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The rate-distortion function with a mean square error distortion crilerion
18 tnvestigated for a class of Gaussian Markov sources. It is found that for
rates greater than a certain minimum, the rate-distortion function 1s equiva-
lent to that of an independent letler source. This minimum rate was found
to be less than n bits per symbol, where n is the order of the Markov se-
quence. Comparisons between the rate-distortion function, and two quantiz-
ing systems are made.

I. INTRODUCTION

Suppose in the communication system of Fig. 1, the source emits a
sequence of continuous-valued random variables. The exact specifica-
tion of such variates requires an infinite number of binary digits. Hence
exact transmission would require a channel of infinite capacity. Since
no physical channels possess infinite capacity, we see that exact trans-
mission is impossible through this system.

However, if we are willing to accept some error in our specification
of the source output, then finitely many binary digits are necessary.
In the study of digital encoding systems, a useful quantity to know is
the fewest number of binary digits necessary to represent an analog
signal within a certain error. Such a quantity would give us a perform-
ance criterion with which to compare existing systems, and also tell us
how much improvement is possible.

The quantity we seek is given by Shannon’s rate-distortion function.""*
The rate-distortion function gives, for any bit rate, the minimum pos-
sible error achievable.

In this paper we study the rate-distortion functions for the important
* This research was partially supported by the Air Force Office of Scientific
Research under Contract AF 49(638)-1600. This paper is part of a dissertation

submitted in 1969 to the Faculty of the Polytechnic Institute of Brooklyn, in partial
fulfillment of the requirements for the Ph.D. degree in systems science.
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Tig. 1 — General communication system.

class of gaussian Markov sources. We measure our error by the mean
square error criterion. Also, the performance of two quantizing systems,
differential PCM and block quantizing, is compared to the rate-distor-
tion bound.

II. DISCUSSION OF RESULTS

We have studied the rate-distortion functions of gaussian Markov
sources with a mean square error criterion. We express our results in
Fig. 2 by plotting signal-to-noise ratio in dB, versus bit rate E. The
signal-to-noise ratio is given by

2
S/N = 10 log;, % 1)

where ¢” is the variance of the source output, and D is the mean square
error.

It was found that for rates B greater than a certain R.:., the rate
distortion function is given by

2
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Fig. 2 — Rate-distortion bound of a Markov-n source compared with block quantiz-
ing system and differential PCM.
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or
2

S/N = 6.02R + 10 log,, % (3)
where ¢2 is the minimum mean square prediction error one step ahead.
The point R,;, occurs in the interval (0, n) where n is the order of the
Markov process that the source emits. The exact location of R;, de-
pends on the exact shape of the power spectral density of the process,
as we shall see. At B = R,;., the rate-distortion function has a dis-
continuity in the third derivative.

If the source were followed by the optimum prediction system of Fig.
3 then the output sequence produced would be uncorrelated with vari-
ance o, . Such a sequence has the rate-distortion function given by (2).
Hence for rates greater than R, ;, the sequences at the input and output
of the prediction system have equal rate-distortion functions. For rates
less than R.;, they do not.

A lower bound on the performance achievable by the block quantizing
system of Iig. 4 was found. The result is also shown in Fig. 2, where it
is seen that this system can be made to perform within 4.34 dB of the
bound.

Also shown in I'ig. 2 is the performance bound for a differential PCM
system (see Iig. 5) as derived by O’Neal. This bound however, holds
only for high bit rates.

