 0 and requires that the power spectrum of the broad-
band noise contain no line components.
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As it stands, Ry(r) given by equation (54) is not enough because of the
difficulty as = — 0. It is not clear from the foregoing analysis whether
or not the representation given by equation (54) is valid as » — 0
when 75 — 0, and in fact this representation may be valid for all ps(r)
and py(r) of interest [compare Ref. 18].* In any event, the difficulties
involved in evaluating the remainder terms in order to examine this
possibility can be circumvented by using the well-known result that
Ry () is also given by equation (8).” Thus,

Ry(r) = farcsin p——-“-———”(ri -_'_'_ :ZPS(T) (56)

which implies that
Ry(r) = ?ra,rcsin ow(r) + o(1) 7

as ns — 0, uniformly in 7. In fact, making use of the expressions for
Ry(r) given by equations (54) and (57) in conjunction with the expres-
sion for 75 given by equation (10) and the integrability condition in
equation (5), it is seen that, if R,(7) can be written in the form speci-
fied by equation (3) and the parameters a and Rs(0)/C, satisfy the
conditions a > 0, R5(0)/C, < =, then Ry(r) can be expressed:"

Ry() = Zaresin pu() + o), 0= |7|s

Il

%{arcsin on(T) + aRE,((?) [Ps(“') — px(D][1 — Pi’(f)]_*ﬁ}

+ Olrips(D)] + Olripn(D], | 7] 2 70, (58)

sa 7, — 0. Substituting this result into equation (55) and assuming
that the integrability conditions

f: | ps(r) | dr < (59)

fo " pu(n) | dr < (60)

are satisfied, there results

* McFadden derives a similar expression for the case of a weak sinusoid in additive
gaussian noise and asserts that the expansion is valid at = = 0 as long as py(7)
satisfies certain differentiability conditions.

t Another method for obtaining equation (58) is to expand equation (56) in a
Taylor series about pa(r).
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Sy(f) = ‘% {f arcsin py(7) coswr dr
0

Rs(0 “ 2, \1=3
+ a0 7 [ () — el = AT coswr dr} + ofr)
1] Ty
(61)
as 7, — 0, uniformly in f. This result ean immediately be simplified by
observing that the predominant contributions to Sy(f) due to interaction
of the signal and noise processes are due to interaction of the signal

process with the narrowband interference component of the noise.
In fact, noting that

pn(r) = api(r) + (1 — a@)p(7) €os w,r, (62)

it can be seen that equation (61) reduces to equation (11).

APPENDIX B

Dertvation of Oulpul-Power Spectral Density Expansion
It is shown in Appendix A that the output power spectral density
can be expressed according to equation (11); namely, that

1) = S0, + 2o 0 [T 0 = (1 = ) cos aur]

1 = 1 = a)’pi(r) cos® w7} cos wr dr + o(r) (63)
as 7, — 0, uniformly in f, where
Syy(f) = éf arcsin [ap,(7) 4+ (1 — a)p:(7) cos w.r] cos wr dr  (64)
0

™

is the output power spectral density when the noise N () alone is present
at the limiter input. Sy(f) can be put in a more useful form by expanding
both [l — (1 — @)*p(7) cos® wer] ¥ and aresin [ap,(r) + (1 — a)pa(7)
cos w,7]. Proceeding with expansion of the latter it is seen that [Ref.
13, item 15.1.6]

aresin [ap,(7) + (1 — a)p.(7) cos w,7]

L3 PO D 10 ) + (1 — @)pals) cos wurl®™"

T o & T(m + $Hm

1 & Tm+3) s 2m + 1!
= o ,;1 I'(m + #)m! ,g.] 2m+ 1 — j!j!

[(1 - 0-'),03(1') cos ng]j[apl(T)]g"”l—i
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i I(m + 3)

. 1
= arcsin [(1 — a)p.(7) cos w.r] + o 2 T(m + Hm!

