The Optimum Linear Modulator for
a Gaussian Source Used with
a Gaussian Channel

By RANDOLPH J. PILC
(Manuscript received June 12, 1969}

The optimum linear modulator and demodulator which provide transmis-
sion of a gaussian vector source through an additive gaussian veclor channel
are derived in this paper. The measure of performance that is used is
the transmission distortion, which is defined here as the mean square error
between the source output and the decoder output. It is assumed that the
source and channel are mutually independent but that correlations can
exist among the components of each. The performance of the best linear
system 1is then compared with the distortion shown by Shannon to be
theoretically obtainable when no functional constraint is imposed at the
modulator other than an energy constraint. Although the precise form of
this optimum modulator is nol known for general gaussian vector sources
and channels, it is known to be nonlinear and to require arbitrarily long
coding block lengths. However, it is a commonly held notion thal when
the source and channel dimensionalities are equal the optimum modulator
is linear and requires a block length of only one. It is shown here thal
this belief is incorrect except in very particular situations which are de-
scribed. Some relations between the optimum linear modulator-demodulator
pair and Shannon’s test channel are discussed, and an example is in-
cluded which shows that the nonoptimality of linear devices can be quile
small.

I. INTRODUCTION

We are concerned here with the transmission of a gaussian vector
source over an additive gaussian vector channel. The mean square
difference between the source and decoder outputs is used to measure
the transmission distortion in the system and is, therefore, attempted
to be minimized in the design of the encoder and decoder. In this
design the encoder is constrained to present only a limited energy to
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the channel, thus constraining the transmission capacity of the system.’
It is because the transmission capacity of the system is limited in this
way that the given gaussian vector source cannot be transmitted with
arbitrarily small error.

The distortion which necessarily must exist in the system is pre-
scribed by Shannon’s rate-distortion theory.® This theory states that
when the transmission rate in a system is limited to R, the transmission
of the source must include an average distortion of at least dj , which
in general is a function of the source statistics and the distortion measure.
The theory further states that the distortion level d. is attainable
with some modulator-demodulator pair. Unfortunately, the precise form
of this modulator and demodulator is not known in general, except
that it is nonlinear’* and that it requires the use of arbitrarily long
coding block lengths.*

Since the nonlinearity of the optimum encoder is probably a very
complex twisting of the source space locus within the channel input
space, the implementation of the optimum encoder, even if it were
known, would be extraordinarily complex. Of course, the long coding
block length requirement does nothing to help the situation. For these
reasons we study in this paper the optimum linear transmission system,
restricting both the encoder and decoder to be linear operators. Such
a system uses a block length of only one and is very simple to implement.
(It is later shown that increasing the block length does not improve
the performance.)

The degradation in performance with the use of the optimum linear
system is found by comparing the resulting distortion to that of the
optimum nonlinear system as found by Shannon. Contrary to popular
belief, the best linear system does not provide the minimum attainable
distortion, even when source and channel dimensionalities are equal,
except in very particular situations that are described. However, in
many cases the difference is small. At the end of the paper we discuss
some relations between the optimum linear modulator-demodulator
pair and Shannon’s test channel.?

II. THE LINEAR TRANSMISSION SYSTEM

The system considered is shown in Fig. 1. The N, dimensional
zero-mean source vector w is linearly modulated by A to form the
input to the N, dimensional additive gaussian noise -channel. We
assume the noise vector n to be independent of w. The linear demodu-
lator B extracts from the received vector ¥ an estimate % of the source



LINEAR MODULATOR 3077
W, x, G_\ Y, ®,
< ) \]/m
Wo T ) N
o I O R

Na .

Wi Ty, Yn ~

S ] [

O— (j') —= s
NNe

Fig. 1 — The linear system.

which is presented to the user. In summary
1 = By = B(x + n) = B(Aw + n). (1)

The measure of distortion in the system is taken to be the sum
of mean-square errors between the components of w and 1, that is

Ns

d=E[|lw—w 12] =E[Z (w; —Tbu){l‘ (2
i=1

The modulation matrices, A and B, are sought which minimize this

distortion, their choice subject only to an average channel input energy

constraint,

It

P[Ex] ~ S vara, 3)

i=1 i=1

St

IIA

SO; (4)

which obviously will be met with equality in the optimum system.