III. RATE DISTORTION FUNCTIONS FOR MARKOV-N SOURCES

3.1 Iniroduction

Consider again the communication system of Iig. 1. The source emits
the discrete time, stationary random process x, ,¢t = 0, =1, =2, --- .
After N seconds, a column N vector X is obtained, and after encoding,
transmission and decoding, the receiver obtains a replica X of X. The
mean square error between the transmitted and received vectors is

j N
SOURCE [ {J)

OPTIMUM

MG
PREDICTOR \r+

Fig. 3 — Predictive communication system.
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Fig. 4 — Block quantizer for correlated source.

defined by
D=+ EX - (X - %) 4)

where E denotes expectation and X" is the transpose of X. It is reason-
able to ask what the minimum bit rate is, at which we must transmit,
s0 as to be able to achieve a mean square error less than some prescribed
amount. The answer is given by Shannon’s rate-distortion funetion
which is defined as follows:""*

R(D) = lim min + [[ p(X.p(Rx | X2

N—o0

p(Xy | Xy) > 5
-log, ") dXy dX (5)

where the minimization is taken over all p(Xy | X) satisfying
1 . .
(D) = N f (Xy — XN)T(XN’ - XN)

DX )pEy | Xn) dXy Xy = D (6)

and where
p(Xy) = probability measure of the source vector Xy
p(Xy | Xy) = conditional probability measure of Zi' v given Xy
p(Xy) = probability measure induced on Xy by p(Xy) and
P(XN | Xw).
SOURCE 2 QUANTIZER

_\/

+
OPTIMUM |
PREDICTOR

L | +

Fig. 5 — Differential pulse code modulation system.
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(The subseript N is included to emphasize that we are dealing with an
N-vector.)

Suppose the source emits a stationary gaussian time series with cor-
relations E(z;x,) = r;_x = r,. Then the discrete time power spectral
density is given by

0= 3 re®  —r (7)

T==—00

A
>
A
El

and the rate distortion function is given parametrically by® (see Fig. 6
for interpretation)

R@) =3 [ 1o fg‘ ° 8(a)
p@) = [ o5+ [ 1005 8(b)
A={n: ) 2 6)
A7 = (N f(N) < @)

and
A\J A" = (—m, 7).
Hence, if we are given a distortion D, from (8b) we can find ¢, and

then from (8a) we can find the theoretically minimum rate R necessary
to achieve a mean square error less than or equal to D. If {x,} consists

(N

Fig. 6 — Graphical interpretation of equations 8a and b. Theset A = (—m, A_y)
8 E)\-:, 7\)-2) Uy M) (g M) W (g, m) AT = (g Aa) W (g, M) U (M Ae)
A3y Aa).
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of independent Gaussian variates, with variance ¢°, then f(\) = ¢ and
(8a) becomes

R(D) = 1 log, %bits/symbol. )

If we restrict the class of sources to be wide sense Markov of order
n, then f(\) assumes the following form:

o) = - —2 (10)
I e — a; |’

i=1

with 0 < a; < 1, a; # a, if j # k, and K is chosen to satisfy

27

=) = = [ i) . (11)

In the remainder of this paper we consider some properties of the
rate distortion function as given by (8a) and (Sb) for processes with
power speetral density (10).*

3.2 The Markov-n Sequence

In this section we present some results from prediction theory.
Tor details and proofs see Refs. 6 and 7.

A process with power spectral density given in (10) is known as a
Markov-n process.” Performing the indicated multiplication in (10)
results in

N = = £ R f(n-lI)(k a2’ (12)
e e 4 be 4+ 0 4 b |

=1

A sequence with the spectrum (12) can be shown to satisfy the autore-
gressive relation

x, + Z b{ﬂ:n—{ = € (13)

i=1

where {e,} is a sequence of uncorrelated random variables with variance
K.
Writing (13) in the form

To = — 2 biltai + € (14)

* T, Berger, in a recent paper considers similar properties for the Weiner process*,



RATE-DISTORTION FUNCTIONS 3065

it can be shown by the orthogonality principle (Ref. 8, Section VII-C)
that the best linear predictor in the mean square sense, of z, given the
infinite past is just

fo = — 2 bitass . (15)
i=1

Hence for a Markov-n process the best prediction involves only the
n previous samples.
The error is

EE:EH_:E.-; = €& . (16)
The minimum mean square error is thus
2 = FEe)’ = K. 17

From (10) and (17)

1 [ 2 I [T Y

gf log. /(3 dX = logs % — 5= > f log: [e® — a; [*.  (18)
From Peirce’s tables,” number 540, it can be shown that the integral is
zero (recalling that 0 < a; < 1). We state our conelusion as a theorem.