S (2??‘!. + l)l i 2m+1—7
L Gm 4 1= iyt [~ @) cos warl fap (I (65)

Thus, substituting equation (65) into equation (64), we have
Syy(f) = Sv. (N + Sy.(f), (66)

where

2 P& Im+d) ™ (@Cm+ 1!
$v®) =), Z T+ Pmi Z@m+ 1= 17!

(1 = a)pa(7) cos wor)[ap (7)™ cos wr dr (67)

and

Se.f) = % f " arcsin [(I — a)ps(s) coswpr] coswr dr.  (68)

We have succeeded in breaking Sy(f) into a broadband component
Sy.(f) plus a component Sy,(f) consisting of narrowband contributions.
In fact, letting £ /7, , it can be seen, using the integrability condition
of equation (5), that

fw [(1 — a)po(7) cos wor]'[ap()]*™ ' cos wr dr

2m+1—1

-]
= f [(1 — &)p2(r12) cosweriz) [ap(x) cos wy 7] cos wr,z da
0

= [[ (= @) o+ ofr) (69)

as 7, — 0, for all f = fo.. < co for arbitrary fixed f,.. , as long as j <
2m -+ 1. Moreover, using this integrability condition plus the fact that
the series in the integrand is absolutely convergent, it can be shown that

_ 2 [TaDm+d B @mt 1)
S0 = 5n [ R TonF i Z @ k1=

(1 = @™ dz + o(r:)  (70)

as 7, — 0, for all f = fu.x < oo, which can be written as

Sn) =2 f " {arcsin [ap@ + 1 — af
— aresin (1 — o)} dz + o(r,) (71)
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as 7, — 0, for all f = fn.. < w for arbitrary fixed fn.. . Thus it is seen
that the broadband component Sy, (f) becomes white across any fre-
quency band of finite extent as =, — 0 and moreover that, if « = 1,
then Sy, (f) is just the output power spectral density that would be
observed if the broadband component of the noise was present alone
at the limiter input.

Turning now to Sy,(f) given by equation (68), it is seen that

arcsin [(1 — a)py(7) €08 w.r]

1 S T°k+ 3
o B P O

2w
- o 3 FEED 0 —

' : 2k + 1!
2+ 1 — )l 2%

— a)po(7) cos wyr]**!

g

cos (2k + 1 — 2r)w.r. (72)

Now, letting & — » £ m and then interchanging the order of summation
on k and m, there results

arcsin [(1 — cx)pz(T) COS woT]

2 1 '
* mZ k{:, Tk 4 %)icl; ((fkj—_ ?jz(ik 1-; (111— m)! 2%
-[(1 — a) o) eos 2m 4+ Desr. (73)
However [Ref. 13, item 6.1.18],
@k + D! = o2k + DIEk + ) (74)

so that equation (73) can be rewritten as
arcsin [(1 — a)pa(7) cOS w,]

_ 1 0 o0 Fﬂ(k + %)

s ,,.Z_D,,c.m (k+m4+ D!k — m)! [
1< i G+ m + %)

T S T+ 2m + 2)j!

1< r*(m + 3
T = T(2m 4+ 2)

01— a)pen)]P™H eos (2m + Dwsr. (75)

Substituting this result into equation (68), we obtain the result stated
in equation (15).

— @) pa(N)]F" cos 2m + Dewsr

(1 — &) NP cos (2m + Dwar

Fi{im + 3om+ 3 2m + 25 [(1 — @)p(n)])
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The expansion of [1 — (1 — a)%2(r) cos® »7]”* in the second term in
equation (63) can be pursued in a manner identical to that used above
for the expansion of arcsin [(1 — a)py(7) cos w,7], and the result obtained
is that given in (13).

It is pointed out in the text that the assumption p.(r) = 1 greatly
simplifies the expression for Sy(f) without obscuring the most important
effects that result from the presence of narrowband interference. In
particular, it is seen that the assumption p,(r) = 1 violates the inte-
grability condition in equation (60). As a result, equation (13) does
not hold uniformly in f under this assumption since the points f= +kf. ,
I = 1,3, ---, must be excluded. However, it is observed that equation
(13) can be made to hold at these points as 71 — 0 by addition of the
remainder term

of- [ 1001 dr)- (76)

Moreover, it is seen from equation (15) that, when p.(r) = 1, Sy, (J) is
nonzero only at f = +kf,, &k = 1,3, - -+ , and its value at these points is

o [*1 o 1 ar) an

Thus in fact it can be seen that, when p,(r) = 1, it is meaningful to
write Sy(f) as given by equation (17).
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