It is well known that the minimum mean square error estimate of
any quantity (here the source vector w) based on the observation
of a second quantity (here the channel output vector y) is the condi-
tional expected value of the first given the second.* Further, the average
error made with such an estimate is the conditional variance of the
first given the second. Therefore, we have

1ba=E(wtiy): 1‘:1,2'...|N. (5)

Z. Var (w; | ).

i=1

d

The required conditional density p(w|y) can be found from
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p(w) = ki exp [—iw'®.'w]
and
py | w) = kaexp [—3(y — Aw)'®"(y — Aw)]
by application of Bayes rule. The result is
p(w|y) = ks exp [—3(w — B)'®,},(w — b)]
with
1, = A'e]'A + @ (6)
and
W=y dAd,, . M

From these equations we have one immediate result, that is, theoptimum
demodulator matrix is given in terms of A by

B = &,,A'®;". 8)

If we now rewrite equations (5) and (3) as
d = trace &,,, (9)
Sy = trace ®, (10)

we can restate our problem as that of finding the matrix A which
minimizes the trace of ®,,, subject to a constrained maximum trace

of &, .

III. THE SOLUTION UNDER CERTAIN ASSUMPTIONS

We first restrict our attention to systems in which the source and
channel dimensionalities are equal, N, = N, = N, and in which the
correlation matrices ®, and &, are diagonal. From equation (6) we

have

®,8,}, = ®,A'®]'A + 1 (11)
and from equation (1) that &, = A®,4’ and ®, = & + &,, which
provides

$,3! = A A'® + 1. (12)
Noting that &, enters these equations in a more symmetric way than

dose ®,, we recast the energy constraint in equation (10) to be in
terms of the received energy at the channel output. This energy equals
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which, if trace &, = N, , is constrained to satisfy
Sp =8, +N,. (13)
3.1 The Proof that the Optimum Modulator Mairiz is Diagonal

If we denote the characteristic polynomial of a matrix 3/ in the
variable A by

c.p. [M, \] = det (M — \)

and state that M, is square, we can use the following two matrix
properties:®

(7) ep. [M,M, ,\] = cp. [M,M, , ]\ (14)
(17) ep. [M, , N\l =cp. M, + I, x—1] (15)

to eonclude from equations (11) and (12) that
c.p. [®,9,1,, A = c.p. [®,3;, A (16)

It is this equation which provides the important relations among the
correlation matrices in the system.

We note that the set of matrix pairs ®,,,, ®, which are consistent
with equation (16) include many pairs which do not satisfy both equa-
tions (11) and (12) for any given A. The latter equations of course
specify the relations among &, ,, and ®, which must exist in the com-
munication problem under consideration. Nevertheless, we will work
with equation (16) to perform the optimization and then show that
the solutions for &,,, and ®, can be realized with some modulator
matrix A and, therefore, are consistent with the more restrictive equa-
tions (11) and (12).

Equation (14) and the assumed diagonal form of &, and &, allows
us to rewrite equation (16) as

cp. [@2@.],@% N\ = cp. [8.19,8. %, \].

As &, and &, are system constants not under the control of the user,
any specification of ®, completely determines the roots of ®;%®,®;?,
which we denote by {a.},7 = 1, 2, --- , N. The roots of &}!®,,, .}
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are also determined and are equal to {«;'}. Our claim now is that
among all matrices & with roots {a;'}, the one which produces the
minimum trace of &,,, = ®i®®} is diagonal.

If ¢,; are used to denote the elements of &, the trace of ®,,, equals

N
trace waIr = E O'?tp,',' .

i=1

At this point we impose, without loss of generality, that the variances

o> be ordered such that ¢ = ¢; = -+ = oy. Since the minimum
trace of ®,,, is sought, clearly the diagonal elements ¢;; should cor-
respondingly satisfy ¢;; = @22 = --+ = ¢wv. This presents no re-

striction on @ as a simultaneous interchange of rows and columns
produces no change in the characteristic equation of ®.