Theorem 1: For a sequence with spectrum given tn (10) the minimum
mean square error resulting from an oplimal prediction one step ahead is
o’ , where

1 m
logs %, = o f_ log, £ d. (19)
Theorem 1 is a special case of the theorem proved in Ref. 6, page 183.

3.3 Ivaluation of R(D) for D = [(m)
We next consider the particular form that equations (8a) and (Sb)
assume when f()) is as given in (10).

Theorem 2: Given a process with

f(\) =

o

I
n

] ix 2
|| e — a;
i=1

for some integer n. For mean square errors satisfying 0 = D = {(7), R(D)
18 given by

R(D) = 1 log, % bils/symbol. (20)
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Proof: From (8a) and (8b)

G %L long%)g—::

D=2%;L¢d)\+fd‘f()\)d)\.

The power spectral density f(A) is monotonically decreasing with a
minimum at A = . Hence for ¢ in the range 0 < ¢ < f(m), A = (—m, ),
A’ = &, and

1 T
D=5 [ sar-s. (21)
It follows that
1[" d\
R@) = RD) =5 [ lom 10) 5= — 4 logs D. @2)

From Theorem 1 the first term is 3 log o2 so R(D) = } log. o./D
which holds for 0 < D = f(=). This is (20).

The rate-distortion function (20) is precisely the rate-distortion func-
tion of a process consisting of independent gaussian random variables
with mean 0 and variance ¢ [see (9)].

Figure 7 illustrates why the rate-distortion function depends on
f(x) in this way. The shape of the spectrum of D in (8b) is that which
would be assumed by water if it were poured into a container shaped as
f(A). As we pour in water, it distributes itself uniformly so long as its
level is below f(r). Hence D is independent of f(\) so long as D < f(m).
Once D = f(x) the exact shape of f(\) comes into play.

Consider next the predictive communication system of Fig. 4. The
source emits the gaussian process with power spectral density (10). The

)

fm————

7 7%

-7

Fig. 7 — Typical Markov spectrum, illustrating water filling interpretation of the
rate-distortion function.
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optimum predictor makes a prediction of z, based on {z,}7Z} . This
prediction is then subtracted from z, and the error is transmitted. The
transmitted sequence is thus the sequence [e,} [see (14)] which is a
sequence of uncorrelated gaussian random variables with variance ¢2 .
Its rate-distortion function is thus also given by (20), for D in the in-
terval 0 < D < o} .
From (1)
2

S/N = 10 log,, "5

Il

10 ]ogw D D

2

3.01 log, % + 10 10gm %ﬁ'

2

6.02R + 10 log,, "—2 (23)

since R is given by (20). Hence S/N is a linear function of B over the
range of B for which 0 = D = f(r). This range depends on n, the order
of the Markov process, as given in theorem 3.

Theorem 3: For an nth order gaussian Markov process, the rate-distortion
function is given by

2

R(D) = } log, ;’)—m bits/symbol
for rates R = R,.in . The value of R,.;, depends on the exact shape of the
power spectral density f(X) and assumes a value salisfying
0 < R.,:.n < n bits/symbol (24)

depending on the a,’s of f(\) [see (10)].
Proof: From (10)

K

O =
II e — a

From this

K

fa) = 54——— (25)
i1+ |

=1
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At D = f(m)
mln R(f(‘.ﬂ')) 3 logz f( )blt‘S/'iymbOI (26)

which from Theorem 1 is

1 T
[:5; f_r log, f(\) dx — log. f(’rr)]
[log2 K — 21_7r Z_; f_ log, | e™ — a; |* d\

— log. K + nE log, (1 + ai)z]- 27)

i=1

DO DD =

As in (18) the integral is zero and
Rein E log, (1 + a;) bits/symbol. (28)

Since |a;| < 1, Ruin < 7n bits/symbol. Hence, 0 < Bnm < 7 bits/
symbol, which is the desired result.
3.4 Behavior of R(D) at D = f(r)

With f(\) as given in (10), the rate-distortion funetion is, from (20)

2
O',,,

for 0 < D = {(w), and from (8a) and (8b)

RO\ = 1 f log, fg; dvy (29a)
DOV =§[ f 100 dy + [ " i) dv} (29h)

for f(r) = D = ¢". Writing (8a) and (8b) in this form follows from the
observation that for a monotonically decreasing power spectral density
the set A equals the simply connected interval (0, \) and ¢ = f(n), for
the appropriate \.