Now consider any nondiagonal candidate for the desired ®. In
particular, let ¢,.. = ¢in, m > k, be nonzero. Because the submatrix

@(km) _ ':i!’u iatm:l

Pmk  Pmm.

is itself a correlation matrix, it can be diagonalized by some orthogonal
matrix 7' such that

d'(km) = To(km)T" = {‘”"" 0 }
0 ¢
From (14) it is known that the characteristic polynomials of ®(km)
and @ (km) are equal. The trace and determinant of each are therefore
equal, Tt follows that ¢f, = ¢ — c and ¢}, = ¢un + ¢;¢ > 0, 0r that
the larger diagonal element is increased and that the smaller one is

decreased.
The diagonalization of the submatrix ®(km) within ® can be effected

by an orthogonal matrix @ which contains 7' in the appropriate sub-
matrix position and identity matrix elements in the other positions:

Qii = ti:’ ) (1'1 3) = (kv k)l (kr m)s (mo k), (m! m)
qij = 5,-,- ) Othel' (1,, j).
We then have & = Q&®Q' with only the elements in &' in rows and

columns k and m changed from those in ®. If & is used to generate
a new correlation matrix &, = ®!®'®}, we have

N N
tr @, = O o = 2. o — clor — om)

=1 i=1
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tr ., — clo; — o)
é t‘r ‘IJH-Iv 1) (17)

which establishes the claim of this section. That is, any nondiagonal
correlation matrix ® with roots |{a;'] conjectured as providing a

minimum trace correlation matrix ®}®®} = &,,, can be improved
upon by #'. The desired matrix for ® is therefore diagonal and equal to
® = [a;'8,] (18)

with the corresponding form of &,,, equal to
®,, = [oia; 8l (19)

It follows that among all matrices &,,, consistent with equation (16)
with any given &, , the one with minimum trace is diagonal.

An identical argument yields the symmetric conclusion. That is, for
any specified &, , the matrix &, with minimum trace among those
consistent with equation (16) is also diagonal and equal to

d, = [Ui“aiéii]- (20)

The argument assumes only that the noise variances are ordered
O S 00 S 000 S oy

We can now state that the minimization of the trace of &,,, over
all pairs &,,, , ®, which satisfy equation (16) and the constraint equa-
tion (13) is obtained with a pair of diagonal matrices parametrically
related as in equations (19) and (20). Any pair not so related can be
altered, one matrix at a time, to decrease either the error (trace ®,,,)
or the received energy (trace ®,). Although we have worked with
pairs ®,,,, ®, consistent with equation (16) rather than the smaller
set satisfying equations (11) and (12), the solution forms for &,,, and
®, are still valid as they do satisfy these equations.

The modulator matrix which produces the correlation matrices ®,,
and ®, in the optimum form can be found from either equation (11)
or (12) to be

A= ["— (e — 1)*5,,]- (21)
as
Equations (12), (14), and (15) and the fact that ®;*A®&,A'® * has
nonnegative roots (it is a correlation matrix) can be used to show
that ; = 1,7 = 1, 2, --- , N which guarantees that the elements
of A are real. It remains to solve for the set of roots {a;} which provides
the desired optimization.
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3.2 The Optimum Diagonal Modulator Malriz
In terms of the set {a;}, the distortion which is to be minimized
is given by
N
d = trace ®,, = sia;’

i=1

and the received energy constraint by
N
SR = trace @v = EO’:;O"' é Sg +Nn .
i=1

A further constraint is that e; = 1,4 = 1, 2, --- , N. As the set of
permissible a.’s is a convex set and the functions d(e;) and Sg(e) are
convex functions, the Kuhn-Tucker theorem is applicable.® This states
that at the point of minimization:

0 1 .
aa‘- [d+)“\§33]=0 lf a.->1

< 0 1f o; = ].
Therefore we have

—O'|2-O'I‘T2 + Xli 0':,' =0 if [2F >1

or
gy
o; = max |:( ) , 1]- (22)
RO-sn'
It has already been observed that @, = a; = -+ = ay and that
a; = 1 corresponds to a;; = 0 or no transmission of the 7th source

component. If we let N’ denote the last a; strictly greater than one
we have the following solution for the optimum modulator matrix

¥
oui (2o _ 1),
A [a,. (?\a,,.- 1) i 01 1 <4 =N (23)
L 0 0

The solution for the distortion in the optimum linear system follows
directly from equation (19):

N

N’
d = E Rﬂ'.'ﬂ'm' + Z 0'? ' (24)

i=1 i=N'+1
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as does the solution for the total received energy from equation (20):

7T + E (25)

i=N'"+1

SR—

;M’:
>"\>—-

In these equations, the parameter \ is chosen to satisfy the constraint
in equation (13) with equality. It should be remembered in the solu-
tion for A that N’ is a function of X\, being equal to the largest value
of 7 for which o;/c,; = A. For completeness, we give the optimum de-

modulator matrix:

H
B = h()u;,“- 1) b 0 ; 1=4, =N (26)

I[V. ELIMINATION OF THE ASSUMPTIONS

4.1 A Source and Channel with Nonindependent Components

We now consider systems in which &, and &, are not diagonal.
Let P and R be the orthogonal matrices which respectively diagonalize
these two correlation matrices, that is, ®,. = P®,P' and &, = R®,R'
with &,. and ®,. diagonal. Using the previous results, we can find the
optimum modulator matrix A’ in the primed system containing the
correlation matrices ®,. and ®,. . Now consider the use of the modulator
matrix A = R'A’P in the system with &, and &, . From equation (6)
and &, = A®,A' + &,, it can be easily shown that using A’ in the
primed system and A in the unprimed system each produces the same
distortion and uses the same energy. Consequently, A must be the
optimum matrix in the unprimed system. If it is not, and A, is better,
Al = RAP' would be a better choice than A’ for modulator in the
primed system contrary to A’ being optimum.

4.2 Nonequal Source and Channel Dimensionality

When N, # N,., we can appropriately modify either the source or
channel to restore the equality. For example, when N, < N, , N, — N,
source components of arbitrarily small variance, say e are added to
the original source vector. The optimum modulator is then found as
a function of e by the previous method, and finally the limit taken
as e goes to zero. Similarly, when N, < N,, N, — N, , channel com-
ponents of arbitrarily large noise variance, say 1/¢ are added to the
original channel, the optimum modulator found, and the limit taken
as e goes to zero. We have seen that whenever either the source has
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a component with small variance or the channel has a component
with large noise variance, the number of source components actually
transmitted, N’, is smaller than N. Since the optimum modulator
matrix is diagonal, N’ is also the number of channel components
actually used. Therefore, the limiting modulator form in both of the
above situations is attained for a nonzero value of ¢ say e . This
modulator form is then optimum for all e < ¢ # 0.

V. COMPARISON OF OPTIMUM LINEAR AND NONLINEAR MODULATORS

In 1959 C. E. Shannon introduced a relation between dr , the min-
imum attainable transmission distortion of a source, and E, the total
information rate used in transmission.” This relation involves only the
source statistics and the distortion measure in use. From it one is
able to conclude that any channel with capacity R can be used to
transmit the source with a transmission distortion arbitrarily close
to dy . One need only use a “sufficiently complex” encoder and decoder.

Another part of rate-distortion theory is the idea of a ‘“test channel.”
Associated with each point on the rate-distortion curve, (dz, R), is
such a test channel which has the significance that among all channels
that transmit the source at a rate equal to R, it provides the minimum
transmission distortion dz . Therefore, if there exist pre- and post-
operators which can transform a given capacity R channel into the
test channel for the source at (dz , R), these operators must be optimum.
An obvious necessary condition for this transformation, which is not
always met, is that the capacity of the test channel at (dg , R) be equal
to R.

For a gaussian source with variance ¢ and squared difference distor-
tion, Shannon has found® both the rate distortion expression, dr = o’¢™""
and the test channel:

w— P . (27)
T

n

In this reverse channel, @ and n are independent gauss variables with
respective variances ¢° — dy and dy . It can be shown that this channel
is identical to the forward channel:

w—o @ P—w (28)
T 7
A4, n
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with A, = (¢* — dg)/c®, ¢ = A,d,, and the independence between
w and n. A similar form is given by Gallager in Ref. 7. Still another
form of the test channel is:

w—XR—-P-@—-d (29)
T T T
A n B

with 4% = (¢ — dp)o®/d’dr, B® = (¢° — dgp)dg/c’s,, and n any
given additive gaussian noise.

Now consider a single dimensional gaussian channel of capacity .
Since the received energy Sy is accordingly restricted to o} exp (2R),
we have from equations (23) through (26) that the optimum linear

operators are
2 2 2
2 _On (O _ % —d
n = o ()\0',, 1) a ( d )

2 1(c* — d
R A

Ao, oo,

d aa,

A=

oo,  Sp

Note that the distortion d equals ¢ exp (2R), and that a,, and by,
agree precisely with the test channel parameters in (29). Therefore,
we can conclude that in this case the operators in equations (23) and
(26) are optimum, even outside the linear class.

The rate-distortion curve and the test channel for gaussian vector
sources can also be found from Shannon’s results. The results for the
N-dimensional source with variances o7, o3, - -+, op are (we continue
to assume that ¢} = o} = -+ = o3):

\ 1/N
dp = N{e‘“‘ 11 a':?} 0

N—1 1/N=1
— o+ V- 1>{e‘” 11 } ;
i=1
Noi £dp £ o + (N — Doy-,

N-2 1/N-2
it i+ o ol T

1=l

IIA

dR = Nﬂ'gr

-

o + (N — Doy < dp = ok + o1 + (N — 2oy
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Il

ox + -0 4 o2 + dle ™,
ot -+ 23 SdpSov+ -+
ov+ -+ +d; R=0. (30)

This expression can also be applied to a gaussian vector source with
correlated components if the variances o} are interpreted as those in
the diagonalized correlation matrix ®,. = P®,P‘'. The test channel
for N > 1 is the product of elementary test channels given in (29) with

A =A1,A2, "',AN,
i — d

A? = (aa_:’_ad‘_ )G:i.

d; = min (o} , dy),

2 2 2 2 .
On = Gm , On2 , *** , Ony = 4Ny Nolse vector.

Let us now presume that the vector channel provided for use has
the additive noise variances given by the vector ¢ and is constrained
to have an output energy level equal to S; . This equivalently specifies
the channel capacity as

N
R = max ) l log §2‘H (31)
Sei =1 2 Tni
with
SR.' = max (S, cr:.-)

and S adjusted to have > Sz: = Sp. The comparison between the
minimum attainable transmission distortion using linear transmitter
and receiver operators (equation 24) and using unrestricted transmitter
and receiver operators (equation 30) now reveals that contrary to the
single dimension case, when N > 1 the linear operators are not, in
general, optimum. The only exception is when both the vectors o
and ¢ are uniform. Some intuition as to why the single and multi-
dimensional cases are different might be provided by the following.
The test channel at (dz, R), for example, the one including the
noise vector o¢? in its form, is a result of a minimization of mutual
information under a distortion constraint. It does not, therefore,
necessarily divide the total energy presented to the gaussian vector
channel in 8 way which uses this channel to capacity. Since this channel,
by definition, transmits information at a rate equal to R, its total
capacity is (except for the special case noted previously) strictly
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greater than R. Consequently, when the same additive noise channel,
oo, is to be used for transmission but is stated to have a capacity
of only R, it cannot be transformed into the test channel by any pre-
and postoperators.