From (20)

’ﬁg = (—yrlns 1) D2 0<D<f@ (30

and from (29)
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dR 11
d— = 9 m In 2 (31)
d°R 1

In 2 (32)

AR _ 7 PO) 4 2NV
dn’ 2 NP OV (N

for f(r) < D < &% where f'(\) = df(\)/d\

From (30), (31), and (32) we see that dR/dD and d°R/dD? are con-
tinuous at D={(x). But from (33) we see that ’R/dD* — — © as D —
f(x) from above (since f'(x) — 0), whereas d°R/dD" is bounded as D —
(=) from below. Hence d°R/dD® is discontinuous at D = f(x).

In2 (33)

IV. QUANTIZING CORRELATED SOURCES

4.1 Introduction

Consider a source that emits a sequence of independent gaussian
random variables of mean 0, variance ¢, It is desired to optimally quan-
tize the source by using an M level quantizer. Max'® has shown that by
optimally choosing the quantizer input ranges and output levels, a mean
square quantization error of

2
D, = K(M) % (34)

can be achieved where K(1/) is a function of 3. Further, it is shown
numerically that K()/) = 2.72, and that the inequality becomes an
equality as M — . Hence for any 1/

2
a

D I

=272

(35)

q

For an M level quantizer the number of bits/symbol is R = log, M, so
that (35) can be written

2
T
or’

D,

lIA

2.72

(36)

o

The rate-distortion funetion of the process is from (9)

R =

-

Sl

log,

so that the minimum possible mean square error achievable with a fixed
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bit rate R is

a
Dmin = 22'712 (37)
Hence Max’s scheme can be made to achieve a mean square error
satisfying

D, = 272 D, (38)

where D,,,, is the minimum mean square error as given by rate-distortion

theory.
In this section we find a bound on a quantizing system studied by

Huang and Schultheiss.'* Our result is that (38) holds also for correlated
sources, when D,.;, is as given by the appropriate rate-distortion fun-
tion. For the case of Markov sources we plot this result in Fig. 2.

4.2 Description of the System

Referring to Fig. 4, the source emits correlated gaussian variates (not
necessarily Markov), of mean 0 and with correlation matrix ® =
E(XXT"). The operator 4 accumulates source N-vectors X, and rotates
them in such a way that

Y = AX (39)
and

E(YY") = E(AXX"A") = AE(XX")A" = ARAT = J  (40)
where J is a diagonal matrix whose ith entry is \; , the ith eigenvalue
of ®. Hence Y is an N-vector whose components are independent ran-
dom variables with mean 0 and variance \; , and 4 is a unitary trans-

formation.
The sequence of independent variates {y;} (the components of Yx)

are then quantized step by step.'®"'' The jth quantization can be opti-
mized to produce a mean square error of

D, = K(M)\M7* < 2.72\M;? (41)

where M, is the number of quantization levels used to quantize y; .
Denoting the output of the quantizer by the vector Y’, the average
mean square error is

__1_4 _ nT _ 1=l _ AL ES _
D—NE(Y Yy — ¥9 NE(Y yn'ATA(Y - Y

1 nT '
=ﬁE(X—X)(X—X) (42)
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where we have used the fact that for a unitary transformation 447 =
AA™" = I, the identity matrix. Hence the system mean square error
equals the quantizer mean square error.

From (41) and (42)

D= %E(Y — Y)Y - Y) ): (y: — ¥))

I

N

272 MM =D, . (43)

i=1

lIA
ZIH 21

4.3 Oplimizalion over the M,

We next tighten the upper bound by optimally choosing the M,’s
subject to the following constraints.