The impossiblity of such a transformation can also be observed
by noting that the allowed total input energy on the given capacity
R channel is restricted to a lower level than present on the test channel
The uniqueness of the test channel, which is formed with linear op-
erators, and the continuity of both the mutual information and dis-
tortion with the modulator matrix then precludes the possibility of
attaining the test channel’s performance with the given capacity R
channel and linear operators.

One could argue that the comparison to this point is not fair in
that Shannon allows meodulators and demodulators that operate on
blocks of letters, whereas the results in equations (23), (24), and (25)
were derived using a coding block length of one. However, the previous
results show that the optimum linear modulator does not mix indepen-
dent source components before presentation to the channel, assuming
the channel has already been rotated in N-space so as to have indepen-
dent noise components. Neither does it cross-couple sets of source
components having no cross dependence when presentation is to a
channel with sets of noise components of equal respective dimen-
sionalities also having no cross dependence. Therefore, if successive
source and channel (vector) events are independent, and their dimen-
sionalities filled out to be equal by adding either zero variance source
components or infinite variance noise components, there is no memory
introduced by the optimum linear modulator among elements of the
encoded block. The consequence is that the distortion and the energy
are only scaled by the block length in use.

V1. AN EXAMPLE

We cite here just one example which shows that at least in many
cases the performance of the optimum linear modulator- demodulator
pair compares favorably with that theoretically obtainable with more
complex operators. We take o, = 0, = 1, 7,, = @, 0,. = ae*® and use
a and ¢ as parameters that generate a set of different channels. To
better compare the two performances, we fix the channel capacity at
C' which in turn fixes Shannon’s minimum attainable distortion at
de = 2 °. The total allowed received energy is thus specified ac-
cording to equation (31).

Upon solution for N and d in equations (24) and (25) we have the
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following expression for the ratio between the distortion obtainable
with linear operators and that theoretically attainable:

cosh®¢ 0=¢=14C
dg) _ __cosh®e . o
de cosh (2¢ — C)’ WW=e=C

cosh C ; C = e

We illustrate this function for several different values of capacity in
Fig. 2. At ¢ = 0 (where both the vectors ¢° and o} are uniform) we
see that d(0) = d. indicating the optimality of the linear modulator
and demodulator for this case. Using a term introduced in Ref. 8,
we can therefore say that when ¢ = 0 the source and channel are
“matched.” As o increases, the source-channel mismatch increases and
the nonoptimality of linear operators also increases. As the figure
illustrates, the nonoptimality ratio, d(¢)/d¢ , can be quite large when
both the channel capacity is high and the additive noise vector is
highly skewed in variance. However, over a significant region of interest,

12
/ dc=0.|0
10 Cc=3

/ 2.78 0.13

// 2.30 0.20
a /d
/ 1.50 0.45

0.75 0.94

0 Q.5 1.0 1.5 o 2.0 2.5 3.0 35

Fig. 2— Thelinearsystem nonoptimality for N = 2,0y = g2 = 1,00 = 1,002 = €xp 24.
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¢ < 1 (reflecting a noise component variance ratio of about 50), the

nonoptimality ratio is small.

VII. SUMMARY

In this paper we have derived the optimum linear modulator and
demodulator for the transmission of a gaussian vector source through
an additive gaussian vector channel. It was found that when both
the source and channel components are independent, both the modulator
and demodulator matrices are diagonal. This specifies the separate
amplification, transmission, and decoding of each source component.
When both the source and channel components are correlated, the
optimum modulator matrix was found to be the cascade of three
matrices: (i) the orthogonal matrix which diagonalizes the source
correlation matrix, (¢7) the optimum modulator matrix which transmits
this newly formed independent component source over the independent
component additive noise channel which is formed by (di7) the orthog-
onal transformation matrix that diagonalizes the noise correlation
matrix. We have found that in general the best linear system does not
provide a distortion as small as that stated by Shannon to be attainable
with a channel of the same capacity. The only exception is when both
the source and channel noise variance vectors are uniform. The non-
optimality of linear modulators and demodulators can be quite large
in some eases but, in many other situations, can be small enough to
justify the use of these very simple operators.
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