(?) M; = 1 for every j. The quantizer must have at least one output
level.

(77) The bit rate is limited by the channel capacity, C bits per symbol.
We can thus use M = 2° levels per symbol or M” levels per vector.
This implies the constraint

MY = 1] M, . (44)
Hence we wish to minimize the right side of (43) subject to (44), while

keeping in mind constraint (z).
With v a Lagrange multiplier, we form

F =D, + vM" (45)
A differentiation with respect to M, yields
\ﬁ .
wH (46)
where p is a constant. Using (44) to solve for the constant gives
[ A 172
M, = M| N . /N (47)
L(H }“')

and

2.72

D, - _—(Hx)m. (48)

However constraint (7) will only hold if in (47)
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N 1/N
(1)
METEE
for every k.
The right side of (49) can be written

Ll i 2 i=1

N T &

2{;_: J-I, loga f(M) ,11}

M

2
 Om

M

1969

(49)

(62)

where we have used the fact that the eigenvalues of ® approach the
ordinates of f(\) equally spaced in (—m, =) as N — « (see Ref. 6), and
then applied the definition of a Riemann integral. Finally, we used

(19). Hence the constraint (i) is met if

2
T

M?
for all k. Using (50), (51), and (52), (48) becomes

A

[IV

2

272]|.I2

In terms of signal to noise ratio we get
2

2
= 10 logyo %_'

S/N = 10 logm%

10 logm . —l— 20 log,, 2 log, M — 4.34

10 logm + 6.02R — 4.34

for
T
R > % log, i)
and where we used the relation
R = log, M.

(53)

(54)

(55)

(56)

(57)

Suppose, however, that for some )\/'s (53) is not met. Specifically,
arrange the eigenvalues such that N, = X = M -+ 2 My and suppose
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that (47) yields
My=1 k=12 --J (58a)
M,<1 k=J+1.--N. (58b)

Set those M, in (58b) equal to one, and reoptimize over the M, of
(58a), the expression

v

J
A
D, =272 3 =5 (59)
i M
subject to the constraint
J
II M, = M™. (60)
k=1
We would find that optimally
J /J
A (H )"’)
= o =1 k=1-J (61)

ﬂ{: - A‘IEN/J

where the right side of (61) is a constant. Without loss of generality,
we can assume that all 1/, obtained from (61) are greater than or equal
to one. Otherwise we would set the infeasible M, equal to one, and

reoptimize. The procedure would return us to an equation similar to
(61). AsN — =

N

D 2.721(i"—".+ > )\-)
o = 2N \&E |

i=1 i=J+1

2.72%(2127 + i 7\..)

i=1 i=J41

2'72[217 L v d\ + 217 L ) dh] (62)

where A and A’ are as given in (8) with ¢ replaced by .

Similarly
J 1/J
(11>)
y = 1-1;'2”” (63)

which, upon rearrangement, becomes

IA

~

Il

R = log M=Lz‘r:lug?E
: 2N = 2"Y

{
I

41_7.—L log, 1%—) dX. (64)
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By comparing (8a) and (8b) with (62) and (64) we see that (62) has
the optimal spectrum for a rate given by (64). This implies that our
procedure of setting infeasible M ,’s equal to one does indeed lead to an

optimum result.
Turther, the terms in brackets in (62) is the minimum mean square
error for a rate given by (64). Hence the quantization procedure has

yielded
Dc{ _S— 2'72 Dmin

which is (38).
This result is plotted in dB in TFig. 2, for the case of a Markov-n

process.

There is an approximation involved in obtaining this result. The M
obtained may not be integers. However, the large M, will be little
affected by rounding, and the looseness of the bound of (38) for small M
counteracts the effects of rounding the small M, . In fact, for very small
M ; the bound is conservative, as we can see from Fig. 2. Clearly S/N
should approach zero as R goes to zero. Hence our lower bound on S/N

is loose in this range.
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